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As it was already seen in the first volume of the present book, its guideline is precisely 
the mathematical model of mechanics. The classical models which we refer to are in 
fact models based on the Newtonian model of mechanics, on its five principles, i.e.: the 
inertia, the forces action, the action and reaction, the parallelogram and the initial 
conditions principle, respectively. Other models, e.g., the model of attraction forces 
between the particles of a discrete mechanical system, are part of the considered 
Newtonian model. Kepler’s laws brilliantly verify this model in case of velocities much 
smaller than the light velocity in vacuum. The non-classical models are relativistic and 
quantic. 

Mechanics has as object of study mechanical systems. The first volume of this book 
dealt with particle dynamics. The present one deals with discrete mechanical systems 
for particles in a number greater than the unity, as well as with continuous mechanical 
systems. We put in evidence the difference between these models, as well as the 
specificity of the corresponding studies; the generality of the proofs and of the 
corresponding computations yields a common form of the obtained mechanical results 
for both discrete and continuous systems. We mention the thoroughness by which the 
dynamics of the rigid solid with a fixed point has been presented. The discrete or 
continuous mechanical systems can be non-deformable (e.g., rigid solids) or deformable 
(deformable particle systems or deformable continuous media); for instance, the 
condition of equilibrium and motion, expressed by means of the “torsor”, are necessary 
and sufficient in case of non-deformable systems and only necessary in case of 
deformable ones. 

Passing by non-significant details, one presents some applications connected to 
important phenomena of the nature and one gives also the possibility to solve problems 
presenting interest from technical, engineering point of view. In this form, the book 
becomes – we dare say – a unique outline of the literature in the field; the author wishes 
to present the most important aspects connected with the study of mechanical systems, 
mechanics being regarded as a science of nature, as well as its links to other sciences of 
nature. Implications in technical sciences are not neglected. 

Concerning the mathematical tool, the five appendices contained in the first volume 
give the book an autonomy with respect to other works, special previous mathematical 
knowledge being not necessary. The numeration of the chapters follows that of the first 
volume, to which one makes reference for various results (theorems, formulae etc.). 

The book covers a wide number of problems (classical or new ones), as one can see 
from its contents. It uses the known literature, as well as the original results of the 
author and his more than fifty years experience as a Professor of Mechanics at the 

Preface 

v i i  
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University of Bucharest. It is devoted to a large circle of readers: mathematicians 
(especially those involved in applied mathematics), physicists (particularly, those 
interested in mechanics and its connections), chemists, biologists, astronomers, 
engineers of various specialities (civil, mechanical engineers etc., who are scientific 
researchers or designers), students in various domains etc. 
 
7 January 2008 P.P. Teodorescu 
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Chapter 11 

Dynamics of Discrete Mechanical Systems 

In dynamics one studies the motion of open mechanical systems, which are subjected to 
the action of given external forces (input) and which exert certain actions upon other 
systems (output); closed mechanical systems (without input and output, which are 
moving only due to the interaction of the component particles) will be considered too. 
We begin the study by the motion with respect to an inertial (Galilean) frame of 
reference, passing then to the case of a non-inertial (non-Galilean) frame; we consider 
thus discrete mechanical systems, free or subjected to constraints. We present also the 
differential principles of mechanics. 

 

First of all, some introductory notions are given: general theorems and conservation 
theorems of discrete mechanical systems, free or subjected to constraints, with respect 
to an inertial frame of reference, which lead to first integrals; the motion with respect to 
a non-inertial frame is taken into consideration too. We mention also applications to 
various important problems, e.g. the problem of n particles. 

11.1.1 Introductory Notions 

In what follows we introduce the notions of momentum, moment of momentum, kinetic 
and potential energy, work and power, with respect to an inertial frame, in case of a 
discrete mechanical system, extending the notions corresponding to a particle (see 
Chap. 6, Sect. 1.1). We mention also the formulation of the problem of mechanical 
systems of free particles. 

11.1.1.1 Moment. Moment of Momentum. Torsor of Momentum 

Let be a mechanical system S of geometric support Ω. The momentum (linear 
momentum) of the system with respect to a given fixed frame of reference (considered 
to be inertial) is given by 

d dm m
Ω Ω

= =∫ ∫H v r , 
 

(11.1.1) 

the integral being a Stieltjes one, while the mass ( )m m= r  is a distribution. 
Introducing the unit mass (1.1.71–1.1.71''), we may write 

11.1 Dynamics of Discrete Mechanical Systems with Respect 
to an Inertial Frame of Reference

P.P. Teodorescu, Mechanical Systems, Classical Models,  
© Springer Science+Business Media B.V. 2009 
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= = =
= = =∑ ∑ ∑H H v r

1 1 1

n n n

i i i i i
i i i

m m  
 

(11.1.1') 

for a discrete mechanical system S  of n particles iP  of masses im  and of position 
vectors ri , 1,2,...,i n=  (the momentum of a single particle iP  is i i im=H v  

i im= r ). 

The moment of the momentum Hi  with respect to the pole O of the considered 
frame is the moment of momentum of the particle iP , with respect to that pole, and is 
given by 

2i i i i i i i i iOi Oim m m= × = × = × = ΩK r H r v r r ,  

where we have introduced the areal velocity (5.1.16) too. The moment of momentum 
(angular momentum) of the mechanical system S  with respect to the pole O (which 
can be a given fixed point, immovable with respect to an inertial frame) is given by 

d d 2 dO Om m m
Ω Ω Ω

= × = × =∫ ∫ ∫ ΩK r v r r ; 
 

(11.1.2) 

in case of a discrete mechanical system, we obtain 

1 1 1 1 1
( ) 2

n n n n n

i i i i i i i i iO Oi Oi
i i i i i

m m m
= = = = =

= = × = × = × =∑ ∑ ∑ ∑ ∑ ΩK K r H r v r r .  (11.1.2') 

In components, we have 

( )

1

n
i

j i j
i

H m x
=

= ∑ ,   ( ) ( ) ( )

1 1
2

n n
i i i

i iOj jkl k l Oj
i i

K m x x m Ω
= =

= ∈ =∑ ∑ ,   1,2, 3j = . 
 

(11.1.3) 

The notion of torsor, introduced in Chap. 6, Sect. 1.1.1 for a single particle, allows 
us to write 

{ } { },iO Oτ =H H K ; (11.1.4) 

hence, the set formed by the linear and the angular momenta of a mechanical system S  
represents the torsor of the system { }iH , formed by the momenta of the component 
particles of the mechanical system with respect to the considered pole. For the problems 
of dynamics, the torsor plays thus a rôle analogous to that played in statics. 

11.1.1.2 Work. Kinetic and Potential Energy. Conservative Forces 

The notion of work has been introduced in Chap. 3, Sect. 2.1.2, in the form of 
elementary work (3.2.3) (we omit the adjective “real”) of a system of given forces iF , 
applied at the points iP  of position vectors ir , 1,2,...,i n= . In general, we denote by 

iF  the given external forces; the given internal forces ikF , which verify a relation of the 
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form (1.1.81) (inclusive a relation of the form (2.2.50)), put in evidence the influence of 
the particle (point) kP  upon the particle (point) iP . The elementary work intdW  of the 
given internal forces is expressed in the form (3.2.4); we notice that intdW  is a non-
negative quantity, vanishing if and only if the mechanical system S  is non-deformable. 

Analogously, the elementary work of the constraint external forces iR , 
1,2,...,i n= , is given by 

1
d d

n

i iR
i

W
=

= ⋅∑F r , 
 

(11.1.5) 

while the elementary work of the constraint internal forces ik ikR=R u  ( ik kiR R=  are 
positive quantities in case of repulsive constraint forces and negative ones in case of 
attractive such forces) has the remarkable expression 

( )
1 1

int
1 1 1 1

d d d d
n n n n

iR ik ki k ik ik
i k k i k k

W R r
− −

= + = = + =
= ⋅ + ⋅ =∑ ∑ ∑ ∑R r R r  

1 1

1 d
2

n n

ik ik
i k

R r
= =

= ∑∑ ,   i k≠ , 

 
 
 
 

(11.1.5') 

where iik ik kr= = −r u r r , vers ik=u r , is the vector which links two particles 
(points) of the mechanical system S. 

We can introduce the kinetic energy 2 2/2 /2i i i i iT m v m= = r , which is a quantity 
of state of the particle iP . The kinetic energy of the mechanical system S  is, in this 
case, given by 

2 21 1d d
2 2

T v m m
Ω Ω

= =∫ ∫ r , 
 

(11.1.6) 

and if this system is discrete, then it results 

2 2

1 1

1 1
2 2

n n

i i i i
i i

T m v m
= =

= =∑ ∑ r . 
 

(11.1.6') 

If there exists a function ikU  so that d dik ik ikU F r= , then we obtain a potential U 
of the form (3.2.6'); in this case, the internal forces are conservative forces (the 
mechanical system is conservative) and we can introduce the potential energy 
V U= − , being thus led to the mechanical energy (6.1.15). 

Immaterial whether the forces are external or internal ones, we introduce also the 
virtual work of the given forces in the form (3.2.3'), while the virtual work of the 
constraint forces is given by (3.2.7'). 

As in Chap. 6, Sect. 1.1.3, one can introduce the notions of power and mechanical 
efficiency for a mechanical system S.  Thus, starting from the elementary work (3.2.3), 
we get the power of the given external forces in the form 
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1 1

dd
d d

n n
i

i i i
i i

WP
t t= =

= = ⋅ = ⋅∑ ∑rF F v ; 
 

(11.1.7) 

as well, the power of the internal forces is 

−

= = = + = = =
= = ⋅ = =∑∑ ∑ ∑ ∑∑F v

1
int

int
1 1 1 1 1 1

d dd 1
d d 2 d

n n n n n n
ik ik

iik ik ik
i k i k k i k

r rW
P F F

t t t
,   i k≠ . 

 (11.1.7') 

In case of conservative internal forces, which derive from a potential U, we obtain 

int
d
d
UP
t

= ; 
 

(11.1.7'') 

we can make analogous observations concerning the power P of the external forces. 
Analogously, we may introduce the power of the constraint forces too. 

11.1.1.3 Formulation of Problems of Mechanical Systems in Motion 

Let us consider a free discrete mechanical system S, formed by n particles iP , of 
masses im  and position vectors ir , acted upon by the given external forces iF  
(eventually, resultants of given forces, applied at the points iP ) and by the given 
internal forces ikF , i k≠ , , 1,2,...,i k n= . According to the principle of action of 
forces, Euler showed that the motion of the mechanical system S  is governed by the 
system of vector differential equations (to simplify the notation, the sums of terms with 
two indices will be denoted by “prime” if the case of equal indices is excluded) 

1
'

n

i i i ik
k

m
=

= + ∑r F F ,   1,2,...,i n= ; 
 

(11.1.8) 

in components, we may write 

( ) ( ) ( )

1
'

n
i i ik

i j j j
k

m x F F
=

= + ∑ ,   1,2,...,i n= ,   1,2, 3j = . 
 

(11.1.8') 

The position of the free discrete mechanical system S  at a given moment t can be 

determined if one knows the functions ( ) ( ) ( )i i
j jx x t= , 1,2,...,i n= , 1,2, 3j = ; 

hence, this mechanical system has 3n degrees of freedom. In general, 

1 2 1 2( , ,..., , , ,..., ; ) ( , ; )n ni i i l lt t= ≡F F r r r r r r F r r ,   ( , ; )ik ik l l t=F F r r ,   
i k≠ ,   , , 1,2,...,i k l n= , 

 

the motion of each particle depending on the motions of all other particles. As well, the 
given internal forces can be determined (that is, may be given) only taking into account 
some hypotheses concerning the structure of the mechanical system (rigidity, 

4
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deformability – elasticity, plasticity, viscosity etc.), hence if a mathematical model of it 
is set up; in fact, in case of deformable mechanical systems, the motion of the particles 
and of the internal forces may be determined only simultaneously. 

In the first fundamental problem (the direct problem) which is put the forces iF  and 

ikF , i k≠ , , 1,2,...,i k n= , are given, and one must determine the trajectories of the 
particles, hence the vector functions ( )i i t=r r , and the velocities ( ) ( )i i it t= =v v r . 

The problem is solved by integrating the system of n vector equations (11.1.8) or the 

system of 3n scalar equations of second order (11.1.8') with certain boundary 
conditions. For the most part, initial conditions (at the initial moment 0t t= ) of the 
form 

0
0( )i it =r r ,   0

0( )i it =v v ,   1,2,...,i n= , 
 

(11.1.9) 

are put; one may put also other boundary conditions (e.g., bilocal conditions at the 
moments 0t t=  and 1t t= ). In certain conditions, sufficiently large, the solution of the 
problem is unique. 

In the second fundamental problem (the inverse problem) the motion of the particles 
iP  is known (hence, the position vectors ir  are given) and the forces iF  and ikF , 

i k≠ , , 1,2,...,i k n= , which provoke this motion, have to be determined. In general, 
the solution of the problem is not unique. 

We mention also the mixed fundamental problem in which some elements which 
characterize the motion and some elements which characterize the forces are given; one 
must determine the other elements remained unknown, to can specify entirely the 
motion of the particles and the forces applied upon them. This problem has also not a 
unique solution, in general, but only in certain conditions. 

As in the case of a single particle (see Chap. 6, Sect. 1.1.4 too), we must impose 
other conditions to the law which expresses the forces, so that the two last problems be 
determined. 

Using the results in Chap. 6, Sect. 1.1.5, we may express the equations of motion in 
other systems of co-ordinates, as it is more convenient from the point of view of the 
computation. 

The system of equations of motion (11.1.8) of the discrete mechanical system S  is 
written in an inertial frame of reference R, with respect to which the principles which 
are at the basis of the Newtonian model of mechanics are supposed to be verified. They 
remain, further, in the same form with respect to any other inertial frame which is 
deduced from the first one by a rectilinear and uniform motion of translation, hence by 
a transformation of co-ordinates belonging to the Galileo-Newton group (see Chap. 6, 
Sect. 1.2.3 too). 

 

By means of the notations  (see Chap. 3, Sect. 2.2.2 too) 

( )
3( 1)

i
ji jX x− + = ,   ( )

3( 1)
i

ji jV v− + = ,   1,2,...,i n= ,   1,2, 3j = , 
 

(11.1.10) 

11 Dynamics of Discrete Mechanical Systems 

11.1.1.4 Theorems of Existence and Uniqueness

5
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we can pass from the geometric support Ω of the discrete mechanical system S  in the 

space 3E  (formed by the geometric points iP ) to a representative geometric point P (of 
co-ordinates kX , 1,2,..., 3k n= ) in the representative space 3nE ; we also introduce 
the notations 

( ) ( )
3( 1)

1

1 '
n

i ik
j ji j

i k
Q F F

m− +
=

⎛ ⎞= +⎜ ⎟
⎝ ⎠

∑ ,   1,2,...,i n= ,   1,2, 3j = . 

 

 

(11.1.10') 

Therefore, we replace the study of the motion of the discrete mechanical system S  by 
the study of the motion of the representative point P in the representative space 3nE ; 

the motion of the point P  is governed by the system of differential equations 

=k kX Q ,   1,2,..., 3k n= . 
 

(11.1.11) 

We replace this system of 3n differential equations of second order by a system of 

6n differential equations of first order, written in the normal form 

k kX V= ,   =k kV Q ,   1,2,..., 3k n= , 
 

(11.1.11') 

where ( );k k lV V X t= , ( ), ;k k l lQ Q X V t= , , 1,2,..., 3k l n= . Such a system is non-
autonomous; if the time does not intervene explicitly in kV  and kQ , then the system is 
autonomous (or dynamic). We associate the initial conditions (corresponding to the 
conditions (11.1.9)) 

0
0( )k kX t X= ,   0

0( )k kV t V= ,   1,2,..., 3k n= , 
 

(11.1.11'') 

to this system, so that the boundary value problem (11.1.11'), (11.1.11'') becomes a 
problem of Cauchy type. The boundary value problem (11.1.8), (11.1.9) is equivalent to 
the boundary value problem (11.1.11'), (11.1.11''); for the latter problem, one may state 
Theorem 11.1.1 (of existence and uniqueness; Cauchy-Lipschitz). If the functions kV  
and kQ , 1,2,..., 3k n= , are continuous on the interval (6n+1) – dimensional D, 
specified by 0 0

0 0k k k k kX X X X X− ≤ ≤ + , 0 0
0 0k k k k kV V V V V− ≤ ≤ + , 

0 0
0 0t t t t t− ≤ ≤ + , 0

0 0, , constk kX V t = , 1,2,..., 3k n= , and defined in the space 
Cartesian product of the phase space (of canonical co-ordinates 1 2 3, ,..., nX X X , 

1 2 3, ,..., nV V V ) by the time space (of co-ordinate t), and if the Lipschitz conditions 

( ) ( )
3

1

1; ;
n

k l k l l l
l

V X t V X t X X
=

− ≤ −∑T
, 

( ) ( ) ( )3

1

1 1, ; , ;
n

k l l k l l l l l l
l

Q X V t Q X V t X X V V
τ=

− ≤ − + −∑T , 

 

6
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for 1,2,..., 3k n= , where T  is an independent of kV  and t time constant, while τ is a 
time constant equal to unity, are satisfied, then it exists a unique solution ( )k kX X t= , 

( )k kV V t=  of the system (11.1.11'), which satisfies the initial conditions (11.1.11'') 
and is defined on the interval 0 0t T t t T− ≤ ≤ + , where 

0 0
0min , , ,k kX V

T t τ⎛ ⎞≤ ⎜ ⎟
⎝ ⎠

TV V ,   ( )max ,k kV Qτ=V  in D. 
 

According to Peano’s theorem, the existence of the solution is ensured by the 
continuity of the functions kV  and kQ  on the interval D. For the uniqueness of the 
solution, Lipschitz’s conditions must be fulfilled too; the latter conditions can be 
replaced by other more restrictive ones according to which the partial derivatives of 
first order of the functions kV  and kQ , 1,2,..., 3k n= , must exist and be bounded in 
absolute value on the interval D, as it was shown by Picard, using a method of 
successive approximations. As a matter of fact, the Theorem 11.1.1 can be 
demonstrated by an analogous method. We must mention that the conditions in 
Theorem 11.1.1 are sufficient conditions of existence and uniqueness, which are not 
necessary too. 

The existence and the uniqueness of the solution have been put in evidence only on 
the interval [ ]0 0,t T t T− + , in the vicinity of the initial moment 0t  (in fact, 0t  can be 
an arbitrary chosen moment, not necessarily the initial one); taking, for instance, 
0t T+  as initial moment, by repeating the above reasoning, it is possible to extend the 

solution on an interval 12T , 1T T>  (obviously, if the sufficient conditions of 
existence and uniqueness of the Theorem 11.1.1 are fulfilled in the vicinity of this new 
initial moment). We can obtain thus a prolongation of the solution for [ ]1 2,t t t∈ , 
corresponding to an arbitrary interval of time in which the considered mechanical 
phenomenon takes place or even for ( , )t ∈ −∞ +∞ . 

As in the case of a single particle (see Chap. 6, Sect. 1.2.1), we can put in evidence 
some important properties of this solution; we thus state: 
Theorem 11.1.2 (on the continuous dependence of the solution on a parameter). If the 
functions ( ); ,k lV X t μ , ( ), ; ,k l lQ X V t μ  are continuous with respect to the parameter 

[ ]1 2,μ μ μ∈  and satisfy the conditions of the theorem of existence and uniqueness, 

and if the constant T of Lipschitz does not depend on μ, then the solution ( , )kX t μ , 
( , )kV t μ , 1,2,..., 3k n= , of the system (11.1.11') which satisfies the conditions 

(11.1.11'') depends continuously on μ. 
Theorem 11.1.3 (on the analytical dependence of the solution on a parameter; 
Poincaré). The solution ( , )kX t μ , ( , )kV t μ , 1,2,..., 3k n= , of the system (11.1.11') 
which satisfies the conditions (11.1.11''), depends analytically on the parameter 

[ ]1 2,μ μ μ∈  in the neighbourhood of the value 0μ μ=  if, in the interval 
[ ]1 2,μ μ×D , the functions kV  and kQ  are continuous with respect to t and analytic 

with respect to kX , kV , 1,2,..., 3k n= , and μ. 

11 Dynamics of Discrete Mechanical Systems 7
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Theorem 11.1.4 (on the differentiability of the solutions). If in the vicinity of a point 
( )0 0, ;l lX V tP the functions ( );k lV X t  and ( ), ;k l lQ X V t , 1,2,..., 3k n= , are of 

class mC , then the solutions ( )kX t  and ( )kV t  of the system (11.1.11'), which satisfy 
the initial conditions (11.1.11''), are of class 1mC +  in that vicinity. 

One can state theorems (analogue to the Theorem 11.1.2) concerning the continuous 
dependence of the solution on the initial conditions or on several parameters. 

The points P  in the vicinity of which the boundary value problem (11.1.11'), 
(11.1.11'') has not solution or, even if the solution exists, that one is not unique, are 
called singular points; the integral curves (in the space 3nE ) formed only of singular 
points are called singular curves, the corresponding solution being a singular solution. 
For the singular points there are necessary supplementary conditions, which can lead to 
the choice of one of the branches of the multiple solution. 

11.1.1.5 First Integrals. General Integral. Constants of Integration 
An integrable combination of the system (11.1.11') may be, e.g., 

( )1 2 3 1 2 3d , ,..., , , ,..., ; 0n nf X X X V V V t = , (11.1.12) 

obtaining thus a finite relation of the form 

( )1 2 3 1 2 3, ,..., , , ,..., ;n nf X X X V V V t C= ,   constC = , (11.1.12') 

hence a link between the co-ordinates kX  and the components kV  of the velocity at the 

time t; the function f, which is reduced to a constant along the integral curves, is called 
first integral of the system (11.1.11'). 

If we determine 6h n≤  first integrals for which 

( ), ;j jk kf X V t C= ,   constjC = ,   1,2,...,j h= , (11.1.13) 

the matrix 

( )
( )

1 2

1 2 3 1 2 3

, ,...,
, ,..., , , ,...,

h

n n

f f f
X X X V V V

∂⎡ ⎤≡ ⎢ ⎥∂⎣ ⎦
M  

 
(11.1.13') 

being of rank h, then all these first integrals are independent (for the sake of simplicity 

we say not “functional” independent) and we may express h unknown functions of the 
system (11.1.13) in terms of the other ones; replacing in (11.1.11'), the problem is 
reduced to the integration of a system of equations with only 6n h−  unknowns. If 

6h n= , then all the first integrals are independent and the system (11.1.13) of first 
integrals determines all the unknown functions. For 6h n>  the first integrals (11.1.13) 
are no more independent, so that we cannot set up more than 6n independent first 
integrals. 

8
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Assuming that 6h n=  and solving the system (11.1.13), we get (the matrix M is a 
square matrix of order 6n for which det 0≠M ) 

( )1 2 6; , ,..., nk kX X t C C C= ,   ( )1 2 6; , ,..., nk kV V t C C C= ,   1,2,..., 3k n= , 
 (11.1.14) 

where = constlC , = 1,2,...,6l n , hence the general integral of the system of 
equations (11.1.11'). The general integral of the system of vector equations (11.1.8) is, 
analogously, 

( )1 2 6; , ,...,i i nt C C C=r r ,   1,2,...,i n= ; 
 

(11.1.15) 

eventually, we have 

( )1 2 2; , ,...,i i nt=r r K K K ,   1,2,...,i n= , (11.1.15') 

where constl =K , 1,2,...,2l n= . Thus, 6n scalar constants or 2n vector constants of 
integration are put into evidence. Because the vector functions (11.1.15) or (11.1.15') 
verify the equations (11.1.8) for any constants of integration, we can state that the same 
mechanical system S, acted upon by the same system of forces, may have different 
motions. Imposing the initial conditions (11.1.9), written in the form (11.1.11''), we 
obtain 

( ) 0
0 1 2 6; , ,..., nk kX t C C C X= ,   ( ) 0

0 1 2 6; , ,..., nk kV t C C C V= ,   1,2,..., 3k n= ;  

the conditions (11.1.11'') being independent, we may write 

( )
( )

0 0 0 0 0 0
1 2 3 1 2 3

1 2 6

, ,..., , , ,...,
det 0

, ,...,
n n

n

X X X V V V
C C C

∂⎡ ⎤
≠⎢ ⎥∂⎣ ⎦

, 
 

and, according to the theorem of implicit functions, we deduce 

( )0 0 0 0 0 0
0 1 2 3 1 2 3; , ,..., , , ,...,j j n nC C t X X X V V V= ,   1,2,..., 6j n= .  

Thus, we obtain, finally, 

( )0 0
0; , ,k k l lX X t t X V= ,   ( )0 0

0; , ,k k l lV V t t X V= ,   1,2,..., 3k n= , 
 

(11.1.16) 

or 

( )0 0
0; , ,i i j jt t=r r r v ,   ( )0 0

0; , ,i i j jt t=v v r v ,   1,2,...,i n= . 
 

(11.1.16') 

In the frame of the conditions of the theorem of existence and uniqueness, the 
principle of the action of forces and the principle of the initial conditions determine, 
univocally, the motion of the mechanical system S  in a finite interval of time; by 

11 Dynamics of Discrete Mechanical Systems 9
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prolongation, this statement may become valid for any t. The deterministic aspect of 
Newtonian mechanics is thus put in evidence. 

Sometimes, a calculation in two steps can be made, as in the case of only one particle 
(see Chap. 6, Sect. 1.2.2). Starting from the system of differential equations of second 
order (11.1.11), we can find integrable combinations, leading to 3n first integrals of the 
form 

( )1 2 3 1 2 3, ,..., , , ,..., ;n nk kX X X X X X t Cϕ = ,   1,2,..., 3k n= ; 
 

(11.1.17) 

if, starting from these relations, in a second stage, we build up other 3n integrable 
combinations, leading to the first integrals 

( )1 2 3 1 2 3 3, ,..., ; ; , ,...,n nk n kX X X t C C C Cψ += ,   1,2,..., 3k n= , (11.1.17') 

then the problem is solved. Indeed, we notice that 

( )
( )

1 2 3

1 2 3

, ,...,
det 0

, ,...,
n

nX X X
ψ ψ ψ∂⎡ ⎤ ≠⎢ ⎥∂⎣ ⎦

, 
 

finding thus the first group of relations (11.1.14). 

11.1.2 General Theorems. Conservation Theorems 
We present in what follows the general theorems of mechanics (the theorem of 
momentum, the theorem of moment of momentum and the theorem of kinetic energy) 
with respect to an inertial frame of reference (for the sake of simplicity, we do not 
mention it in the following) in case of a free discrete mechanical system and in case of a 
discrete mechanical system subjected to constraints, as well as the corresponding 
conservation theorems. Among the applications of these results, we mention the 
problem of n particles. We notice that, in fact, the general theorems are differential 
consequences of the system of equations of motion (11.1.8); we may also say that these 
theorems represent necessary conditions which must be verified in the motion of the 
mechanical system S  with respect to an inertial frame of reference. 

11.1.2.1 Theorem of Momentum. Theorem of Motion of the Centre of Mass 
Summing the equations of motion with respect to an inertial frame of reference (11.1.8) 
for all the particles of the mechanical system S  and taking into account the relation 
(2.2.50) verified by the internal forces, we obtain 

1 1

n n

i i i
i i

m
= =

=∑ ∑r F , 
 

where the internal forces disappear. Introducing the momentum (11.1.1'), it results, 
finally, 

10
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1

d
d

n

i
it =

= = =∑HH F R ,   ( )

1

n
i

j jj
i

H F R
=

= =∑ ,   1,2, 3j = , 
 

(11.1.18) 

and we may state 
Theorem 11.1.5 (theorem of momentum). The derivative with respect to time of the 
momentum of a free discrete mechanical system is equal to the resultant of the given 
external forces which act upon this system. 

We mention that, in this theorem, both the derivative H  and the resultant of the 
given external forces are free vectors. As well, the first relation (11.1.18) maintains its 
validity if it is projected on a plane or on an axis (the second group of relations 
(11.1.18)). 

Starting from the relation (3.1.2) which gives the position vector of the centre of 
mass C of the discrete mechanical system S,  differentiating with respect to time in the 
fixed (inertial frame) and taking into consideration (11.1.1'), we obtain 

M=H ρ  (11.1.19) 

and we can state 
Theorem 11.1.6 The momentum of a mechanical system is equal to the momentum of 
the centre of mass of this system, at which we consider that the whole mass of it is 
concentrated. 

We notice that the relation (11.1.19) is of the type of relation (3.1.9) for the polar 
static moments; we put thus in evidence the importance of the centre of mass C, which 
can replace – in certain situations – the whole mechanical system S. The Theorem 
11.1.6 is valid for any mechanical system, either if it is free or it is subjected to 
constraints. 

Differentiating the relation (11.1.19) with respect to time, in the considered fixed 
frame, and taking into account (11.1.18), we may write 

1

n

i
i

M
=

=∑F Rρ = , 
 

(11.1.19') 

stating thus 
Theorem 11.1.7 (theorem of motion of the centre of mass; Newton). The centre of mass 
of a free discrete mechanical system is moving as a free particle at which would be 
concentrated the whole mass of the system and which would be acted upon by the 
resultant of the given external forces. 

This theorem allows an independent study of the motion of the centre of mass C 
(even if this one does not belong to the mechanical system S ), in a first stage of study 
of the system in its totality; in a second stage, one can consider the motion of the system 
with respect to the centre of mass C. As well, the Theorem 11.1.7 represents a 
justification for the modelling as a particle in the study of mechanical systems. 

Starting from the relation (11.1.18), we may write 
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2 2

1 1
2 1

1
( ) ( ) d d

n t t
it ti

t t t t
=

Δ − =∑∫ ∫H H H F R ; 
 

(11.1.18') 

the variation of the momentum of a free discrete mechanical system in a finite interval 
of time is thus put into evidence. The quantity 2

1
d

t

t
t∫ R  represents the impulse of the 

resultant of the given external forces, corresponding to the interval of time [ ]1 2,t t . 
The notion of hodograph, introduced in Chap. 5, Sect. 1.2.1, leads to a kinematical 

interpretation of the Theorem 11.1.5; we state thus 
Theorem 11.1.5' The velocity of a point which describes the hodograph of the 
momentum of a free discrete mechanical system with respect to a fixed pole is 
equipollent to the resultant of the given external forces which act upon this system. 

11.1.2.2 Theorem of Moment of Momentum 

We perform a vector product at the left of each equation of motion (11.1.8) by ir  and 
sum for all particles of the mechanical system S ; taking into account the relation 
(2.2.50) which is verified by the internal forces, we obtain 

1 1

n n

i i i i i
i i

m
= =

× = ×∑ ∑r r r F , 
 

where the internal forces disappear. Introducing the momentum iH  and the moment of 
momentum OiK , we notice that 

( ) ( ) ( )d d
d di i i i i i i i i i i i i Oim m m
t t

× = × + × = × = × =r r r r r r r r r H K ,  

so that we may write 

1

d
d

n
O

i iO O
it =

= = × =∑K
K r F M ,   ( ) ( )

1

n
i i

Oj jkl Ojk l
i

K x M
=

= ∈ =∑ F ,   1,2, 3j = . 

 (11.1.20) 

Thus, we state 
Theorem 11.1.8 (theorem of moment of momentum). The derivative with respect to time 
of the moment of momentum of a free discrete mechanical system, with respect to a 
fixed pole, is equal to the resultant moment of the given external forces which act upon 
this system, with respect to the same pole. 

In this theorem, the derivative OK  as well as the resultant moment of the given 

external forces are bound vectors, applied at the pole O. As well, the first relation 
(11.1.20) remains valid if it is projected on a plane or on an axis (the second group of 
relations (11.1.20)). We may also write 

1
2

n

i i O
i

m
=

=∑ MΩ ,   ( ) ( ) ( )

1 1
2

n n
i i i

i ijkl OjOj k l
i i

m m x x MΩ
= =

= ∈ =∑ ∑ ,   1,2, 3j = ,    (11.1.20') 
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putting thus into evidence the areal accelerations of the component particles of the 
mechanical system S ; we can state 
Theorem 11.1.8' (theorem of areal accelerations). The sum of the products of the 
double masses of the particles of a free discrete mechanical system by their areal 
accelerations, with respect to a given fixed pole, is equal to the resultant moment of the 
given external forces which act upon this system with respect to the same pole. 

Another form of the relation (11.1.20) is given by 

2 2

1 1
2 1

1
( ) ( ) d d

n t t
i iO O O Ot ti

t t t t
=

Δ − × =∑∫ ∫K K K r F M ; 
 

(11.1.20'') 

thus, the variation of the moment of momentum of a free discrete mechanical system, in 
a finite interval of time, is put into evidence. The quantity 2

1
d

t
Ot

t∫ M  represents the 

impulse of the resultant moment of the given forces with respect to the pole O, 
corresponding to the interval of time [ ]1 2,t t . 

 
Fig. 11.1  The Atwood engine 

With the aid of the hodograph too, the kinematic form of the theorem of moment of 
momentum is expressed by (for the sake of simplicity, we choose the pole of the 
moment of momentum as pole of the hodograph) 

Theorem 11.1.8'' The velocity of the point which describes the hodograph of the 
moment of momentum of a free discrete mechanical system with respect to a given fixed 
pole is equipollent to the resultant moment of the given external forces which act upon 
this system, with respect to the same pole. 

We will use these results in the study of the Atwood engine, which allows to verify 
the law of falling of the bodies. This engine is formed by a wheel of radius r and weight 

G, which is rotating frictionless, with the angular velocity ω, about a horizontal axle, 

11 Dynamics of Discrete Mechanical Systems 
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which passes through the pole O; over the wheel passes frictionless an inextensible and 
perfect flexible and torsionable thread, at the ends of which are suspended the weights 

1 1m=G g , 2 2m=G g , 1 2m m>  (Fig. 11.1); we assume that the mechanical system 
is moving with the velocity 1 2v v v rω= = = . The theorem of moment of momentum 
is written in the form 

1 1 2 2 1 2
d ( )
d OI m v r m v r m gr m gr
t

ω + + = − ,  

where OI  is the polar moment of inertia of the wheel with respect to the pole O; in this 
case, the acceleration a v=  is given by 

1 2m m
a g

m
−

= ′ ,   1 22
OIm m m

r
′ = + + , 

 

(11.1.21) 

where m ′  is the reduced mass of the mechanical system. We notice that a g< ; if the 
difference 1 2m m−  is small, then we have a g . Thus, we obtain easy the 

acceleration a, in the frame of an experiment; the acceleration g is then given by the 

formula (11.1.21) ( 1 2, , Om m I  and r are known quantities). The tensions 1T  and 2T  in 

the thread and the constraint force R are then easily obtained 

1
1 1 2 1( ) ( )

m
T m g a m m m g

m
′= − = + −′ ,   

2
2 2 1 2( ) ( )

m
T m g a m m m g

m
′= + = + −′ ,    

 
 
 

(11.1.21') 

1 2
1 2 1 2 2 1( ) ( ) ( )

m m
R m m g m m a G m m m g G

m
− ′= + − − + = + − +′ . 

The theorem of moment of momentum with respect to the pole O, written only for 
the subsystem formed by the wheel ( ( )1 2OI T T rω = − ), may be used to verify the 
results obtained above. 

11.1.2.3 Theorem of Torsor 

Starting from (11.1.4), we notice that { } { },iO Oτ =H H K ; but 

1 1

d
d

n n

i i
i it = =

= =∑ ∑H H H , 

( )
1 1 1

d
d

n n n

i i i i i i i iO
i i it = = =

= × = × + × = ×∑ ∑ ∑K r H r H r H r H , 

so that { } { }i iO Oτ = τH H . Because { } { },iO Oτ =F R M , starting from (11.1.18) 
and (11.1.20), we get 
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{ } { } { }d
di i iO O Ot

τ = τ = τH H F , 
 

(11.1.22) 

stating thus 
Theorem 11.1.9 (theorem of torsor). The derivative with respect to time of the torsor of 
momenta of a free discrete mechanical system with respect to a given fixed pole is equal 
to the torsor of the given external forces which act upon this system, with respect to the 
same pole. 

Thus, by introducing the notion of torsor, we get a synthesis of the theorems of linear 
and angular momenta, which has the advantage to contain only the given external 
forces (the internal forces are eliminated). The theorem of torsor implies two vector 
relations or six scalar relations. 

The variation of the torsor of momenta of a free discrete mechanical system with 
respect to a given fixed pole, in an interval of time [ ]1 2,t t , is obtained in the form 

{ } { } { } { }2

2 1 1
d

t
i i i iO O O Ot t t t t

t= =Δτ τ − τ τ ∫H H H F= = . 
 

(11.1.22') 

This relation plays an important rôle in case of a small interval of time and, especially, 
in case of discontinuous phenomena. 

The general theorems stated above take place with respect to an inertial frame of 
reference R, considered as fixed; the theorem of moment of momentum and the 
theorem of torsor, which depend on the pole O, maintain their form with respect to 

another pole Q, rigidly connected to the frame R  (fixed with respect to this frame). If 

the pole Q  is movable, calculating further with respect to the frame R, the momentum 
remains invariant, but (as in Chap. 6, Sect. 1.2.4) the moment of momentum and the 
resultant moment of the given external forces become 

O Q Q= + ×K K r H ,   O Q Q= + ×M M r R ,   Q OQ=r ;  

replacing in (11.1.20) and taking into account (11.1.18), we may write ( i iQP=r ) 

1

d
d

nQ
i iQ Q Q Q

it =
= = × − × = − ×∑

K
K r F v H M v H , 

 

(11.1.23) 

obtaining thus a generalized form of the theorem of moment of momentum. The 
formula (11.1.22) is generalized in the form 

{ } { } { } { }d ,
di i iQ Q Q Qt

τ = τ = τ − ×H H F 0 v H . 
 

(11.1.23') 

11.1.2.4 Theorem of Kinetic Energy 

We perform a scalar product of each equation of motion (11.1.8) by ir  and sum for all 
the particles of the mechanical system S, and obtain 
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1 1 1 1
d d ' d

n n n n

i i i i i iik
i i i k

m
= = = =

⋅ = ⋅ + ⋅∑ ∑ ∑∑r r F r F r ; 
 

observing that 

d dd d d d
d d

i i
i i i i i i i i i im m m m

t t
⋅ = ⋅ = ⋅ = ⋅r rr r r r r r  

21 d( )
2 i im= r 21 d( ) d

2 i i im v T= =  

 

and taking into account (3.2.3), (3.2.4) and (11.1.6'), we may write 

intd d dT W W= + , (11.1.24) 

stating thus 
Theorem 11.1.10 (theorem of kinetic energy; Daniel Bernoulli). The differential of the 
kinetic energy of a free discrete mechanical system is equal to the elementary work of 
the given external and internal forces which act upon this system. 

Unlike the theorem of torsor, in the theorem of kinetic energy intervene also the 
internal forces in calculation. Dividing the relation (11.1.24) by dt and taking into 
account (11.1.7), (11.1.7'), we can write this theorem in the form (closer to the previous 
ones) 

int
d
d
TT P P
t

= = + , 
 

(11.1.24') 

obtaining thus 
Theorem 11.1.10' (theorem of kinetic energy; second form). The derivative with 
respect to time of the kinetic energy of a free discrete mechanical system is equal to the 
power of the given external and internal forces which act upon this system. 

In general, the elementary work is not an exact differential (it is a Pfaff form); the 
theorem of kinetic energy may be written in the form (for [ ]1 2,t t t∈ , between the 

positions 1P  and 2P  of the representative point P in the space 3nE ) 

1 2 1 2
2 1 2 1 int

( ) ( )
P P P P

T T t T t T T W WΔ = − = − = +  

1 2 1 21 1 1
d ' d

n n n

i i iikP P P Pi i k= = =
= ⋅ + ⋅∑ ∑∑∫ ∫F r F r  

2 2 2 2

1 1 1 1
int

1 1 1
d ' d d d

n n nt t t t
i i iikt t t ti i k

t t P t P t
= = =

= ⋅ + ⋅ = +∑ ∑∑∫ ∫ ∫ ∫F v F v  

 
 
 
 
 

(11.1.24'') 

and we can state 
Theorem 11.1.10'' (theorem of kinetic energy; finite form). The variation of the kinetic 
energy of a free discrete mechanical system in a finite interval of time is equal to the 
work effected by the external and internal forces which act upon this system in the 
considered interval of time. 
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If we write the relation (11.1.18') for only one particle iP  (we must introduce also 
the influence of the internal forces) and if we perform a scalar product by the velocity 

(2)
iv  at the finite moment (the velocity (1)

iv  takes place at the initial moment), and if 
we sum for all the particles of the discrete mechanical system S, then we obtain 

( ) 2

1

2(2) (1) (2) (2)

1 1 1 1
' d

n n n nt
i i i iki i i i ti i i k

m v m t
= = = =

⎛ ⎞− ⋅ = ⋅ +⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑∫v v v F F ; 
 

introducing the notations 

( )2(1)
1

1

1
2

n

i i
i

T m v
=

= ∑ ,   ( )2(2)
2

1

1
2

n

i i
i

T m v
=

= ∑ ,   ( )2(0)
0

1

1
2

n

i i
i

T m v
=

= ∑ , 
 

(11.1.25) 

where 0T  is the kinetic energy of the lost velocities, while (0) (2) (1)
i i i= −v v v , it results 

2

1

(2)
0

1 1
' d

n nt
i iki ti k

T T t
= =

⎛ ⎞Δ + = ⋅ +⎜ ⎟
⎝ ⎠

∑ ∑∫v F F  
 

(11.1.26) 

and we can state 
Theorem 11.1.11 The sum of the variation of the kinetic energy of a free discrete 
mechanical system in a finite interval of time and the kinetic energy of the lost velocities 
in the same interval of time is equal to the sum of the scalar products of the impulses of 
the given external and internal forces which act upon this system, corresponding to the 
considered interval of time, by the velocities of the particles at the final moment. 

Analogously, we find (we perform a scalar product by the velocities (1)
iv  and sum 

for all the particles of the mechanical system S ) 

2

1

(1)
0

1 1
' d

n nt
i iki ti k

T T t
= =

⎛ ⎞Δ − = ⋅ +⎜ ⎟
⎝ ⎠

∑ ∑∫v F F  
 

(11.1.26') 

and state 
Theorem 11.1.11' The difference between the variation of the kinetic energy of a free 
discrete mechanical system in a finite interval of time and the kinetic energy of the lost 
velocities in the same interval of time is equal to the sum of the scalar products of the 
impulses of the given external and internal forces which act upon this system, 
corresponding to the considered interval of time, by the velocities of the particles at the 
initial moment. 

Summing the relations (11.1.26) and (11.1.26') and taking into account the relation 
(11.1.24''), we get 

( ) 2

1 2 1 2 1

(1) (2)
int 1 1

1 ' d
2

n nt
i iki iP P P P ti k

T W W t
= =

⎛ ⎞Δ = + = + ⋅ +⎜ ⎟
⎝ ⎠

∑ ∑∫v v F F ; 
 

(11.1.27) 

thus, we state 
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Theorem 11.1.12 (Kelvin). The work effected by the given external and internal forces 
which act upon a free discrete mechanical system in a finite interval of time (the 
variation of the kinetic energy of the respective mechanical system) is equal to the sum 
of the scalar products of the impulses of the given external and internal forces which 
act upon this system, corresponding to the considered interval of time, by the semi-sum 
of the velocities of the particles at the initial and final moments. 

Subtracting the relation (11.1.26') from the relation (11.1.26), we may write 

2

1

(0 )
0

1 1

1 ' d
2

n nt
i iki ti k

T t
= =

⎛ ⎞= ⋅ +⎜ ⎟
⎝ ⎠

∑ ∑∫v F F ; 
 

(11.1.27') 

there results 
Theorem 11.1.12' (analogue to Kelvin’s theorem). The kinetic energy of the lost 

velocities of a free discrete mechanical system in a finite interval of time is equal to half 
of the sum of the scalar products of the impulses of the given external and internal 
forces, which act upon this system, corresponding to the considered interval of time, by 
the lost velocities, in the same interval of time. 

If the given external and internal forces which act upon a free discrete mechanical 
system S  satisfy certain conditions, then the general theorems stated above lead to 
conservation theorems (hence, to first integrals of the system of differential equations of 
motion). Thus, if the resultant R of the given external forces is parallel to a fixed plane 
(is normal to a fixed direction of unit vector u, with respect to the frame R , or has a 
zero component, 0⋅ =R u ), as in the case of a single particle (see Chap. 6, Sect. 
1.2.5), then the theorem of momentum allows to write 

( ) ( )

1 1 1

n n n
i i

i i j j ij j
i i i

m u H u m v C
= = =

⋅ = ⋅ = = =∑ ∑ ∑H u u v ,   constC = ; 
 

(11.1.28) 

we obtain thus a scalar first integral. Hence, if the resultant R of the given external 
forces is parallel to a fixed plane, then the projection of the momentum of the free 
discrete mechanical system S  on the normal to this plane is conserved (is constant) in 
time. Because 

1 1 1

d
d

n n n

i i i i i i
i i i

m m m C
t= = =

⎛ ⎞⋅ = ⋅ = ⋅ =⎜ ⎟
⎝ ⎠

∑ ∑ ∑u v u r u r , 
 

it results 

( )

1 1

n n
i

i i j i j
i i

m u m x Ct C
= =

′⋅ = = +∑ ∑u r ,   , constC C ′ = , 
 

(11.1.28') 

obtaining a new scalar first integral, independent of the previous one; thus, the 
mentioned condition allows to build up two independent scalar first integrals. 

11.1.2.5 Conservation Theorems of Momentum. Applications 
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Analogously, if the resultant R has a fixed direction (is normal to two non-parallel 
fixed directions with respect to the frame R  or has two zero components), then we 
obtain four independent scalar first integrals of the form (11.1.28), (11.1.28'), while the 
projection of the momentum of the free discrete mechanical system S  on a plane 
normal to the resultant R (determined by the two fixed directions) is conserved in time. 

Finally, if the resultant R of the given external forces vanishes (is normal to three 
distinct fixed directions), then we may set up three independent scalar first integrals of 
the form (11.1.28). As a matter of fact, =R 0  leads to =H 0  and to 

1

n

i i
i

m
=

= =∑H v C ,   const=C ,   i iH C= ,   1,2, 3i = , 
 

(11.1.28'') 

hence to a vector first integral, equivalent to three scalar first integrals; we state thus 
(we take into account (11.1.19) too) 
Theorem 11.1.13 (conservation theorem of momentum). The momentum (and the 
velocity of the centre of mass) of a free discrete mechanical system is conserved in time 
if and only if the resultant of the given external forces which act upon it vanishes. 

Starting from (11.1.19), we can write 

M t ′= +C Cρ ,   , const′ =C C ,   i i iM C t Cρ ′= + ,   1,2, 3i = ; 
 

(11.1.28''') 

thus, we get a new vector first integral, equivalent to three scalar first integrals, and we 
may state 
Theorem 11.1.14 (theorem of rectilinear and uniform motion of the centre of mass). 
The motion of the centre of mass of a free discrete mechanical system is rectilinear and 
uniform if and only if the resultant of the given external forces which act upon this 
system vanishes. 

Observing that the Theorem 11.1.14 is a consequence of the Theorem 11.1.13 (and 
inversely), it results that the conservation theorem of momentum allows to set up two 
vector first integrals or six scalar first integrals (the maximal number of independent 
scalar first integrals which can be obtained). 

Returning to the Theorem 11.1.7 of general motion of the centre of mass of a free 
discrete mechanical system, we can mention many applications. Let thus be a discrete 
mechanical system S  of free particles launched in vacuum and subjected only to the 
action of a uniform gravitational field; no matter the internal forces could be, the centre 
of mass C of the mechanical system S  (considered as a particle acted upon by the 
resultant of the gravity forces) describes an arc of parabola of vertical axis. For 
instance, if a projectile launched in the vicinity of the Earth explodes at a certain 
moment, then the particles thus obtained (various parts of the projectile) are moving so 
that the instantaneous centre of mass of the system thus formed describes, further, the 
same parabola; indeed, the forces which are developed by explosion are internal ones 
and do not intervene in calculation. If, at a certain moment, intervene also other external 
forces (e.g., the collision of a part of the projectile with the ground or other bodies), 
then the trajectory of the centre of mass is modified. 

We have seen that, in the absence of external forces, the centre of mass has a 
rectilinear and uniform motion; this result has been verified by many astronomical 
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observations. Indeed, assuming that the solar system is isolated (it is not acted upon by 
external forces, which can be practically accepted, because the other stars and their 
planets are at great distances from the solar system, so that their influence may be 
neglected), its centre of mass (very close to the centre of mass of the Sun) has a 
rectilinear motion, with a velocity of 19.5 km/s, towards a point called Apex, in the 
vicinity of the star Vega of the constellation Lyra. 

If, in the above case, the initial velocity of the centre of mass is zero with respect to 
an inertial frame of reference R, then the centre of mass is at rest with respect to this 
frame at any moment. Assuming that the theorem of motion of the centre of mass can 
be applied also in case of continuous mechanical systems (as it will be seen in Sect. 
12.1.2.1), we will apply the above results to living matter too. The will of living beings 
puts in action their muscles; these actions are internal forces, which do not intervene in 
computation, so that a living being can change the rectilinear and uniform motion (or 
the rest) of its centre of mass only by acting upon some external mechanical systems 
(bodies). Thus, a man which stays on a perfect smooth horizontal plane cannot advance 
(cannot “go”); indeed, the external forces which act upon the human body are vertical, 
so that its centre of mass can move only along the vertical (there exist no horizontal 
components). The going becomes possible only because, in reality, the ground (plane 
surface) cannot be perfect smooth, a sliding friction taking, practically, place. In this 
case, the man, immobile at the beginning, raises a foot and advances one step; the other 
foot, in contact with the ground, tends to make a motion in an opposite direction, not to 
have a horizontal component of motion of the mass centre. At this moment appears an 
oblique reaction of the ground, with a horizontal component due to friction, directed 
towards forward; this reaction transported parallel to itself at the centre of mass, 
determines a forward motion. 

Let us consider the case of a non-deformable mechanical system S  of mass M, 
which has a motion of translation of velocity v with respect to a fixed frame of 
reference R, and a particle P of mass m, which moves with a velocity u with respect to 
the mechanical system S, hence with a velocity ′ = +v v u  with respect to the frame 
R ; we assume that the resultant of the external forces which act upon the mechanical 
system { }P= ∪′S S  vanishes. The conservation theorem of momentum allows to 
write 

( )M m M m m′+ = + + =v v v u C ,   const=C ; 
 

(11.1.29) 

if the mechanical system ′S  is at rest with respect to the frame R  at the initial 
moment 0t  ( 0 0( ) ( )t t′= =v v 0 , hence 0( )t =u 0 ), then we get =C 0 , so that 

m
M m

= −
+

v u . 
 

(11.1.29') 

Hence, if the particle P begins to move with the velocity u with respect to the non-
deformable system S, then a velocity v of opposite direction is conveyed to the latter 
one; supposing that m M  (hence /( ) /m M m m M+ ≅ ), it results v u . 
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The motion being rectilinear, in this case, we can consider that it takes place along the 
Ox-axis, the mass centre of the mechanical system S  (materialized by a rigid straight 

bar, Fig. 11.2) having the abscissa ( )x t  and the velocity ( )v t , while the particle P is 
of abscissa ( )x t′  and velocity ( ) ( ) ( )v t v t u t′ = +  ( ( )u t  is the velocity with respect 
to the mechanical system S ); we may thus write 

0Mv mv ′+ = ,   mv u
M m

= −
+

. 
 

(11.1.30) 

Integrating with respect to time (which corresponds to the Theorem 11.1.14), it results 

0 0 ( ) constMx mx Mx mx M m ξ′ ′+ = + = + = , (11.1.30') 

where 0 0( )x x t= , 0 0( )x x t′ ′= , while 0( ) ( ) constt tξ ξ= =  is the abscissa of the 

mass centre C of the mechanical system ′S  (Fig. 11.2), which remains at rest with 
respect to the frame R. Denoting by 0x xδ = − , 0x xδ ′ ′ ′= −  the displacements of 

the mechanical system S  and of the particle P, respectively, positive in the positive 

sense of the Ox-axis, we obtain the displacement of the mechanical system S  as a 

function of the displacement of the particle P (of an opposite direction to the latter one) 

 
Fig. 11.2  Motion of translation of a mechanical system 

m
M

δ δ ′= − ; 
 

(11.1.30'') 

because m M , it results δ δ ′  too. These results explain why the centre of 
mass of the system formed by a boat (on a non-running water) and by a man is not 
displacing, no matter the action of the man upon the boat (if the man moves in a 
direction, then the boat moves in the opposite one); if the boat is near to the border and 
the man advances in it towards the border, trying to go down, then the boat moves away 
from the border. Analogously, the repulsion of a gun at the moment of the discharge is 
thus explained; the velocity of this repulsion is given by the second formula (11.1.30) 
as a function of the initial velocity of the projectile (bullet), while the formula 
(11.1.30'') gives the displacement back of the gun (of its mass centre) as a function of 
the distance travelled through by the projectile along its barrel (during the time in which 
the gun S  and the projectile P form a mechanical system ′S ). 
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11.1.2.6 Conservation Theorems of Moment of Momentum. Theorem of Areas. 
Applications 

If the moment OM  of the given external forces is contained in a fixed plane (is normal 

to a fixed axis Δ, O Δ∈ , of unit vector u, with respect to the frame of reference R  or 
has a zero component, 0O ⋅ =M u ), as in the case of a single particle (see Chap. 6, 
Sect. 1.2.5), then the theorem of moment of momentum leads to 

( ) ( )

1 1
( , , )

n n
i i

i i i j iO Oj jkl lj k
i i

m K u m x v u C
= =

⋅ = = = ∈ =∑ ∑K u r v u ,   constC = , 

 (11.1.31) 

obtaining thus a scalar first integral of the equations of motion; in this case, the 
projection of the moment of momentum OK  on the axis Δ is conserved in time. If, in 

particular, the axis Δ coincides with the Ox-axis, then 

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2 2 1 1 2 2 1

1 1

n n
i i i i i i i i

i i
i i

m x v x v m x x x x C
= =

− = − =∑ ∑ ,   constC = . 

 (11.1.31') 

As well, if the moment OM  has a fixed support (is normal to two non-parallel fixed 
axes 1Δ  and 2Δ  with respect to the frame R  or has two zero components), then we 
get two independent scalar first integrals of the form (11.1.31), while the projection of 
the moment of momentum of the discrete mechanical system S  on a plane normal to 
the moment OM  (determined by the two fixed directions) is conserved in time. 

If O =M 0  (the moment OM  is normal to three distinct directions), then we can set 
up three independent scalar first integrals of the form (11.1.31). Besides, the relation 

O =M 0  leads to O =K 0  and to 

1
( )

n

i i iO
i

m
=

= × =∑K r v C ,   const=C ,   

( ) ( )

1

n
i i

i jOj jkl k l
i

K m x v C
=

= ∈ =∑ ,   1,2, 3j = , 

 
 

(11.1.31'') 

hence to a vector first integral, equivalent to three scalar first integrals; we may thus 
state 
Theorem 11.1.15 (conservation theorem of moment of momentum). The moment of 
momentum of a free discrete mechanical system, with respect to a fixed pole, is 
conserved in time if and only if the resultant moment of the given external forces which 
act upon this system, with respect to the same pole, vanishes. 

The two conservation theorems (of momentum and of moment of momentum) are 
independent each other and give nine independent scalar first integrals. They can be 
grouped together in the form (we assume that { }iOτ =F 0 ) 

22



www.manaraa.com

{ } constiOτ =H  
 

(11.1.31''') 

and we can state (if the torsor of a system of bound vectors vanishes with respect to a 
pole, then it vanishes with respect to any other pole) 
Theorem 11.1.16 (conservation theorem of torsor). The torsor of the momenta of a free 
discrete mechanical system, with respect to a fixed pole, is conserved in time if and only 
if the torsor of the given external forces which act upon this system, with respect to the 
same pole, vanishes. 

Projecting the particles iP , 1,2,...,i n= , of the free discrete mechanical system S  
on a fixed plane (e.g., the plane 1 2Ox x ) and supplying the projections iP ′  with the 
same masses im  (or assuming that we have to do with a plane mechanical system), we 

can write, in polar co-ordinates ( ( )
1 cosi

i ix r θ= , ( )
2 sini

i ix r θ= ), 

( )( ) ( ) ( ) ( ) ( )2
3 1 2 2 1 3

1 1 1
2

n n n
i i i i i

i i i i iO O
i i i

K m x x x x m r mθ Ω
= = =

= − = =∑ ∑ ∑ . 
 

We thus find again the second formula (11.1.3) for 3j = . If 3 0OM = , then the 
formula (11.1.31') leads to 

( ) 2
3

1 1
2

n n
i

i i i iO
i i

m m r CΩ θ
= =

= =∑ ∑ ,   constC = , 
 

(11.1.32) 

and we may state 
Theorem 11.1.17 (theorem of areal velocities; plane case). The sum of the products of 
the double masses of the particles of a free discrete mechanical system by the areal 
velocities of their projections on a fixed plane, with respect to a fixed pole in this plane, 
is conserved in time if and only if the resultant moment of the given external forces 
which act upon this system, with respect to an axis normal to the considered plane at 
the same pole, vanishes. 

This theorem can be applied, e.g., if the supports of all the given external forces 
pierce a fixed straight line. Observing that ( ) ( )

3 3d /di i
O O tΩ = A , where we supplied the 

area by the sign +, corresponding to a positive rotation in the considered fixed plane 
(see also Fig. 6.5), we get (integrating from the initial moment 0t ) 

( )
03

1
2 ( )

n
i

i O
i

m C t t
=

= −∑ A ,   constC = , 
 

(11.1.32') 

and are led to 
Theorem 11.1.18 (theorem of areas; plane case; L. Euler, D. Bernoulli, d’Arcy). The 
sum of the products of the double masses of the particles of a free discrete mechanical 
system by the areas described by the radii vectores of their projections on a fixed plane, 
with respect to a fixed pole in this plane, starting from their initial positions, is in direct 
proportion to the interval of time travelled through if and only if the resultant moment 
of the given external forces which act upon this system, with respect to an axis normal 
to the considered plane at the same pole, vanishes. 
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We notice that the Theorems 11.1.17 and 11.1.18 are equivalent. 
If the angular velocity is the same for all particles ( iθ ω= , 1,2,...,i n= ), then the 

relation (11.1.32) reads 

33I Cω = , (11.1.32'') 

where 333 xI I=  is the moment of inertia of the mechanical system S  with respect to 
the 3Ox -axis, defined by the relation (3.1.21'). This relation takes place, e.g., in case of 
a non-deformable mechanical system S  in motion of rotation with respect to a fixed 
axis. The constant C is called the constant of areas. 

In particular, if at a moment 0t t=  the discrete mechanical system S  is at rest with 

respect to a fixed (inertial) frame of reference R  ( 0( ) 0i tθ =  and ( )
03 ( ) 0i

O tΩ = ), 
hence if the mechanical system S  begins to move starting from a position of rest, then 
the constant of areas vanishes ( 0C = ); thus, it results 

( ) 2
3

1 1
2 0

n n
i

i i i iO
i i

m m rΩ θ
= =

= =∑ ∑ ,   ( )
3

1
0

n
i

i O
i

m
=

=∑ A ,   33 0I ω = . 
 

(11.1.32''') 

Hence, if some particles have an angular velocity in one sense (e.g., 0iθ > ), then for 
the other particles the velocity must be of opposite sense ( 0iθ < ); one can make this 

observation for the areas ( )
3
i

OA  too. From the third relation (11.1.32''') one can see that 
0ω = ; hence, the mechanical system S  cannot rotate around the fixed axis if it is at 

rest with respect to the latter one at the initial moment. For instance, a man (in general, 
a living being) in a vertical position on a perfect smooth ground cannot rotate about a 
vertical axis passing through its centre of mass (he is acted upon only by his own 
weight and by the normal constraint force of the ground, the resultant moment of the 
external forces with respect to the centre of mass vanishing). The rotation takes place 
only if a pivoting friction between man and ground intervene too (as in case of walking) 
or by various complicated motions made by the man, as we will see later. 

The above results have many applications. Thus, we will consider a non-deformable 
mechanical system S, which has a moment of inertia IS  with respect to a fixed axis in 
the inertial frame of reference R  and rotates with an angular velocity Sω  about this 
axis, and a particle P (or another non-deformable mechanical system S ), which has a 

moment of inertia I with respect to the same fixed axis and which rotates with an 
angular velocity ω with respect to the system S, hence with an angular velocity 

′ = +Sω ω ω  with respect to the frame R ; we assume that the resultant moment of 
the external forces which act upon the mechanical system { }P= ∪′S S  (or 

= ∪′S S S ) vanishes. The conservation theorem of moment of momentum allows 
to write 

( )I I I I I′+ + + CS S S Sω ω = ω ω = ,   const=C ; 
 

(11.1.33) 
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if the mechanical system ′S  is at rest with respect to the frame R  at the initial 
moment 0t  ( 0 0( ) ( )t t′= = 0Sω ω , hence 0( )t = 0ω ), then we get =C 0 , so that 

I
I I+S

S
ω = − ω . 

 

(11.1.33') 

Hence, if the particle P begins to rotate with the angular velocity ω with respect to the 
non-deformable system S, the latter one also moves with an angular velocity Sω  of 
opposite sense (Fig. 11.3); supposing that I IS  (hence ( )/ /I I I I I+ ≅S S ), it 
results Sω ω . We may assume that the rotations take place about the same 

3 -Ox axis, which passes through the pole O, the angular velocities being specified by 
the scalar magnitudes ( )tωS  and ( )tω , respectively (hence, ( ) ( ) ( )t t tω ω ω′ = +S  
too); it results 

0I Iω ω ′+S S = ,   I
I I

ω ω
+S

S
= − . 

 

(11.1.34) 

Integrating with respect to time, we obtain 

0
0 constI I I Iθ θ θ θ′ ′+ + =S S S S= , (11.1.34') 

 
Fig. 11.3  Motion of rotation of a mechanical system 

where 0
0( )tθ θ=S S , 0 0( )tθ θ′ ′= . Denoting by 0ϑ θ θ= −S S , 0ϑ θ θ′ ′ ′= −  the 

rotation of the mechanical system S  and the rotation of the particle P, respectively, 
considered to be positive for the positive sense of rotation, we get the angle of rotation 
of the mechanical system S  as a function of the angle of rotation of the particle P (of 
an opposite sense with respect to the latter one) 

I
I

ϑ ϑ′= −S
S

; 
 

(11.1.34'') 

if I IS , then it results ϑ ϑ′S  too. These results are analogous to those 
obtained at the precedent subsection for a motion of translation, in case of a similar 
problem. 

11 Dynamics of Discrete Mechanical Systems 25



www.manaraa.com

 MECHANICAL SYSTEMS, CLASSICAL MODELS 

Returning to the rotation of a man about a vertical axis on a perfect smooth ground, 
case considered above, we notice that to any tendency of rotation of the upper part of 
his body (determined by internal forces) corresponds a tendency of rotation of the lower 
part of his body in the opposite sense. If the man would hold up his hands, with the fists 
in symmetrical positions with respect to the axis, and would effect by each fist a motion 
of rotation in the same sense, in a horizontal plane, the symmetry with respect to the 
axis being preserved, then his body would rotate in an opposite sense. As well, as it was 
shown by Saint-Germain, if the man would rotate several loads hanged simultaneously 
on a belly-band (by the action of internal forces) in the same sense, then his body would 
rotate in an opposite sense. Let us consider also the case of a circular disc, in a 
horizontal plane, which can rotate without friction about a vertical axle which passes 
through its centre (Prandtl’s disc); we have seen that a particle which describes a circle 
with the centre on the vertical axis induces a rotation of the disc in the opposite sense 
(Fig. 11.3). If a man is in a vertical position on the disc, his centre of mass being on its 
axis, and keeps in his hands a wheel, the axle of which is along the same vertical axis, 
then any rotation of the wheel (provoked by an external cause) leads to a rotation of the 
system (formed by the man and the disc) in an opposite sense. 

If the constant of areas is non-zero ( ≠C 0 ), corresponding to the formula (11.1.33), 
then one can obtain an angular velocity non-parallel to C only if the angular velocity ω 
has a direction different from that of C; returning to Prandtl’s disc, the axle of the wheel 
must be inclined with respect to the vertical. As well, the formula (11.1.32'') shows that 
the angular velocity ω is in inverse proportion to the axial moment of inertia 33I ; for 
instance, a ballerina (or a skater) rotates with a greater angular velocity if she (he) has 
the hands pressed to the body (the axial moment of inertia is smaller) or with a smaller 
angular velocity if she (he) stretches the hands from the body (the axial moment of 
inertia is greater). 

Analogously, a cosmic vehicle may change its direction of motion only if it is in a 
gravitational field. The manoeuvres effected in the vehicle are, in fact, actions of 
internal forces; an intervention of external forces, to give the vehicle the possibility of 
rotation, is necessary. 

If the Theorem 11.1.15 takes place, then we can write conservation relations of the 
form (11.1.32) for the three planes of co-ordinates; we obtain thus 

( )

1
2

n
i

i O
i

m
=

=∑ CΩ ,   const=C , 
 

(11.1.35) 

and may state 
Theorem 11.1.17' (theorem of areal velocities; space case). The sum of the products of 
the double masses of the particles of a free discrete mechanical system by their areal 
velocities, with respect to a fixed pole, is conserved in time if and only if the resultant 
moment of the given external forces which act upon this system, with respect to the 
same pole, vanishes. 

In this case, the constant moment of momentum OK  is equal to the constant of areas 
C ( O =K C ). We can write a theorem of areal velocities in the plane case for any 

plane passing through O and of normal of unit vector k, the corresponding constant of 
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areas being kC = ⋅C k . In case of a plane Π normal to OK , the constant of areas will 
take its maximal value (equal in modulus to C ); the respective plane is called the 
plane of the maximum of areas. If ⊥k C , hence if the moment of momentum OK  is 

contained in the plane Π, then the constant of areas vanishes. By integration in the 

plane Π, starting from the initial moment 0t , we can write 

( )
0

1
2 ( )

n
i

i kOk
i

m C t t
=

= −∑ A , 
 

(11.1.35') 

where kC  is the corresponding scalar constant of areas; we can state 
Theorem 11.1.18' (theorem of areas; space case). The sum of the products of the 
double masses of the particles of a free discrete mechanical system by the areas 
described by the radii vectores of their projections on any fixed plane passing through 
a fixed pole, with respect to that pole, starting from their initial positions is in direct 
proportion to the interval of time travelled through if and only if the resultant moment 
of the given external forces which act upon this system, with respect to the same pole, 
vanishes. 

11.1.2.7 Conservation Theorems of Mechanical Energy. Applications 

In the theorem of kinetic energy, expressed by the formula (11.1.24), dT is a 

differential, but dW  and intdW  are not, in general, exact differentials; if the sum of the 
elementary works is an exact differential 

intd d dW W Φ+ = ,   ( , ; )i i tΦ Φ= r r , (11.1.36) 

then, by integration, we can obtain a first integral of energy in the form 

T hΦ= + ,   consth = . (11.1.36') 

A first important case to be considered is that in which the given internal forces are 
conservative ones, deriving from a simple potential ( intd dW U= ) or from a 
generalized potential ( 0intd dW U= ); we say also that the mechanical system S  is, in 
this case, a natural mechanical system. Going from the expression (3.2.4) of the internal 
elementary work, we notice that, in the particular case in which the internal forces are 
of the form ( )ik ik ikF F r= , we obtain a simple potential (the prime to the sign 
∑  indicates a summation for k i≠ ) 

1 1

1 ' d const
2

n n

ik ik
i k

U F r
= =

= +∑∑ ∫ , 
 

(11.1.37) 

where ikr  is the distance between two particles iP  and kP  of the discrete mechanical 
system S. For instance, in case of internal forces of attraction, in direct proportion to 
the distance, we read 
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( )iik ki ik ik ik kk k= − = = −F F r r r ,   ik ik ikF k r= − ,   

2

1 1

1 ' 0
2

n n

ik ik
i k

U k r
= =

= − >∑∑ ,   0ikk > ,   , 1,2,...,i k n= . 

 
(11.1.37') 

Passing to the space 3nE  of co-ordinates kX , specified by the relation (11.1.10), we 
may write 

3

int
1 1 1

d ' d d
n n n

iik k k
i k k

W Q X
= = =

= ⋅ =∑∑ ∑F r ,   ( ),k k l lQ Q X X= , 
 

(11.1.38) 

so that, in case of a simple potential U, it results 

k
k

UQ
X

∂=
∂

,   ( )lU U X= ,   1,2,..., 3k n= , 
 

(11.1.38') 

while, in case of a generalized potential, we get 

[ ] d
dk k

k k

U UQ U
X t X

∂ ∂⎛ ⎞= = − ⎜ ⎟∂ ∂⎝ ⎠
,   ( ),l lU U X X= ,   1,2,..., 3k n= . 

 
(11.1.38'') 

As we have seen in Chap. 1, Sect. 1.1.12 and in Chap. 6, Sect. 1.1.2, the generalized 
potential can be only of the form 

3

0
1

n

k k
k

U U X U
=

= +∑ ,   ( )k k lU U X= ,   ( )0 0 lU U X= , 
 

(11.1.39) 

so that it results 

3
0

1

n
l k

k l
k l kl

U U U
Q X

X X X=

∂ ∂ ∂⎛ ⎞= − +⎜ ⎟∂ ∂ ∂⎝ ⎠
∑  

 
(11.1.39') 

and then 

3

0int
1

d d d
n

k k
k

W Q X U
=

= =∑ . 
 

(11.1.39'') 

Hence, in case of conservative internal forces we may write the relation 

d d dT U W= + (11.1.40) 

or the relation 

0d d dT U W= + ; (11.1.40') 

introducing the potential energy V U= − , in case of a simple potential, or the potential 
energy 0V U= − , in case of a generalized potential, we can write 
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1 2
1 2intP P

W V V V= − = −Δ ,   
0

0intP P
V W V= − + . (11.1.41) 

It results that the potential energy of a free discrete mechanical system acted upon by 
conservative internal forces (natural mechanical system) is equal to the internal work 
with changed sign, effected by the internal forces, starting from the initial moment 
(excepting an arbitrary constant 0V , which represents the potential energy at the initial 
moment; frequently, one chooses 0V  so as a minimum of the potential energy be equal 
to zero). 

Denoting the mechanical energy by E T V= + , we get 

d d( ) dE T V W= + = , (11.1.42) 

stating thus 
Theorem 11.1.19 (theorem of mechanical energy; Helmholtz). The differential of the 
mechanical energy of a free discrete mechanical system, acted upon by conservative 
internal forces (natural mechanical system), is equal to the elementary work of the 
given external forces which act upon this system. 

Dividing the relation (11.1.42) by dt and taking into account (11.1.7), we have 

d
d
EE P
t

= =  
 

(11.1.42') 

and may state 
Theorem 11.1.19' (theorem of mechanical energy; second form). The derivative with 
respect to time of the mechanical energy of a free discrete mechanical system, acted 
upon by conservative internal forces (natural mechanical system), is equal to the power 
of the given external forces which act upon this system. 

In general, the elementary work of the given external forces is not an exact 
differential, so that we can write 

2 2

1 2 1 1
2 1 2 1

1
( ) ( ) d d

n t t
i iP P t ti

E E t E t E E W t P t
=

Δ = − = − = = ⋅ =∑∫ ∫F v , 
 

(11.1.42'') 

stating thus 
Theorem 11.1.19'' (theorem of mechanical energy; finite form). The variation of the 
mechanical energy of a free discrete mechanical system, acted upon by conservative 
internal forces (natural mechanical system), in a finite interval of time, is equal to the 
work effected by the given external forces which act upon this system in the considered 
interval of time. 

Applying the principle of action and reaction to the external forces iF  correspond 
the forces i i= −f F , which represent the actions of the considered discrete mechanical 
system upon some external mechanical systems. The relation (11.1.42'') allows to write 

2

1
1 2

1
d

n t
i iti

E E t
=

− = ⋅∑∫ f v , 
 

(11.1.42''') 
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so that we can state 
Theorem 11.1.19''' (theorem of mechanical energy; second finite form). The lost 
mechanical energy of a free discrete mechanical system, acted upon by conservative 
internal forces (natural mechanical system), in a finite interval of time, is equal to the 
work effected by this system on the external mechanical systems, in the same interval of 
time. 

We can say that this represents an exit for the considered mechanical system. 
We may write the relation (11.1.42'') also in the form 

0
0P P

E W E= + ; (11.1.42iv) 

hence, the mechanical energy of a free discrete mechanical system, acted upon by 
conservative internal forces (natural mechanical system), is equal to the external work 
effected by the given external forces, starting with the initial moment (excepting an 
arbitrary constant 0E , which represents the mechanical energy at the initial moment, as 
in the case of the potential energy; as well, we can choose 0E  so that a minimum of the 
potential energy be equal to zero). 

If d 0W =  for a certain interval of time, then the relation (11.1.42) leads to 

E T V h= + = ,   0 0 consth T V= + = , (11.1.43) 

and we can state 
Theorem 11.1.20 (conservation theorem of mechanical energy). The mechanical 
energy of a free discrete mechanical system, acted upon by conservative internal forces 
(natural mechanical system), is conserved in a certain interval of time if and only if the 
elementary work of the given external forces which act upon this system vanishes in the 
same interval of time. 

In particular, this theorem can be applied to a closed (isolated) mechanical system, 
for which intervene only internal forces. By applying the conservation theorem of 
mechanical energy, a part of the kinetic energy is transformed in potential energy, if T 

decreases, or a part of the potential energy is transformed in kinetic energy, if T 
increases; hence, the mechanical energy is conserved as a whole, but it is in continuous 
transformation. For instance, for a heavy particle P of mass m, which falls on the Earth 

surface from the height h, without initial velocity, along the Ox-axis (situated along the 
ascendent vertical), we can write 

21
2
mv mgx mgh+ = ; 

 

(11.1.44) 

if x varies from h to 0, then v increases from 0 to maxv  (the kinetic energy increases 

from 0 to maxT mgh= ), while the potential energy decreases from maxV mgh=  to 0 
(excepting an arbitrary constant). The influence of the motion of the Earth has been 
neglected in this formula. The above results remain valid also for the continuous 
mechanical systems, as we will see in the next chapter. 
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Let thus be an elastic blade AB, built-in at A, at rest (of zero potential and zero 
kinetic energy, hence zero mechanical energy too) in a vertical position (Fig. 11.4); we 
neglect the weight of the blade, the resistance of the air as well as other external forces, 
and we assume that the internal forces are conservative. We apply an external force at 
the free end B, which becomes a new position B ′ ; one obtains thus a mechanical 

energy equal to the external work W (one uses the theorem of mechanical energy). At 

this position, the kinetic energy vanishes, while the potential energy is equal to W. If 
the action of the external force ceases, then the elastic blade tends to come back at the 
stable position of equilibrium AB; the potential energy decreases till it vanishes, while 

the kinetic energy increases till its maximal value at the position AB (the conservation 
theorem of mechanical energy is applied). Due to the velocities of various points of the 
blade, that one passes beyond the position of equilibrium, in a new position AB ′′ , 
symmetric to the position AB ′  with respect to AB; the potential energy has of new a 
maximal value, while the kinetic energy vanishes. Thus, by transformations of energy, 
the blade oscillates about the stable position of equilibrium AB. 

 
Fig. 11.4  Application of the conservation theorem of mechanical energy 

If, in general, we assume that the external forces are also conservative (deriving from 
a simple or a generalized potential), we can write 

extd dW U= ; (11.1.45) 

introducing an external potential energy extV U= −  (unlike V, which is called internal 
potential energy too), the relation (11.1.42) leads to a conservation theorem of energy 
of the form 

T V V h+ + = ,   consth = . (11.1.46) 

If we transmit to a mechanical system a certain mechanical energy (as in the case of 
the elastic blade) and then we leave it free, the motion continues without loss of 
mechanical energy; only transformations of kinetic energy in potential energy and vice 
versa take place. We obtain thus a mechanical perpetuum mobile. But the experiment 
shows that one cannot realize apparatuses corresponding to such a phenomenon (e.g., 
the elastic blade considered above cannot reach practically a position AB ′′, symmetric 
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to AB ′ , but reaches a position closer to that of stable equilibrium AB; after a certain 
number of oscillations, the blade remains at rest). The consumption of energy due to 
which it is impossible to increase the sum T V+  (leading to a useful work) or, at least, 
to let it remain constant (realizing a perpetuum mobile of the first species) can be 
explained by the apparition of certain internal forces of friction and of certain external 
resistant forces (e.g., the resistance of the air). Hence, not all internal forces are 
conservative; non-conservative internal forces (e.g., forces of friction, which have a 
sense opposite to that of the displacements, leading to a negative internal work) can be 
put into evidence too. If the discrete mechanical system S  is adiabatically isolated (has 
changes of energy with the exterior only if upon it is effected an external work), we are 
led to the notion of internal energy, intE , which results just from the work of non-
conservative internal forces and can depend on temperature, mass, volume etc. If upon 
an adiabatically isolated discrete mechanical system no external work is exerted, then 
we may write 

intd( ) d 0T V E+ + = ; (11.1.47) 

but if an external work is exerted too, then we can write, in general, 

intd( ) d dT V E W+ + = . (11.1.47') 

An adiabatically non-isolated discrete mechanical system may receive energy from the 
exterior, even if upon it no external work is exerted; but a flux of heat dQ can 
intervene. We may thus write 

intd( ) d d dT V E W Q+ + = + . (11.1.47'') 

Introducing also an elementary work of non-mechanical and non-caloric nature dW  
(e.g., of electromagnetic nature), we can write (after R.J. Mayer and J. Joule) 

intd( ) d d d dT V E W Q W+ + = + + ; 
 

(11.1.47''') 

we obtain thus the first principle of thermodynamics. If intd 0E =  and the sum 
d d dW Q W+ +  is an exact differential, we may state, after H. von Helmholtz, a 
conservation theorem of energy of the form (11.1.46). One could thus say that it is 
possible to realize a perpetuum mobile, where intervene transformations of kinetic, 
potential and caloric energy or of other energies; but the experiment shows that the 
caloric energy generated by frictions can be transformed in mechanical energy only by 
loss of energy, the process being irreversible (one passes from mechanical energy to a 
caloric one only by degradation). 

11.1.2.8 Problem of n Particles 

Let be an isolated (closed) free discrete mechanical system S, formed by n particles iP  
of masses im  and position vectors ir , subjected only to the action of some internal 
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forces ik ki= −F F , i k≠ , , 1,2,...,i k n= ; if these forces are of Newtonian attraction 
(or of Coulombian nature, of attraction or repulsion), then the corresponding problem is 
known as the problem of n particles. At a cosmic level, the celestial bodies can be 
modelled, in a first approximation, as particles (e.g., the solar system, formed by the 
Sun, the planets and their satellites, acted upon by other celestial bodies; their actions 
are negligible external forces, due to the great distances at which these bodies are, as 
well as due to their quasi-spherical distribution, their effects annulling each other). The 
respective problem is called also the problem of n bodies and is the basic problem in 
celestial mechanics. At the atomic level, one has the same problem for the system 
formed by nucleus and electrons. 

The equations of motion read 

1
'

n

i i ik
k

m
=

= ∑r F ,   3
i k

ik ik
ik

m m
f

r
=F r ,   iik k= −r r r ,   , 1,2,...,i k n= , 

 

(11.1.48) 

and lead to the vector first integrals 

1

n

i i
i

m
=

= =∑H v C ,   
1

n

i i
i

M m t
=

′= = +∑ r C Cρ ,   , const′ =C C , 
 

(11.1.49) 

which correspond to the conservation theorems of momentum and of rectilinear and 
uniform motion of the centre of mass, respectively, to the vector first integral 

1 1
2

n n

i i i i iO
i i

m m
= =

= × = =∑ ∑K r r CΩ ,   const=C , 
 

(11.1.49') 

which corresponds to the conservation theorem of moment of momentum, and to the 
scalar first integral 

2

1 1 1

1 '
2

n n n
i k

i i
iki i k

m m
T U m v f h

r= = =
− = − =∑ ∑∑ ,   consth = , 

 

(11.1.49'') 

which corresponds to the conservation theorem of mechanical energy, where 

iik kP P=r , while f is the universal constant of attraction (we took into account 
(1.1.84) and (3.2.6') for the forces of Newtonian attraction). We obtain thus ten scalar 
first integrals for the 3n scalar differential equations of motion of second order. In 1887, 
H. Burns showed that these first integrals are the only algebraic first integrals which can 
be obtained; as well, in 1889, H. Poincaré stated that, besides these first integrals, one 
cannot obtain other uniform and analytic first integrals, while Painlevé showed that 
there does not exist other first integrals algebraic only with respect to the components 
of the velocity vectors (neither for larger conditions). But, taking into account that time 
does not appear explicitly in those first integrals, they are equivalent to 11 scalar first 
integrals; moreover, observing that the internal forces depend only on the reciprocal 
distances, one can obtain one more first integral. But there are necessary 6n scalar first 
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integrals to solve completely the problem, so that these 12 scalar first integrals are 
sufficient only for 2n = . 

We may write the n vector equations or the 3n scalar equations of motion, 
respectively, in the form 

i i im U=r ∇ ,   
( )i j i
jx

∂=
∂

i∇ ,   ( )
( )

i
j i

j

U
x

x

∂=
∂

,   1,2,...,i n= ,   1,2, 3j = . 

 (11.1.48') 

The centre of mass C of an isolated discrete mechanical system S  (e.g., the solar 
system) has a uniform and rectilinear motion, so that remains to be studied its motion of 
rotation about that centre. 

Starting from the equations (11.1.48'), we get 

( ) ( ) ( )
( )

1 1

n n
i i i

i j j j i
i i j

U
m x x x U

x= =

∂= = −
∂

∑ ∑ ,  

where we used Euler’s formula for a function U, homogeneous of degree −1. Taking 
into account the first integral (11.1.49'') too, we get 

( )
2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

1 1 1

d 1 d 2
d 2 d

n n n
i i i i i i i i

i i ij j j j j j j j
i i i

m x x x x m x x m x x U h
t t= = =

+ = = = +∑ ∑ ∑ ; 
 

one obtains thus the Lagrange-Jacobi formula (obtained by Lagrange in 1772 for 
2n =  and generalized by Jacobi in 1842 for any n) 

2( 2 )OI U h= + , 
 

(11.1.50) 

where OI  is the polar moment of inertia of the discrete mechanical system S  with 

respect to the origin O. 
Starting from the algebraic identity 

( ) ( )
2

2 2( ) ( ) ( ) ( )

1 1 1 1 1
2 2 '

n n n n n
i i k i

i i ik kj j j j
k i i k i

m m x m x m m x x
= = = = =

⎛ ⎞= + −⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑∑ ,   1,2, 3j = , 

which can be easily verified, summing for j from 1 to 3, introducing the mass M and 
the moment of inertia OI  of the mechanical system S  and taking into account the first 
integral (11.1.28'''), it results 

2 2( )OMI t R′= + +C C ,   2 2

1 1
2 '

n n

ik ik
k i

R m m r
= =

= ∑∑ ; 
 

(11.1.50') 

introducing in (11.1.50), we can write also the formula 
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( )
2

2
2

d 2 2
d

R M U h
t

= + ,   
2

2
Ch h
M

= − , 
 

(11.1.50'') 

equivalent to the formula (11.1.50) and called the Lagrange-Jacobi formula too. If, in 
particular, O C≡ , then we have =C 0 , so that h h= . Integrating twice with respect 
to time, we get 

[ ]2 2
0 0 0

2 d ( ) 2 d
t

R R QT M U h
τ

τ τ τ= + + +∫ ∫ ,   0 , constR Q = . 
 

(11.1.50''') 

This last result allows to study the stability of the discrete mechanical system S ; 
after Jacobi, we say that this system is stable if the distances between the particles 
remain finite, hence if R is finite for t → ∞ . If there exists t  so that t t∀ >  to have 

2U h ε+ > , 0ε > , then the discrete mechanical system S  is labile; this takes place, 
e.g., for 0h > , because 0U > . We notice that one cannot have 2U h ε+ < , because 
the second member of the relation (11.1.50''') would become negative for t sufficiently 
great. It results that, to ensure the stability of the discrete mechanical system S  it is 
necessary that 0h <  and 2U h ε+ <  for t t> . 

 
Fig. 11.5  Problem of two particles (the Sun and a planet) 

The case 2n =  (the problem of two particles) has been considered in Chap. 8, Sect. 
1.2.1, being reduced to the case of central forces (of attraction or of repulsion). 
Assuming, e.g., that one of the particles is the Sun, of mass M, the other particle being a 

planet P, of mass m, the equation of motion of a particle with respect to the other one 
(for instance, the motion of the planet with respect to the Sun) reads (see the formula 
(8.1.14)) 

2
M m

f
r
+= −r u , 

 

(11.1.51) 

where vers versSP= =u r  (Fig. 11.5); hence, the motion of the particle P with 

respect to the particle S is identical (for analogous initial conditions) to the motion of a 
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particle P, of mass m, attracted with a Newtonian force by the fixed centre S, of mass 
M m+ , and one can use the results obtained in Chap. 9, Sects. 2.1.2–2.1.4. The 
Theorems 9.2.1 and 9.2.2 (the first two laws of Kepler) remain, further, valid. It results 
that the particle P  moves with respect to the particle S  along the ellipse, after the law 

of areas, the particle S  being situated at one of the foci; concerning the motion of the 

particle S  with respect to the particle P, one can make analogous statements. The 
formula (9.2.17') allows to write 

( ) ( )1/2
2 2 1 2 1

( ) 2
a a m a mT a a a

f M m fM M fM M
π π π

−
= = + ≅ −

+
,   (11.1.51') 

where a is the semi-major axis of the ellipse described by the particle P, T being the 
period in which this ellipse is entirely travelled through; hence, it results 

( ) ( )2 2 2 21

3
4 4 41 1

( )
T m m

f M m fM M fM Ma
π π π−

= = + ≅ −
+

. 
 

(11.1.51'') 

Observing that, in case of the solar system, the ratio m/M is negligible with respect to 
unity (one obtains the greatest ratio ( )3/ 10m M −= O  for Jupiter, while for the Earth 

we have ( )6/ 10m M −= O ), we can admit the third law of Kepler too, with a good 
approximation (as a matter of fact, the astronomical observations of Tycho Brahe are 
thus explained). In case of binary stars, the relation (11.1.51') allows to deduce the sum 
of the two masses M m+ , taking into account that the quantities a and T can be 
measured by astronomical observations. 

Let 0 0
P S−v v  be the relative initial velocity of the particle P with respect to the 

particle S at the initial moment 0t , where 0
Pv  and 0

Sv  are the initial velocities of the 

particles P  and S, respectively. Taking into account the results in Chap. 9, Sect. 2.1.2, 

it results that the trajectory of the particle P  is an ellipse if 

( )20 0
0 2 ( )P Sr f M m− < +v v , a parabola if ( )20 0

0 2 ( )P Sr f M m− = +v v  or a 

hyperbola if ( )20 0
0 2 ( )P Sr f M m− > +v v , where 0 0 0S P=r  is the position vector at 

the initial moment; hence, the genus of the conic depends on the initial conditions. 
Analogously, the motion of the particle S with respect to the particle P takes place as 

that particle would be attracted by the centre P, the attractive mass being M m+ ; the 

genus of the conic SC  described by the particle S is specified by the same conditions, 
so that this particle describes a conic of the same genus as that of the conic PC , 

described by the particle P. The two conics are both in the plane determined by the 
vectors 0r  and 0 0

P S−v v , and are obtained one from the other by a plane translation; 
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hence, the axes of the two conics are parallel. If P is a given position on PC , specified 

In the case 3n =  (the problem of three particles) one can no more obtain final 
results in a finite form. If one of the particles, S, has a mass M much greater than the 
masses 1m  and 2m  of the other two particles 1P  and 2P , respectively (e.g., the Sun 
and two planets), then one can apply some methods of successive approximations. 
Thus, one can consider, in a first approximation, the motion of the particles S and 1P  
(as a problem of two particles). Further, one assumes that the particle 2P  perturbs the 

Keplerian motion by the attraction exerted upon both particles S and 1P ; a perturbing 
term which modifies the previous results is thus introduced. As a matter of fact, the 
particle 1P  perturbs the motion of the particle 2P  too, introducing thus supplementary 

In general, the problem of n particles is decomposed in several problems 
corresponding to 2n =  or 3n = . 

11.1.2.9 Discrete Mechanical Systems Subjected to Constraints 

The discrete mechanical system S  of n particles iP , of masses im , and position 
vectors ir , 1,2,...,i n= , with respect to a fixed (inertial) frame of reference R, 
previously considered, has 3n degrees of freedom, its position being specified by the 
position of the representative point ( )kP X  in the representative space 3nE . If m 
holonomic (rheonomic or scleronomic) ideal scalar constraints intervene, then the 
equations of motion, the general theorems and, as a consequence, the conservation 
theorems must be completed, introducing the constraint forces too. In general, we 
assume that the mechanical system S  is subjected to 3m n<  bilateral, holonomic 
(finite, of geometric nature) constraints of the form (3.2.8); if we would have 3n distinct 

constraints, the position of the representative point P, hence of the mechanical system 
S, would be specified from a geometric point of view (uniqueness or not). The case of 
non-holonomic constraints of the form (3.2.13) will be studied later by analytical 

11 Dynamics of Discrete Mechanical Systems 

by the vector 0S P=r , we set up the vector 0P S = −r , obtaining thus the cor-
responding position on SC . We notice also that the sense of motion of the particles 

 and  is the same on the conics PC  and SC , respectively. In case of the solar 
system, both conics are ellipses, as we have assumed in Fig. 11.5. 

S 
 SP
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terms. The iterative process of computation is convergent. The inverse problem can 
be also put: to determine the position and the characteristics of a perturbing particle 
if (by measurement or observations, eventually) the perturbations in the motion of 
another particle are known. Thus, Leverrier discovered in 1845 the planet Neptune, 
studying the perturbations of motion of the neighbouring planet Uranus; in recent 
years (in 1961), from observations concerning the perturbations of the component A 
of the binary star 61 of the constellation Swan, one has concluded that around this 
component, at a distance of 11 light years, moves a planet greater than Jupiter, on 
an elliptic trajectory. In 2005, a tenth planet of the solar system, at a greater 
distance from the Sun than Pluto, seems to be discovered. 
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methods. Returning to the representative point P, the m bilateral holonomic constraints 

specify that this point must be at the intersection of m hypersurfaces (fixed or movable, 
as the constraints are scleronomic or rheonomic, respectively) in the representative 
space 3nE . In some cases, we can consider also unilateral constraints (the 
representative point is at one side of a hypersurface). 

Using the axiom of liberation from constraints and introducing the external 
constraint forces iR  (the resultant of the external constraint forces applied upon each 
particle iP ) as well as the internal constraint forces ikR , i k≠ , 1,2,...,k n= , the 
equations of motion (11.1.8) read 

( )
1
'

n

i i i i ik ik
k

m
=

= + + +∑r F R F R ,   1,2,...,i n= ; 
 

(11.1.52) 

in components, we can write 

( )( ) ( ) ( ) ( ) ( )

1
'

n
i i i ik ik

i j j j j j
k

m x F R F R
=

= + + +∑ ,   1,2,...,i n= ,  1,2, 3j = . 
 

(11.1.52') 

The position of the discrete mechanical system S  subjected to constraints can be 
determined, at a given moment, by the equations (11.1.52') and by the constraint 
relations, obtaining the functions ( ) ( ) ( )i i

j jx x t= , 1,2,...,i n= , 1,2, 3j = ; in general, 

we can state (as for iF  and ikF , see Sect. 11.1.1.3) that ( ), ;i i l l t=R R r r , 
( ), ;ik ik l l t=R R r r , i k≠ , , 1,2,...,i k n= , the motion of each particle depending 

on the motion of all other particles. In this case, the mechanical system S  subjected to 
constraints works as a free discrete mechanical system. 

We notice that all the results obtained in the case of free discrete mechanical systems 
can be transcribed for the discrete mechanical system S  subjected to constraints if we 
add the constraint (unknown) forces to the given ones. In the first fundamental problem, 
besides the trajectories (the vector functions ( )i i t=r r , 1,2,...,i n= ), one must 
determine also the constraint forces iR  and ikR , i k≠ , , 1,2,...,i k n= . In the 
second fundamental problem, one must determine  the forces iF , ikF  and iR , ikR ; the 
problem has not a unique solution. As well, nor in case of a mixed fundamental 
problem the solution is unique. 

In what concerns the theorems of existence and uniqueness, they remain further valid 
if the functions (3.2.8) fulfil the conditions asked in Sect. 11.1.1.4 (are functions of 
class 1C  and fulfil conditions of Lipschitz type). 

Corresponding to the results in Sects. 11.1.2.1 and 11.1.2.2, we can write 

1
( )

n

i i
i =

= + = +∑H F R R R ,   j j jH R R= + ,   1,2, 3j = , 
 

(11.1.53) 

1
( )

n

i i
i

M
=

= + = +∑ F R R Rρ ,   j j jM R Rρ = + ,   1,2, 3j = , 
 

(11.1.53') 
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1
( )

n

i i iO O O
i =

= × + = +∑K r F R M M ,  Oj Oj OjK M M= + , 1,2, 3j = , 
 

(11.1.53'') 

stating thus (the theorems take place in case of holonomic constraints, as well as in case 
of non-holonomic ones; as well, we can assume to have unilateral constraints): 
Theorem 11.1.21 (theorem of momentum). The derivative with respect to time of the 
momentum of a discrete mechanical system subjected to constraints is equal to the 
resultant of the given and constraint external forces which act upon this system. 
Theorem 11.1.22 (theorem of motion of the centre of mass). The centre of mass of a 
discrete mechanical system subjected to constraints moves as a free particle at which 
would be concentrated the whole mass of this system and which would be acted upon by 
the resultant of the given and constraint external forces. 
Theorem 11.1.23 (theorem of moment of momentum). The derivative with respect to 
time of the moment of momentum of a discrete mechanical system subjected to 
constraints, with respect to a fixed pole, is equal to the resultant moment of the given 
and constraint external forces which act upon this system, with respect to the same 
pole. 

Introducing the areal accelerations as well as the notion of hodograph, we can state 
theorems analogous to Theorems 11.1.8', 11.1.5' and 11.1.8'', respectively. 

Observing that 

{ } { } { }i i iO O Oτ = τ + τH F R , (11.1.53''') 

we may state 
Theorem 11.1.24 (theorem of torsor). The derivative with respect to time of the torsor 
of momenta of a discrete mechanical system subjected to constraints, with respect to a 
fixed pole, is equal to the torsor of the given and constraint external forces which act 
upon this system, with respect to the same pole. 

Introducing the impulse of the resultant of the external constraint forces 2

11
d

n t
iti

t
=
∑∫ R  

and the impulse of the resultant moment of the external constraint forces 
2

11
d

n t
i iti

t
=

×∑∫ r R , corresponding to the time interval [ ]1 2,t t , we can write (the internal 

constraint forces do not intervene in computation) 

2 2 2

1 1 11
( )d d d

n t t t
i it t ti

t t t
=

Δ = + = +∑∫ ∫ ∫H F R R R , 
 

(11.1.54) 

2 2 2

1 1 11
( )d d d

n t t t
i i iO O Ot t ti

t t t
=

Δ = × + = +∑∫ ∫ ∫K r F R M M , 
 

(11.1.54') 

{ } { } { }2 2

1 1
d d

t t
i i iO O Ot t

t tΔτ = τ + τ∫ ∫H F R . 
 

(11.1.54'') 

The relation (11.1.24) is completed in the form 

int intd d d d dR RT W W W W= + + +  (11.1.55) 
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and we can state 
Theorem 11.1.25 (theorem of kinetic energy). The differential of the kinetic energy of a 
discrete mechanical system subjected to constraints is equal to the elementary work of 
the given and constraint external and internal forces which act upon this system. 

As it was shown in Chap. 3, Sect. 2.2.9, in case of scleronomic constraints (or even 
in a more general case, that is in case of catastatic constraints) we have 

intd d 0R RW W= = ; in this case, the Theorem 11.1.25, corresponding to a discrete 
mechanical system subjected to constraints, is stated in the same form as the Theorem 
11.1.10, corresponding to a free mechanical system. In what concerns the Theorems 
11.1.10' and 11.1.10'', one can make analogous observations. 

As well, if the moment of momentum is written with respect to a pole Q, movable 

with respect to the fixed origin O, the formula (11.1.23') leads to 

{ } { } { } { },i i iQ Q Q Qτ = τ + τ − ×H F R 0 v H . 
 

(11.1.56) 

Using the results given in Sects. 1.2.5–1.2.7, we may set up first integrals, in certain 
conditions, in case of a discrete mechanical system subjected to constraints too. Thus, if 
the sum +R R  is parallel to a fixed plane (is normal to a fixed direction of unit vector 
u, ( ) 0+ ⋅ =R R u ), then we can write the first integral (11.1.28); analogously, if the 

sum O O+M M  is contained in a fixed plane (is normal to a fixed axis Δ, O Δ∈ , of 
unit vector u, ( ) 0O O+ ⋅ =M M u ), then one obtains the first integral (11.1.31). 

If + =R R 0  (necessary condition of static equilibrium), then we can state a 
conservation theorem of momentum and a theorem of rectilinear and uniform motion of 
the mass centre, while if O O+ =M M 0  (necessary condition of static equilibrium), 
then we may state a conservation theorem of moment of momentum. If both conditions 
are fulfilled simultaneously (necessary and sufficient conditions of static equilibrium in 
case of a non-deformable mechanical system), then one can state a conservation 
theorem of torsor. 

In case of scleronomic (or even catastatic) constraints and of conservative internal 
forces, we can state a theorem of mechanical energy in the form of Theorems 11.1.19–
11.1.19'', and if d 0W =  too, for a certain interval of time, we obtain a conservation 
theorem of mechanical energy, stated as the Theorem 11.1.20. 

We mention that the conservation theorem of moment of momentum allows to state 
in this case a theorem of areal velocities, and a theorem of areas too. 

As in case of a free discrete mechanical system, one can obtain only 6n independent 
first integrals; but these ones are sufficient to determine the motion. Even if the 
constraint forces are not known a priori, the conditions imposed above are sometimes 
fulfilled, so that one can build up first integrals also in case of discrete mechanical 
systems subjected to constraints. 

In case of constraints with friction one can make considerations analogous to those 
in case of the motion of a single particle (see Chap. 6, Sect. 2.2.3). 
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11.1.2.10 Differential Principles of Mechanics 

The equations of motion of a discrete mechanical system, free or subjected to 
constraints, are written in the form (11.1.8) or in the form (11.1.52), respectively; these 
equations correspond to the second principle of Newton, the first differential principle 
of mechanics. As in the case of a single particle, this basic principle can be expressed 
also in other equivalent forms, which are useful in various particular cases; if they are 
considered as consequences of Newton’s principle, these equivalent forms are 
theorems. 

Introducing the forces of inertia 

i i im= −F r ,   1,2,...,i n= , 
 

(11.1.57) 

the law of motion reads (we consider the more general case of a discrete mechanical 
system subjected to constraints) 

1
'( )

n

i i i ik ik
k =

+ + + + =∑F F R F R 0 ,   1,2,...,i n= , 
 

(11.1.58) 

and we can state 
Theorem 11.1.26 (d’Alembert). The motion of a discrete mechanical system subjected 
to constraints takes place so that, at any moment, it is in dynamic equilibrium under the 
action of the given and constraint, external and internal forces which act upon it and of 
the forces of inertia. 

Obviously, each particle (more general, each subsystem) of the system is in dynamic 
equilibrium. 

We introduce the forces 

1 1
' '

n n

i i i i i iik ik
k k

m
= =

= + + = + −∑ ∑F F F F F rΦ ,   1,2,...,i n= , 
 

(11.1.59) 

which are called the lost forces of d’Alembert; the equations (11.1.58) become, in this 
case, 

1
'

n

i i ik
k =

+ + =∑R R 0Φ ,   1,2,...,i n= , 
 

(11.1.60) 

and we may state 
Theorem 11.1.26' (d’Alembert). The motion of a discrete mechanical system subjected 
to constraints takes place so that, at any moment, the constraint external and internal 
forces are in equilibrium with the lost forces of d’Alembert. 

This equilibrium takes place for each particle, hence for any subsystem of the 
considered mechanical system. We can thus state: 
Theorem 11.1.27 (theorem of dynamic equilibrium of parts). If a discrete mechanical 
system S  subjected to constraints is, at a given moment, in dynamic equilibrium under 
the action of the lost forces of d’Alembert and of the constraint external and internal 
forces which act upon it, then any part of the system (any subsystem S ⊂ S ) will be in 
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dynamic equilibrium too, at that moment, under the action of the lost forces of 
d’Alembert and of the constraint forces which act upon that part. 
Theorem 11.1.27' (theorem of rigidity). Assuming that a given discrete mechanical 
system subjected to constraints becomes rigid at a certain moment, the conditions of 
dynamic equilibrium of the new mechanical system represent necessary conditions for 
the motion of the given mechanical system at that moment. 

We notice that, applying the theorem of rigidity to all parts of the discrete 
mechanical system S  (to all subsystems S ⊂ S ), we get sufficient conditions to 
describe the motion. Indeed, taking, e.g., all the subsystems formed by two particles, 
there result the conditions of vanishing torsor (it is sufficient to mention only the 
conditions concerning the resultants) 

1 1
' '

n n

i i j jik jk
k k= =

+ + + + + =∑ ∑R R R R 0Φ Φ ,   , 1,2,...,i j n= , 
 

which, obviously, lead to the conditions (11.1.60). 
The relation (11.1.59) may be written also in the form 

1
' ( )

n

i i i i i iik
k

m
=

+ = + − = +∑F F F rΦ Φ ,   1,2,...,i n= ; 
 

it results that only the components i i im = −r F  of the forces iF  have a contribution to 
the motion of the discrete mechanical system, the components iΦ  being lost by 
equilibrating the constraint forces (the given denomination is thus justified). 

We notice that each of the Theorems 11.1.26 and 11.1.26' can stay at the basis of the 
Newtonian mathematical model of mechanics, representing each of them a differential 
principle of mechanics. 

Formally, the Equations (11.1.60), which represent the necessary and sufficient 
conditions of dynamic equilibrium (characterizing entirely the motion of the discrete 
mechanical system subjected to constraints) do not differ from the relations (4.1.55), 
which represent the necessary and sufficient conditions of static equilibrium of such a 
system. Hence, all the considerations made for the problems of statics (including the 
Theorems 4.1.6' and 4.1.7'), starting from the relations (4.1.55), can be transposed for 
the similar problems with a dynamic character, replacing the given forces iF  and ikF , 
i k≠ , , 1,2,...,i k n= , by the lost forces iΦ  of d’Alembert; e.g., the condition 
(4.1.56) leads to the theorem of torsor, characterized by the formula (11.1.53'''). In fact, 
we can use all the results in Chap. 4, Sects. 1.2.1–1.2.3. Thus, we may write a necessary 
condition for the motion in the form 

{ } { }i iO Oτ + τ =R 0Φ  (11.1.61) 

or in the form 

1
( )

n

i i
i =

+ =∑ R 0Φ ,   
1

( )
n

i i i
i =

× + =∑ r R 0Φ , 
 

(11.1.61') 

stating 
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Theorem 11.1.24' (theorem of torsor; second form). The motion of a discrete 
mechanical system subjected to constraints takes place so that, at any moment, the sum 
of the torsor of the lost forces of d’Alembert with respect to a fixed pole and the torsor 
of the constraint external forces with respect to the same pole vanishes. 

Let be a discrete mechanical system S  subjected to ideal constraints (for which the 
virtual work of the constraint forces (3.2.36) vanishes). We start from the necessary and 
sufficient equations of motion (11.1.60), written in the form (by iR  we mean the 
resultant of all constraint forces, without distinction between external and internal ones) 

i i+ =R 0Φ ,   1,2,...,i n= ; (11.1.62) 

if we perform a scalar product by the virtual displacements iδr , we sum for all particles 
of the mechanical system S  and take into account the relation of definition of ideal 
constraints (3.2.36), then we obtain the relation 

1
0

n

i i
i =

⋅ δ =∑ rΦ , 
 

(11.1.63) 

which represents a necessary condition to describe the motion. Assuming that the 
condition (11.1.63) is fulfilled and that the system is subjected to p holonomic 

constraints of the form (3.2.21'') and to m non-holonomic constraints of the form 
(3.2.15), we can use the method of Lagrange’s multipliers; we may thus write 

1 1 1
0

pn m

i i il l k ki
i l k

fλ μ
= = =

⎛ ⎞+ + ⋅ δ =⎜ ⎟
⎝ ⎠

∑ ∑ ∑ rΦ ∇ α , 
 

where lλ , 1,2,...,l p= , kμ , 1,2,...,k m=  are non-determinate scalars (Lagrange’s 
multipliers) and where we noticed that in a finite double sum one can invert the order of 
summation. By a demonstration analogous to that in Chap. 3, Sect. 2.2.9, we get finally, 

1 1

p m

i il l k ki
l k

fλ μ
= =

+ + =∑ ∑ 0Φ ∇ α ,   1,2,...i n= . 
 

(11.1.64) 

We find again the relations (3.2.37) which give the constraint forces, the relations 
(11.1.64) being thus equivalent to the relations (11.1.62). We can state (the relation 
(11.1.63) becomes a sufficient condition too) 
Theorem 11.1.28 (theorem of virtual work; d’Alembert-Lagrange). The motion of a 
discrete mechanical system subjected to ideal constraints takes place so that the virtual 
work of the lost forces of d’Alembert, which act upon it, vanishes for any system of 
virtual displacements of the respective mechanical system. 

Taking into account the equivalence between the relation (11.1.63), which represents 
the theorem of virtual work, and the relations (11.1.62), which represent the form taken 
by Newton’s equations, it results that the theorem of virtual work can be considered as 
being a principle (the principle of virtual work or the principle of virtual 
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displacements), because – starting from it – one can solve the fundamental problems of 
dynamics. 

The equations (11.1.64) are known as Lagrange’s equations of the first kind. 
Introducing the virtual velocities (3.2.1'), we may write the condition (11.1.63) in the 

form 

1
0

n

i i
i

∗

=
⋅ =∑ vΦ , 

 

(11.1.63') 

the considered principle being thus called the principle of virtual velocities too. 
In case of holonomic (of the form (3.2.16iv)) or non-holonomic (of the form (3.2.16)) 

ideal unilateral constraints, the virtual work of the constraint forces verifies the 
inequality (3.2.36'). The principle of virtual work is expressed, in this case, in the form 

1
0

n

i i
i =

⋅ δ ≤∑ rΦ  
 

(11.1.63'') 

for any system of virtual displacements, representing the necessary and sufficient 
condition to describe the motion in case of a discrete mechanical system subjected to 
ideal unilateral constraints; in this case too, one can make considerations analogous to 
those above. 

11.1.2.11 General Considerations 
The general (universal) theorems of mechanics are expressed in a torsor form 
(containing two vector relations) or in a scalar form. The theorem of torsor (including 
the theorem of momentum and the theorem of moment of momentum) is expressed by 
vector relations between quantities of kinetic nature and given and constraint external 
forces (the internal forces do not intervene – this is a great advantage from the point of 
view of practical computation). The theorem of kinetic energy is expressed by a scalar 
relation between quantities of kinetic nature and given and constraint, external and 
internal forces (in this theorem intervene – in general – all types of forces; in case of 
catastatic constraints, the constraint forces do not intervene). These seven scalar 
relations allow to obtain, in certain conditions, till ten scalar first integrals (the 
conservation theorem of momentum allows to write six first integrals, the conservation 
theorem of moment of momentum leads to three first integrals, while the conservation 
theorem of mechanical energy represents only one first integral). 

We notice, after V. Vâlcovici, that one can group the three general Theorems 11.1.5, 
11.1.8 and 11.1.10' in the form 

0 0 int
d ( ) ( )
d O OcT c P P
t

⋅ + ⋅ + = ⋅ + ⋅ + +v H K v R Mω ω , 
 

(11.1.65) 

where { }0, vω  represents a finite rototranslation ( )0, const=vω , while constc =  is 

a scalar. One can obtain this result effecting a scalar product of each equation (11.1.8) 
by the vector 0 i ic+ × +v r vω , 1,2,...,i n= , and summing for all the values of the 
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index i. If, in particular, the constant quantities 0v , ω and c (equivalent to seven scalar 

constants) are so that 0 int( ) 0O c P P⋅ + × + + =v R Mω  (eventually, Pdt or/and 

intdP t  are exact differentials), then we have 0 constO cT⋅ + × + =v H Kω , 
obtaining a first integral of the system of equations of motion. If we take 0c = , it 
results 

0 0
d ( )
d O Ot

⋅ + ⋅ = ⋅ + ⋅v H K v R Mω ω  
 

(11.1.65') 

and we can state 
Theorem 11.1.29 (theorem of power of the kinetic torsor; V. Vâlcovici). The derivative 
with respect to time of the power of the torsor of momenta of a free discrete mechanical 
system, with respect to a fixed pole, by a constant finite rototranslation, is equal to the 
power of the torsor of the given external forces which act upon this system, with respect 
to the same pole. 

These relations represent necessary conditions to describe the motion of a 
deformable (in general) discrete mechanical system; indeed, in this case the lost forces 
of d’Alembert are modelled by bound vectors. In case of a non-deformable discrete 
mechanical system, these forces are modelled by sliding vectors, so that these relations 
become also sufficient conditions to describe the motion; in fact (as it will be seen in 
next chapter), in this case the theorem of torsor entirely characterizes the motion, the 
theorem of kinetic energy being a linear consequence of it. In the case of a non-
deformable discrete mechanical system too, we notice that int intd d 0RW W= = , so 
that the theorem of kinetic energy takes the simpler form  

d d d RT W W= + , (11.1.55') 

while, in the case of scleronomic constraints, we get 

d dT W= . (11.1.55'') 

Unlike the universal theorems, the theorem of virtual work expresses always a 
necessary and sufficient condition to describe the motion, in the hypothesis of ideal 
constraints of the discrete mechanical system. This theorem has the advantage to 
contain only the given external and internal forces (the constraint forces do not 
intervene in computation); the motion can be thus studied without determining, 
previously, the constraint forces. 

Besides the momentum H, which is called also kinetic resultant, one can introduce 
also the dynamic resultant 

1 1 1

n n n

i i i i i
i i i

m m
= = =

= = =∑ ∑ ∑A A a r ; 
 

(11.1.66) 

we notice the obvious relation 

=A H . (11.1.66') 
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Analogously, besides the moment of momentum OK  (which is a kinetic moment), with 

respect to the pole O, one can introduce also the dynamic moment, with respect to the 
same pole, 

1 1 1
( ) ( )

n n n

i i i i i iO Oi
i i i

m m
= = =

= = × = ×∑ ∑ ∑D D r a r r ; 
 

(11.1.67) 

we obtain the obvious relation 

O O=D K . 
 

(11.1.67') 

The relations (11.1.53) and (11.1.53'') may be written, in this case, in the form 

1
( )

n

i i
i =

= + = +∑A F R R R ,   j j jA R R= + , 1,2, 3j = , 
 

(11.1.66'') 

1
( )

n

i i iO O O
i =

= × + = +∑D r F R M M ,  Oj Oj OjD M M= + , 1,2, 3j = , 
 

(11.1.67'') 

stating thus: 
Theorem 11.1.30 (theorem of dynamic resultant). The dynamic resultant of a discrete 
mechanical system subjected to constraints is equal to the resultant of the given and 
constraint external forces which act upon this system. 
Theorem 11.1.31 (theorem of dynamic moment). The dynamic moment of a discrete 
mechanical system subjected to constraints, with respect to a fixed pole, is equal to the 
resultant moment of the given and constraint external forces which act upon this 
system, with respect to the same pole. 

The torsor of momenta { }iOτ H  is called also kinetic torsor; analogously, one can 
introduce the dynamic torsor { }iOτ A . Observing that 

{ } { }i iO Oτ = τA H , (11.1.68) 

it results 

{ } { } { }i i iO O Oτ = τ + τA F R  (11.1.68') 

and we can state 
Theorem 11.1.32 (theorem of dynamic torsor; Newton-Euler). The dynamic torsor of a 
discrete mechanical system subjected to constraints, with respect to a fixed pole, is 
equal to the torsor of the given and constraint external forces which act upon this 
system, with respect to the same pole. 

Taking into account (11.1.65), we may write 

0 0 int( )O OcT c P P⋅ + ⋅ + = ⋅ + ⋅ + +v A D v R Mω ω  
 

(11.1.65'') 

too; in the particular case 0c = , we state 
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Theorem 11.1.29' (theorem of power of the dynamic torsor). The power of the dynamic 
torsor of a free discrete mechanical system, with respect to a fixed pole, by a constant 
finite rototranslation, is equal to the power of the torsor of the given external forces 
which act upon this system, with respect to the same pole. 

Obviously, the influence of the constraint forces may be also introduced in the 
Theorems 11.1.29 and 11.1.29'. 

These results are equivalent to those previously obtained; besides, they can give 
sometimes useful information concerning the motion of a discrete mechanical system S. 

From the above exposition (as a completion to Chap. 1, Sect. 1.2.3), one can affirm 
that, by conjugating elements of kinematics with elements of mass geometry, one 
obtains the kinetics, which deals with the motion of mechanical systems supplied with 
mass, without taking into account the forces which act upon them; if the forces 
intervene too, then one has to do with dynamics. 

11.1.2.12 Group Properties 

Let be the system of equations of motion (11.1.8). Let us also assume that the given 
forces are conservative (or quasi-conservative) in their totality, deriving from the simple 
potential (or quasi-potential) 

= = =
= +∑ ∑∑r r r r r r r r r r r r1 2 1 2

1 1 1

1( , ,..., , , ,..., ; ) ( , ; ) ' ( , , , ; )
2

n n n
n n i i i i iik k k

i i k
U t U t U t , 

 (11.1.69) 

in the form 

1
'

n

i iik
k

U
=

+ =∑F F ∇ ,   i i iU=F ∇ ,   1 ( )
2 iik ik kiU U= +F ∇ ,   , 1,2,...,i k n= ; 

 (11.1.69') 

for the sake of generality we assume that the potential (quasi-potential) depends on 
velocities too. 

In case of a transformation of the form 

0i i′ = +r r r ,   0 const=r ,   i i′ =r r ,   1,2,...,i n= ,   t t′ = , 
 

(11.1.70) 

which belongs to the group of space translations T, with three parameters (see Chap. 6, 
Sect. 1.2.3 too), we may write 

1 2 1 2 0
1

( , ,..., ) ( , ,..., )
n

n n i
i

U U U
=

′ ′ ′ − = ⋅ ∑r r r r r r r ∇ ,  

corresponding to Lagrange’s theorem. Hence, if 

1 2 1 2 1 2 1 2( , ,..., , , ,..., ; ) ( , ,..., , , ,..., ; )n n n nU t U t′ ′ ′ ′ ′ ′ =r r r r r r r r r r r r , (11.1.71) 

then we have 
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1

n

i
i

U
=

=∑ 0∇  
 

(11.1.71') 

too, the sum of the given forces vanishing. We can thus state 
Theorem 11.1.33 If the simple potential (quasi-potential) of the given conservative 
(quasi-conservative) forces which act upon a free discrete mechanical system is 
invariant with respect to the group of space translations T, then the momentum of this 
system is conserved in time. 

Taking into account the relation i ik k′ ′− = −r r r r , we notice that the relation 
(11.1.71) takes place if 

( ; )i i iU U t= r ,   ( , , ; )i iik ik k kU U t= −r r r r ,   , 1,2,...,i k n= ,  

hence if the external forces vanish (isolated mechanical system), while the internal 
forces depend on the distances between two particles ( ( );iik ik kP P t=F F , verifying 

the principle of action and reaction). 
As well, in case of a transformation of the form ( α  is a constant tensor of second 

order) 

i i′ =r rα ,   i i′ =r rα ,   1,2,...,i n= ,   t t′ = , (11.1.70') 

which belongs to the group SO(3) of finite rotations with three parameters (special 
orthogonal group in 3E ), we notice that the relations 

( ) ( )( ) ( ) ( ) ( )( ) ( ) i k i k
mp m mpp pi i j jmk k jl jll lx x x xα α α α δ′ ′⋅ = ⋅ = ⋅ =r r r r i iα α  

( ) ( ) ( ) ( ) ( ) ( )i k i k i k
p pjp ijl lp kl l l lx x x x x xα α δ= = = = ⋅r r , 

i ik k′ ′⋅ = ⋅r r r r  

 

and, in particular, the relations 2 2
i i′ =r r , 2 2

i i′ =r r , , 1,2,...,i k n= , take place; one 
can also show that these relations occur only in case of a transformation of the form 
(11.1.70'). In such conditions, a theorem of Cauchy allows to state that a relation of the 
form (11.1.71) takes place only and only if (the dependence on velocities has not been 
mentioned) 

( )2 2 2
1 1 2 1 3 1 2 1 2 2 3 1, , ,..., , , , ,..., ,n n nnU U −= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅r r r r r r r r r r r r r r r .  

We can write 

( )
( ) ( ) ( )

( ) ( ) ( )
1 1 1 1

n n n n
i i m

i i jkl l jkl lj j ki i m
i i i m p pk

U UU x x x
x x x= = = =

∂ ∂× = ∈ = ∈ =
∂ ∂

∑ ∑ ∑∑r i i 0∇  
 

as a product of two tensors, one symmetric and the other skew-symmetric with respect 
to the indices j and k, the resultant moment of the given forces being thus equal to zero. 
We state 
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Theorem 11.1.34 If the simple potential (quasi-potential) of the given conservative 
(quasi-conservative) forces which act upon a free mechanical system is invariant with 
respect to the group SO(3) of finite rotations, then the moment of momentum of this 
system is conserved in time. 

Noting that 

2 2
i ik k′ ′− = −r r r r ,   2 2

i ik k′ ′− = −r r r r ,   i i′ =r r ,   i i′ =r r ,  

we can state that the relation (11.1.71) takes place if (we have ( );iik ik kP P t=F F , 

verifying the principle of action and reaction) 

( ), ;i i i iU U t= r r ,   ( ), ;i iik ik k kU U t= − −r r r r ,   , 1,2,...,i k n= .  

By a transformation of the form 

i i′ =r r ,   i i′ =r r ,   1,2,...,i n= ,   0t t t′ = + ,   0 constt = , (11.1.70'') 

of the temporal variable, which belongs to the Abelian group of time translations T  
with one parameter, we can write 0 0( ) ( ) /U t U t t U t t U′ − = ∂ ∂ = , using Lagrange’s 
theorem. If ( ) ( )U t U t′ = , then it results ( ) 0U t =  too, so that one cannot have a 
quasi-potential (hence, nor a quasi-conservative force). If 1 2( , ,..., )nU U= r r r , non-
depending on velocities, hence if ( )i i iU U= r , ( , )iik ik kU U= r r , , 1,2,...,i k n=  (in 
fact, ( )iik ik kU U= −r r , to can verify the basic principle of the internal forces), then 

1
d d

n

i i
i

U U
=

= ⋅∑ r∇  and we may state 

Theorem 11.1.35 If the simple potential of the given conservative forces which act 
upon a free mechanical system is invariant with respect to the group of time 
translations T, then the mechanical energy of this system is conserved in time. 

Finally, let be a transformation of the form 

0i i t′ = +r r v ,   0i i′ = +r r v ,   0 const=v ,   1,2,...,i n= ,   t t′ = , 
 

(11.1.70''') 

which belongs to the Abelian group Γ of Galileo, with three parameters. We notice that 
the acceleration ir , hence the dynamic resultant A, given by (11.1.66), is invariant to 
such a transformation too. In the conditions of the Theorem 11.1.33, it results =A 0 , 
while the potential (quasi-potential) U is invariant to a transformation of the form 
(11.1.70); a relation of the form (11.1.71) takes place also with respect to the 
transformation (11.1.70''') if ( )i iU U t= , ( ), ;i iik ik k kU U t= − −r r r r , as a 
particular case (the mechanical system is isolated, while the internal forces verify the 
principle of action and reaction). Taking into account the theorem of motion of the mass 
centre, we may state 
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Theorem 11.1.36 If the simple potential (quasi-potential) of the given conservative 
(quasi-conservative) forces which act upon a free discrete mechanical system is 
invariant with respect to the Galileo group, then the mass centre of this system has a 
uniform rectilinear motion with respect to an inertial frame of reference. 

The four groups of transformations considered are subgroups of the Galileo-Newton 
group G, with ten parameters, leading to the three vector and one scalar first integrals 
(hence, to the ten scalar first integrals) mentioned above. 

We will use the group properties to determine the first integrals of the equations of 
motion in a unitary theory, in the frame of Lagrangian and Hamiltonian mechanics. 

11.2  Dynamics of Discrete Mechanical Systems with Respect 
 

In what follows, we present the form taken by the general theorems of mechanics with 
respect to a non-inertial frame of reference; to this goal, we compute first of all the 
mechanical quantities previously introduced (momentum, moment of momentum, 
kinetic energy, work, power) with respect to such a frame. Especially, if the frame has 
the pole at the mass centre of the considered discrete mechanical system, then the 
results obtained have a remarkable form. 

11.2.1  Motion of a Discrete Mechanical System with Respect 
 

We introduce a Koenig frame of reference with respect to the mass centre of a discrete 
mechanical system and present the general and conservation theorems with respect to 
such a frame. We make also some considerations concerning the problem of n bodies. 

11.2.1.1 Koenig’s Frame of Reference. Koenig’s Theorems 

By a Koenig frame of reference we mean a non-inertial frame R, of axes iCx , 
1,2, 3i =  (movable with respect to the inertial frame ′R , of axes jO x′ ′ , 1,2, 3j = , 

considered fixed), which has its pole at the centre of mass C (of position vector ′ρ ) of 
the discrete mechanical system S  and which does not rotate (it moves with the axes 
parallel to themselves) with respect to the frame ′R  (Fig. 11.6). One passes from the 
frame ′R  to the frame R  by relations of the form 

i i′ ′= +r r ρ ,   ( ) ( )i i
jj jx x ρ′ = + ,   1,2,...,i n= ,   1,2, 3j = ; 

 

(11.2.1) 

because 0ω = , in conformity to the hypothesis made above, it results that 

i i′ ′= +r r ρ ,   1,2,...,i n= . (11.2.1') 

In this case, the momentum is given by (we denote by “prime” the quantities 
calculated with respect to the fixed frame ′R ) 

to a Non-inertial Frame of Reference

to a Koenig Frame of Reference
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( )
1 1

n n

i i i i
i i

m m M
= =

′ ′ ′ ′= = + =∑ ∑H r r ρ ρ , 
 

(11.2.2) 

where we took into account the relations (properties of the mass centre) 

1

n

i
i

m M
=

=∑ ,   
1

n

i i
i

m
=

=∑ r 0 ,   
1

n

i i
i

m
=

=∑ r 0 ; 
 

(11.2.1'') 

this result is known and may be obtained by differentiating the relation (3.1.9) with 
respect to time. 

The moment of momentum is expressed in the form 

( ) ( )
1 1

( )
n n

i i i i i iO
i i

m m′
= =

′ ′ ′ ′ ′= × = + × +∑ ∑K r r r rρ ρ  

1 1 1 1
( )

n n n n

i i i i i i i i
i i i i

m m m m
= = = =

⎛ ⎞ ′ ′ ′ ′= × + × + × + ×⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑r r r rρ ρ ρ ρ , 

 

 
Fig. 11.6  Motion with respect to a Koenig frame of reference 

wherefrom one gets the relation 

( ) ( )C
O C M′′ ′ ′= + ×K K ρ ρ , 

 

(11.2.3) 

( )C
CK  being the moment of momentum of the system with respect to the centre of mass 

(in the relative motion, with respect to a Koenig frame with the pole at C ); we can thus 
state 
Theorem 11.2.1 (S. Koenig). The moment of momentum of a discrete mechanical 
system with respect to a fixed pole is equal to the sum of the moment of momentum of 
the same system with respect to the pole of a Koenig frame of reference and the moment 
of momentum of its mass centre at which the whole mass of the mechanical system is 
concentrated, with respect to the fixed pole. 
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Analogously, the kinetic energy is given by 

( )22 2 2

1 1 1 1 1

1 1 1 1
2 2 2 2

n n n n n

i i i i i i i i i
i i i i i

T m v m m r m m
= = = = =

′ ′ ′ ′ ′= = + = + ⋅ +∑ ∑ ∑ ∑ ∑r rρ ρ ρ , 
 

so that we may write 

( ) 21
2

CT T M′ ′= + ρ , 
 

(11.2.4) 

( )CT  being the kinetic energy of the system in relative motion (with respect to the mass 
centre); we thus state 
Theorem 11.2.2 (S. Koenig). The kinetic energy of a discrete mechanical system with 
respect to a fixed frame of reference is equal to the sum of the kinetic energy of the 
same system with respect to a Koenig frame of reference and the kinetic energy of the 
mass centre at which the whole mass of the mechanical system is concentrated, with 
respect to the fixed frame. 

The elementary work of the given and constraint, external and internal forces is 
given by 

int int
1 1 1

d d d d ( ) d '( ) d
n n n

i i i iR R ik ik
i i k

W W W W
= = =

′ ′ ′ ′ ′ ′+ + + = + ⋅ + + ⋅∑ ∑∑F R r F R r  

1 1 1
( ) (d d ) '( ) (d d )

n n n

i i i iik ik
i i k= = =

′ ′= + ⋅ + + + ⋅ +∑ ∑∑F R r F R rρ ρ ; 

 

hence, 

( ) ( ) ( )( )
int int int intd d d d d d d d ( ) dC C CC

R R R RW W W W W W W W′ ′ ′ ′ ′+ + + = + + + + + ⋅R R ρ  
 (11.2.5) 

and we can state (we denote by upper index the elementary work with respect to a 
Koenig frame of reference) 
Theorem 11.2.3 (of Koenig type). The elementary work of the given and constraint, 
external and internal forces which act upon a discrete mechanical system, with respect 
to a fixed frame of reference, is equal to the sum of the elementary work of the same 
forces, with respect to a Koenig frame, and the elementary work of the given and 
constraint external forces, considered to be applied at the mass centre, with respect to 
the fixed frame. 

From (11.2.5) we notice that we can write 

( )d d dC
CW W t′ ′= + ⋅R v ,   ( )d d dC

R CRW W t′ ′= + ⋅R v ,   
( )

int intd d CW W′ = ,   ( )
int intd d C

R RW W′ = . 

 
(11.2.5') 

Hence, the elementary work of the external (given and constraint) forces is not the same 
with respect to an inertial (fixed) frame of reference and to a non-inertial (movable) 
Koenig frame, its variation depending on the resultant of the external (given and 
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constraint) forces; this elementary work (e.g., of the given external forces) remains 
invariant if and only if the scalar product 0C′⋅ =R v , hence if the resultant =R 0  or 
if C′ =v 0  (the centre of mass is rigidly linked – at rest – with respect to the fixed 
frame) or if C′ ⊥v R  (the resultant of the given external forces is contained, at any 
moment, in a plane normal to the trajectory of the centre of mass). In case of catastatic 
external constraints, the elementary work of the constraint external forces with respect 
to an inertial frame (in the absolute motion) vanishes ( d 0RW ′ = ); from (11.2.5') it 
results that the elementary work with respect to a non-inertial Koenig frame (in the 
relative motion) is, in general, non-zero. This elementary work remains invariant only if 

0C′⋅ =R v  (which has an analogous mechanical interpretation as above). In exchange, 
the elementary work of the internal forces (for which the resultant vanishes) remains 
always invariant by passing from an inertial frame to a non-inertial Koenig frame. 

We notice that the Theorem 3.1.4 (Huygens-Steiner) is of the same type as Koenig’s 
theorems. As well, the formulae (3.1.9) and (11.2.2) are of the same type, the 
corresponding quantities being equal to zero with respect to a Koenig frame. 

11.2.1.2 General Theorems with Respect to a Koenig Frame. Conservation Theorems 

Passing from a given frame of reference ′R  to a Koenig frame R, the sum of the 
given and constraint external forces 

1
( )

n

i i
i =

′ ′+ = + = +∑R R F R R R  
 

(11.2.6) 

remains invariant; assuming that the frame ′R  is inertial and using the formula 
(11.2.2), the Theorem 11.1.21 of the momentum allows to find again the Theorem 
11.1.22 of motion of the centre of mass. 

As well, the resultant moment of the given and constraint external forces is 
expressed in the form 

1 1
( ) ( ) ( )

n n

i i i i i iO O
i i

′ ′
= =

′ ′ ′ ′+ = × + = + × +∑ ∑M M r F R r F Rρ  

1 1
( ) ( )

n n

i i i i i
i i= =

′= × + + × +∑ ∑r F R F Rρ , 

 

so that 

1
( )

n

i iC CO O
i

′ ′
=

′ ′ ′+ = + + × +∑M M M M F Rρ , 
 

(11.2.6') 

hence a formula of the form (2.2.27) (a result of the same form as the theorems of 
Koenig type). In this case, assuming – further – that the frame ′R  is inertial and 
taking into account the Theorem 11.2.1, the Theorem 11.1.23 of the moment of 
momentum leads to (without distinction between the absolute and the relative 
derivatives, because = 0ω ) 
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( )

1
( ) ( ) ( )

n
C

i iC CO C
i

M M′
=

′ ′ ′ ′ ′ ′= + × + × = + + × +∑K K M M F Rρ ρ ρ ρ ρ ; 
 

using the theorem of motion of the centre of mass, we obtain, finally, 

( )C
C CC = +K M M , 

 

(11.2.7) 

so that we state 
Theorem 11.2.4 (S. Koenig). The theorem of moment of momentum remains invariant 
by passing from an inertial (fixed) frame of reference to a non-inertial (movable) 
Koenig frame. 

Taking into account the Theorems 11.2.2 and 11.2.3 and assuming that the frame 
′R  is inertial, the Theorem 11.1.25 of the kinetic energy allows to write (we have, as 

well, ( ) ( )d /d /C CT t T t= ∂ ∂ ; an upper index specifies the kinetic energy with 
respect to a Koenig frame) 

( ) ( )d d d d dC CT T M T M′ ′ ′ ′ ′= + ⋅ + ⋅ρ ρ = ρ ρ  

( ) ( ) ( )( )
int int

1
d d d d ( ) d

n
C C CC

i iR R
i

W W W W
=

⎡ ⎤ ′= + + + + + ⋅⎢ ⎥⎣ ⎦
∑ F R ρ , 

 

so that (we use, further, the theorem of motion of the centre of mass) 

( ) ( ) ( )( ) ( )
int intd d d d dC C CC C

R RT W W W W= + + + , 
 

(11.2.8) 

and we can state 
Theorem 11.2.5 (S. Koenig). The theorem of kinetic energy remains invariant by 
passing from an inertial (fixed) frame of reference to a non-inertial (movable) Koenig 
frame. 

The Theorems 11.2.4 and 11.2.5 represent a vector and a scalar condition, 
respectively, hence four necessary scalar conditions which must be verified in the 
motion of a discrete mechanical system S  with respect to a frame of Koenig; these 
conditions are not independent of the seven conditions (the three general theorems), 
written with respect to an inertial frame. Obviously, in this case too, all considerations 
made for the motion with respect to an inertial frame hold. We can thus obtain a vector 
first integral (a conservation theorem of moment of momentum) and a scalar first 
integral (a conservation theorem of mechanical energy) in the motion with respect to 
the centre of mass, hence four scalar first integrals. 

We notice that we can state a theorem of areal velocities and a theorem of areas with 
respect to a Koenig frame; as well, one can write a formula of the form (11.1.32''). One 
can thus explain the jump of a swimmer from the jumping board  (to attain the water in 
vertical position, he is varying – by adequate motions – his moment of inertia, hence his 
angular velocity with respect to a horizontal axis – the axis of a Koenig frame – which 
passes through his centre of mass), the jump of the skier from the spring-board (to reach 
the ground in the desired position), the jump of a gymnast on the ground, the fact that a 
cat attains the ground on its feet, anyhow it falls, the motions which instinctively we 
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make by the hands to straighten ourselves in case of a wrong step etc.; in all these cases, 
the weight of the considered body is a force passing through the mass centre. We 
mention also the manual manoeuvres made by the cosmonauts to direct conveniently 
the space vehicles; in this case, the Newtonian force of attraction passes also through 
the mass centre of the cabin. As a matter of fact, a general problem of the type 
schematized in Fig.11.2 can be considered with respect to a Koenig frame too. 

If a mechanical system S  is subjected to the action of a uniform gravitational field 
(e.g., a heavy bar, homogeneous or not, launched in the vicinity of the Earth, neglecting 
the resistance of the air), then its centre of mass describes a parabola; it remains to 
study the relative motion of the system S  (with respect to its mass centre). We can 

write a conservation theorem of the moment of momentum ( ( )C
C =K C ); assuming that 

the system S  is non-deformable, a relation of the form (11.1.32'') with respect to a 
fixed axis through the centre of mass, along the direction of the constant C, takes place, 
this system having a motion of rotation about the respective axis (in particular, the bar, 
considered to be rigid, is rotating in the plane of maximum of areas, which is normal to 
C and which passes through the centre of mass). Indeed, if the direction of the bar is of 
unit vector u, then the velocity of each point of it is along that unit vector, so that 
I × =u u C , where I is the moment of inertia with respect to the fixed axis, resulting 

0⋅ =C u . If, corresponding to the initial conditions, we have =C 0 , then the 
mechanical system S  has a motion of translation with respect to the inertial frame, 
being at rest with respect to a Koenig frame. We notice that the external work of the 
gravity forces with respect to a Koenig frame vanishes 

( ) ( ) ( )( )
3 3 3

1 1 1
d d d d 0

n n n
i i iC

i i i
i i i

W m g x g m x g m x
= = =

= − = − = − =∑ ∑ ∑ ,  

assuming that the 3Cx -axis is along the ascendent vertical; in this case, the relation 
(11.2.8) reads (the discrete mechanical system S being free, we have 

( ) ( )
intd d 0C C

R RW W= = ) 

( )( )
intd d CCT W= . 

 

(11.2.8') 

If the mechanical system is non-deformable, it results ( ) constCT = , hence a 
conservation theorem of the kinetic energy with respect to a Koenig frame. 

Assuming that the solar system is isolated, it results that its moment of momentum 
with respect to the mass centre, situated in the neighbourhood of the mass centre of the 
Sun, is constant in time ( ( )C

C =K C ); the plane of maximum of areas, normal to the 
constant C, is an invariable plane for the motions in the interior of this system. Laplace 
determined this plane, calculating the components of the moment of momentum ( )C

CK . 
He modelled the planets as particles reduced to their centres of mass; Poinsot completed 
this computation, introducing also the influence – in fact, negligible – of the terms 
provided by the proper rotation of each planet. These conclusions remain valid even if 
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the influences external to the solar system are not neglected. Indeed, the distances from 
other stars to various particles which form the solar system are very great so that the 
external forces of Newtonian attraction which act upon these particles and are in direct 
proportion to their masses form, with a good approximation, a system of parallel forces, 
their resultant moment with respect to the centre of mass vanishing. 

11.2.1.3 Problem of n Particles 

Returning to the problem of n particles (see Sect. 1.2.8 too), we will consider the 

motion of a discrete mechanical system with respect to the mass centre C. For 2n = , 
the velocity of the centre of mass with respect to an inertial frame of reference is given 
by 

0 0
C

M mM m
M m M m M m

′ ′′ ′ ′ ++′ = = =
+ + +

V vH V vv ,  

where ′V  is the velocity of the Sun S, of mass M, while ′v  is the velocity of a planet 

P, of mass m, with respect to the same frame; taking into account the conservation 
theorem of momentum, we have put in evidence the velocities at the initial moment. In 
this case, the velocities of the two particles with respect to a Koenig frame are given by 

 
Fig. 11.7  Problem of two particles 

( )
C

m
M m

′ ′−′ ′= − =
+

V v
V V v ,   

( )
C

M
M m

′ ′−′ ′= − =
+

v V
v v v ; 

 

(11.2.9) 

these velocities have opposite directions at any moment (inclusive at the initial 
moment). We notice that the mass centre C is on the segment of a line SP of length 

SP r= , at the distances Sr  and Pr  from the centres of the particles S and P, 
respectively, so that (Fig. 11.7) 

S PMr mr= ,   S P S P
M m M mr r r r r

m M
+ ++ = = = . 

 

(11.2.9') 

The equation of relative motion of the particle P reads 
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3

2 2 2vers
( )P P P

P

mM mMm f f
r M m r

= − = −
+

r r r ; 
 

hence, the particle P moves with respect to the Koenig frame as if it would be 

gravitationally attracted by the mass centre C, at which would be an attractive mass 

equal to 3 2 2/( ) /(1 / )M M m M m M+ = + , describing a conic ( )C
PC  after the law 

of areas, the centre C being at one of the foci. The genus of the conic is specified by the 
relations 

2 3
0 2

0 02 2( ) 2
( ) ( )P

M Mr f
M m M m

−
+ +

V v , 
 

where we have put in evidence the position of the particle P at the initial moment; 
taking into account (11.2.9') and the relation S P− = −v v V v , we find again the 
conditions which specified the genus of the conics PC  and SC  in Sect. 1.2.8. 

Analogously, one can also show that the particle S describes a conic ( )C
SC  too, after the 

law of areas, with respect to the mass centre, that one being at one of the foci, its genus 
being given by the same relations. These conics are situated in the plane determined by 
the straight line 0 0P S  and by the vector −V v , being thus coplanar with the conics 

PC  and SC . Taking into account the first relation (11.2.9'), we notice that the two 

conics ( )C
PC  and ( )C

SC  are obtained one of the other by a transformation of similitude 

(the ratio / constS Pr r = ), the centre of similitude being C. We notice that the areal 
velocity is constant ( /2P P= × =r v cΩ , /2S S= × =r V CΩ ) in the motion of 
each particle; the plane in which are both trajectories is normal to a fixed direction, 
specified by c C , and is – in fact – the plane of the maximum of areas. Finally, the 

two particles S and P move so that their mass centre C describes uniformly a fixed 

straight line, while the line SP is rotating about C in a plane of fixed orientation; the 

particles S and P describe conics in this plane, obtained one of the other by similitude 

and having one of the foci at C. 

The period of revolution of a particle P in motion with respect to a Koenig frame is 
given by 

( ) ( )2 2 1 1
a M m a m m

T a a k
f fM M MM M

π π
+= = + = + ,   constk = . 

 

(11.2.9'') 

Let us consider, at the atomic level, the motion of an electron about the nucleus; in case 
of an atom of hydrogen we have / 1/1850m M = , while in case of an atom of ionized 
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helium / 1/7400m M = . Observing that the wave length is in direct proportion to the 

period of revolution T, we can write for the corresponding wave lengths 

( ) ( )He

H

1 11 11 1 1 1
7400 1850 2468 2500

λ
λ

= + + = − ≅ − ; 
 

experimentally, one obtains He 6560.2 Åλ =  and H 6562.8  Åλ = , so that He H/λ λ  
6560.2/6562.8 1 1/2524 1 1/2500= ≅ − ≅ − , this result being in good concordance 

with the theoretical one. 
If 3n > , then one can follow the considerations in Sect. 1.2.8. 

11.2.2  Motion of a Discrete Mechanical System with Respect to  
an Arbitrary Non-inertial Frame of Reference 

The results obtained in Sects. 11.2.1.1 and 11.2.1.2 will be generalized, assuming that 
the movable frame of reference R  has a pole other than the centre of mass of the free 
discrete mechanical system S  or/and assuming that the movable frame has a motion of 
rotation ( ≠ 0ω ) with respect to the fixed frame ′R . The quantities calculated with 
respect to the inertial frame ′R  will be denoted by “prime”, while to the quantities 
calculated with respect to the non-inertial frame R  will not be given such a 
specification (Fig. 11.8). 

11.2.2.1  Momentum and Moment of Momentum with Respect to an Arbitrary 
Frame of Reference 

We can write 

i iO′ ′= +r r r ,   1,2,...,i n= , (11.2.10) 

for a particle iP , wherefrom, differentiating with respect to the frame of reference ′R , 
we have 

i i iO′ ′= + + ×v v v rω ,   1,2,...,i n= . 
 

(11.2.10') 

Multiplying by the mass im  and summing for all the particles of the system S, we 
obtain 

( )OM′ ′= + + ×H H v ω ρ , (11.2.11) 

ρ being the position vector of the mass centre in the frame R ; we state thus 
Theorem 11.2.6 (V. Vâlcovici). The momentum of a discrete mechanical system with 
respect to a fixed frame of reference is equal to the sum of the momentum of this system 
with respect to an arbitrary frame and the momentum of the mass centre of the system, 
considered to be at rest with respect to the latter frame, assuming that its whole mass is 
concentrated at this centre, with respect to the fixed frame. 
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Applying the theorem of momentum with respect to the inertial frame and the 
formula (A.2.37), we can write 

d
d OM M M
t t t

′ ∂∂′ ′= = + × + + × + ×
∂ ∂

H HA H a ρω ω ρ ω  

( )M ′ ′+ × × = +R Rω ω ρ , 

 
 
 

(11.2.11') 

where ′ =R R  and ′ =R R  are the resultants of the given and constraint external 
forces, respectively; both resultants are invariant by a change of frame. We introduce 
the dynamic resultant (11.1.66) with respect to the non-inertial frame R  
( /M t= ∂ ∂H ρ ) 

 
Fig. 11.8  Motion with respect to an arbitrary non-inertial frame of reference 

( ) ( )C C
t Ct

∂= = + + +
∂
HA R R F F , 

 

(11.2.12) 

where the complementary forces (the transportation force and the Coriolis force) are 
given by 

[ ]( ) ( )C
Ot M ′= − + × + × ×F a ω ρ ω ω ρ ,   ( ) 2C

C M
t

∂= − ×
∂

F ρω , 
 

(11.2.12') 

corresponding to the centre of mass (which plays thus an important rôle), where we 
consider that the whole mass of the mechanical system S  is concentrated. One can 
obtain this result starting from the equations of motion written for a non-inertial frame 
(in relative motion) 

( ) ( )i ii
i i i i i t Cm m

t
∂

= = + + +
∂
H r F R F F ,   1,2,...,i n= , 

 

(11.2.13) 
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where 

[ ]( ) ( )i
i i iOt m ′= − + × + × ×F a r rω ω ω ,   ( ) 2i

i iC m= − ×F vω , 
 

(11.2.13') 

and summing for all the particles of the mechanical system S. 
In the particular case in which the frame R  does not rotate (moves with the axes 

parallel to themselves) we have = 0ω  and it results 

OM′ ′= +H H v ,   t OM ′= −F a ,   C =F 0 ; (11.2.11'') 

as well, in the case in which the frame R  has its pole at the centre of mass 
(O C≡ , = 0ρ ), we can write 

O CM M′ ′ ′= =H v v ,   t OM ′= −F a ,   C =F 0 , (11.2.11''') 

even if ≠ 0ω . 
Taking into account the relation (11.2.10'), we have 

C O C′ ′= + + ×v v v ω ρ , (11.2.14) 

wherefrom we obtain 

( ) 2C O C C′ ′= + + × + × × + ×a a a vω ρ ω ω ρ ω ; (11.2.14') 

observing that / Ct M∂ ∂ =H a , the equation (11.2.12), (11.2.12') takes the remarkable 
form 

CM ′ = +a R R , 
 

(11.2.15) 

corresponding to the motion of the centre of mass. 
A vector product at the left of the relation (11.2.10') by i′r  leads to 

( ) ( )i i i i i iO O O O O′ ′ ′ ′ ′ ′ ′× = + × + + × = × + ×r v r r v v r r v r vω  
( ) ( )i i i i i iO O′ ′+ × × − × + × + × ×r r v r r v r rω ω , 

 

where we took into account (11.2.10); multiplying by im  and summing for all the 
particles of the discrete mechanical system S, it results 

( ) ( )O O C OO M M′′ ′ ′ ′= + × + ×K K r v vρ , 
 

(11.2.16) 

where we considered (11.2.14) and have introduced a quantity of the nature of a 
moment of momentum 

1 1

d
( )

d

n n
i

i i i i i iO
i i

m m
t= =

= × + × = ×∑ ∑ rK r v r rω . 
 

(11.2.16') 
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We notice that OK  does not represent the moment of momentum of the discrete 
mechanical system S  with respect to the pole O of the non-inertial frame R, taken 
with respect to the inertial frame ′R . But OK  represents the moment of momentum of 

the discrete mechanical system S  with respect to the pole O, in a non-inertial frame 

R , with the pole at the same point O and the axes iOx  parallel to the axes iO x′ ′ , 

1,2, 3i = , of the inertial frame ′R  (because the frame R  does not rotate with 
respect to the frame ′R , the derivative with respect to time remains invariant and 

d /di i t=v r ); this quantity takes a remarkable form by introducing the tensor of 
inertia. Thus, observing that 

( )( ) ( ) ( ) ( )2( ) ( ) i i i i
i i i i i jjk kjl l kx x x xδ ω× × = − ⋅ = −r r r r r iω ω ω ,  

multiplying by im , summing for all the particles of the discrete mechanical system S  
and introducing the tensor of inertia defined by the relation (3.1.81), we find a relation 
of the form (3.1.83) for a quantity OK  of the nature of a moment of momentum, which 
will be called pseudomoment of momentum of the discrete mechanical system S  with 
respect to the pole O of the non-inertial frame R, i.e. 

1
( )

n
O

i i iO
i

m
=

= = × ×∑K I r rω ω , 
 

(11.2.17) 

where we have introduced the contracted product of the tensor of inertia at the pole O 
by the vector angular velocity; it results 

O
O O= +K K K , 

 

(11.2.17') 

where 

1

n

i i iO
i

m
=

= ×∑K r v  
 

(11.2.17'') 

is the moment of momentum of the discrete mechanical system S  with respect to the 
pole O of the non-inertial frame R. We state 
Theorem 11.2.7 (V. Vâlcovici, C. Iacob). The moment of momentum of a discrete 
mechanical system with respect to a pole O ′  of a given inertial frame of reference 

′R , in this frame, is equal to the sum of the moment of momentum of this system with 
respect to an arbitrary pole O of a non-inertial frame R  (which does not rotate with 
respect to the frame ′R ), in the latter frame (the sum of the moment of momentum of 
the system with respect to the pole O in a non-inertial frame R, with the pole at the 
very same point, and the contracted product of the tensor of inertia with respect to the 
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same pole by the angular velocity vector of the non-inertial frame R  with respect to 
the inertial frame ′R ), the moment of momentum of the mass centre, translated at the 
pole O, at which is considered to be concentrated the whole mass of the system S, with 

respect to the pole O ′ , in the frame ′R , and the moment of momentum of the pole O, 
translated at the centre of mass at which is assumed to be concentrated the whole mass 
of the system S, calculated with respect to the pole O, in the same inertial frame ′R . 

Differentiating the relation (11.2.16) with respect to time in the fixed frame, we can 
write 

[ ]d d
( )

d d
O O

O C O C C O O OM
t t

′′
′ ′ ′ ′ ′ ′ ′= + × + × + × + × × + ×

K K
v v r a v v v aω ρ ρ ; 

 

observing that 

O OO ′ ′= + ×M M r R ,   O OO ′ ′= + ×M M r R   

for the moments of the given and constraint external forces and taking into account 
(11.2.14), (11.2.15), V. Vâlcovici showed that the theorem of moment of momentum 
becomes 

d
( )

d
O

O O OM
t

′× + = +
K

a M Mρ , 
 

(11.2.18) 

where 

d d d ( ) ( )
d d d

O O O O
O O O Ot t t t t

∂ ∂
= + = + × + + + ×

∂ ∂
K K K I

I K I Iω ω ω ω ω ω . 

 (11.2.18') 

Observing that 

( ) ( ) 2( ) ( ) ( )i i i i i i i i i i× × + × × = ⋅ − ⋅ − ⋅r v v r r v v r r vω ω ω ω ω  

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 i i i i i i i i i i
j jjk k jk kj j jl l k k l l kx x x x x x x x x x

t
δ ω δ ω

∂= − − = −
∂

i i , 

 

multiplying by im , summing for all the particles of the discrete mechanical system S  
and introducing the tensor of inertia, we find the remarkable relation 

1 1
( ) ( )

n n
O

i i i i i i
i i

m m
t= =

∂
× × + × × =

∂∑ ∑ I
r v v rω ω ω , 

 

(11.2.18'') 

corresponding to the relation (11.2.17). 
Starting from the equations of motion (11.2.13), (11.2.13'), we effect a vector 

product at the left by ir  and sum for all the particles of the system S ; we get thus 
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( )( ) ( )

1

n
i iO

iO O t C
it =

∂
= + + × +

∂ ∑K
M M r F F . 

 

(11.2.18''') 

We notice that 

1
( ) ( ) ( )

n

i i iO O O
i

M m
=

′+ × + × = × ×∑I I a r rω ω ω ρ ω  

( )

1 1 1
( )

n n n
i

i i i i i iO t
i i i

m m
= = =

′+ × × × + × = − ×∑ ∑ ∑r r r a r Fω ω , 

 

because 

[ ] [ ]( ) ( )( ) ( )i i i i i i× × × = − ⋅ × = × × ×r r r r r rω ω ω ω ω ω ,  

as well as (we use the relation of definition (3.1.81)) 

( ) ( )

1 1

n njk i iO
m ni i i j i jO k jkl lmn k

i i

I
m m x v

t t
ω ω

= =

∂∂
× + = × × + = ∈ ∈

∂ ∂∑ ∑I
K r v i iω ω ω  

( ) ( )( ) ( ) ( ) ( ) ( ) ( )

1 1

n n
i i i i i i

p p m ni j jm jn i jk jk kn km kj k
i i

m x x x x m x v
t

ω δ δ δ δ δ ω
= =

∂+ − = −
∂ ∑ ∑i i  

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1
2 2

n n
i i i i i i i i i i

p p p pi j i j jk jk kj j jk k k
i i

m x v v x x v m x v x vω δ ω ω
= =

+ − − = −∑ ∑i i
 

[ ] ( )

1 1 1
2 ( ) ( ) 2 ( )

n n n
i

i i i i i i i i i C
i i i

m m
= = =

= ⋅ − ⋅ = × × = − ×∑ ∑ ∑r v r v r v r Fω ω ω ; 

one can thus state that the relations (11.2.18) and (11.2.18''') are equivalent. 
One can easily see that the theorem of moment of momentum (11.2.18) reads 

d
( )

d
O

O O OM
t

′× + = +
K

a M Mρ  
 

(11.2.18iv) 

if we have constO
O= =K I ω  with respect to the inertial frame ′R . 

In the particular case in which the frame R  does not rotate ( = 0ω , hence 

O O=K K ), it results the formula 

( ) ( )O O C OO M M′′ ′ ′ ′= + × + ×K K r v vρ , (11.2.19) 

obtained by V. Vâlcovici as a particular case of the Theorem 11.2.7; the theorem of 
moment of momentum becomes 

( )
O

O O OM
t

∂′× + = +
∂
Ka M Mρ  

 
(11.2.19') 

and we can state 
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Theorem 11.2.8 (V. Vâlcovici). The theorem of moment of momentum of a free discrete 
mechanical system maintains its form with respect to a non-inertial frame of reference 
which does not rotate (it moves with the axes parallel to themselves) if, from the 
moment of the given and constraint external forces, we subtract the dynamic moment 
(with respect to an inertial frame) of the pole of the non-inertial considered frame, 
translated at the centre of mass of the system, at which is assumed that is concentrated 
the whole mass of the system, with respect to this pole. 

One can thus see that the theorem of moment of momentum of a free or constraint 
discrete mechanical system maintains its form with respect to a non-inertial frame of 
reference which does not rotate if and only if O′× =a 0ρ , hence in one of the 
following cases: (i) the pole of the non-inertial frame has a uniform and rectilinear 
motion with respect to an inertial frame, the movable frame being thus inertial too; 
(ii) the non-inertial frame is a Koenig frame ( = 0ρ , hence O C≡ , Theorem 11.2.4); 
(iii) the support of the acceleration O′a  of the pole of the non-inertial frame, with 

respect to an inertial frame, passes always through the centre of mass C. As a matter of 
fact, the case (ii) is a particular case of (iii). 

We say that a non-inertial frame R  is a frame of Koenig type if = 0ω  but its pole 
is not the mass centre; in this case, the frame R  is just such a frame. As it was shown 
by V. Vâlcovici, to can write a formula of Koenig type 

( )O O OO M′′ ′ ′= + ×K K r v  (11.2.20) 

it is necessary and sufficient that (we notice C O C′ ′= +v v v ) 

( ) ( )O C OM M′ ′× + × =r v v 0ρ . (11.2.20') 

In the particular case in which the pole of the non-inertial frame coincides with the 
centre of mass of the system (O C≡ , = 0ρ ), we obtain a formula of Koenig type 

( )C CO M′′ ′ ′= + ×K K vρ ,   C
C C= +K K K , 

 

(11.2.21) 

and the theorem of moment of momentum reads 

d
d

C
C Ct

= +
K

M M ; 
 

(11.2.21') 

if we have = 0ω  too, then the non-inertial frame R  is a Koenig one, so that 

( )C CO M′′ ′ ′= + ×K K vρ ,   C
C Ct

∂
= +

∂
K

M M . 
 

(11.2.22) 

Taking into account the results in Sect. 11.1.2.3, we notice that we may write 
( )O O CO M′′ ′ ′ ′= ×K K r v− ; the formula (11.2.16) takes thus the form 

( )O O OM′ ′= + ×K K vρ , 
 

(11.2.23) 

64



www.manaraa.com

the moment of momentum O′K  being calculated with respect to the inertial frame ′R . 
Analogously, we can write  

( ) ( ) ( )O C C O C C CM M M′ ′ ′ ′ ′ ′ ′ ′= + × − × = + ×K K v r v K vρ ρ ,  

with respect to the inertial frame, as well as ( )O C CM= + ×K K vρ , with respect to a 
non-inertial frame. Taking into account (3.1.116'), (11.2.14) and (11.2.17') and 
observing that ( ) ( )O C M= × ×I S ρ ω ρ , we can write the relation (11.2.23) in the 
form 

( )C
C C C C C′ = = + = +K K K K K I S ω , 

 

(11.2.23') 

stating 
Theorem 11.2.9 (C. Iacob). The moment of momentum of a discrete mechanical system 
with respect to the centre of mass, in an inertial frame of reference ′R , is equal to the 
moment of momentum of this system with respect to the centre of mass, calculated in a 
non-inertial frame R  of Koenig type (the sum of the moment of momentum of the 
system with respect to the centre of mass, in an arbitrary non-inertial frame R, with 
the same pole as R , and the contracted product of the tensor of inertia, with respect 
to the same pole, by the angular velocity vector of the frame R, with respect to the 
frame ′R ). 

The privileged rôle of the centre of mass is thus put into evidence. If = 0ω , the 
arbitrary non-inertial frame R  being in motion of translation with respect to the inertial 
frame, then we get 

C C′ =K K ; (11.2.23'') 

this result corresponds to the relation (11.2.19) of V. Vâlcovici. If, in particular, the 
pole of the non-inertial frame coincides with the centre of mass, then we can write the 
relation 

( )C
C C′ =K K , 

 

(11.2.23''') 

which corresponds to the Theorem 11.2.1 of Koenig. 
If in the formula (11.1.23) we take Q C≡ , then the theorem of moment of 

momentum reads 

( )( )d d d d
d d d d

C C C
C C Ct t t t

′
= = + = +

K K K
I M MS ω , 

 
(11.2.24) 

where we took into account (11.2.23'); we mention that the derivatives are calculated 
with respect to the inertial frame ′R . If = 0ω , then it results 

C
C Ct

∂
= +

∂
K

M M , 
 

(11.2.24') 
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the derivative being calculated with respect to the non-inertial frame R  with the pole at 
O, while if, in particular, O C≡ , then we obtain 

( )C
C

C Ct
∂

= +
∂

K
M M , 

 
(11.2.24'') 

the non-inertial frame being with the pole at the centre of mass; this last result 
corresponds to the Theorem 11.2.4 of Koenig. 

Introducing the dynamic moment (11.1.67) and taking into account (11.1.23) and 
(11.1.67'), we get 

d
( )

d
O

O O CM
t
′

′ ′ ′= + ×
K

D v v . 
 

(11.2.25) 

Using the relation (11.2.23), we find again the theorem of dynamic moment in the 
inertial frame ′R , with respect to an arbitrary pole O, in the form 

O O O′ = +D M M . 
 

(11.2.25') 

Taking into account the relations (11.2.18), (11.2.18'), we can write this theorem in the 
non-inertial frame of reference R  too; we obtain 

d ( ) ( )
dO O O O O OM
t

′+ × + + × = +D K I a M Mω ω ρ . 
 

(11.2.25'') 

If = 0ω , then it results 

( )O O O OM ′+ × = +D a M Mρ , 
 

(11.2.25''') 

corresponding to the Theorem 11.2.8. If we have O C≡  too, then we can write 

( )C
C CC = +D M M , 

 

(11.2.26) 

which corresponds to the relation (11.2.24''); starting from the relation (11.2.24'), it can 
be easily verified that 

C C C= +D M M , 
 

(11.2.26') 

with respect to an arbitrary non-inertial frame with the pole at O. From (11.2.11') to 
(11.2.25') it results also a theorem of dynamic torsor in an inertial frame with respect to 
an arbitrary pole 

{ } { } { }i i iO O O′τ = τ + τA F R . (11.2.27) 
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We notice that, starting from the theorem of momentum, one can obtain conservation 
theorems (hence, first integrals) only with respect to the inertial frame ′R . Thus, if 
R R 0+ = , then from (11.2.15) it results that C′ =a 0 , wherefrom C′ =v C , 

t′ ′+C Cρ = , , const′ =C C , with respect to the frame ′R . 
In what concerns the theorem of moment of momentum with respect to the pole of a 

non-inertial frame of reference R, one can make some interesting considerations. Thus, 
if O′× =a 0ρ , hence if the support of the acceleration of the pole O with respect to an 
inertial frame passes through the centre of mass of the discrete mechanical system S  
(we eliminate the trivial case in which the pole O has a uniform and rectilinear motion 
with respect to a frame ′R , hence the case in which the frame R  is inertial too, as 
well as the case in which O C≡ ), and if the sum O O+ =M M 0 , then constO =K , 
the moment of momentum OK  (calculated with respect to the non-inertial frame R ) 
being conserved in time with respect to the inertial frame ′R ; one obtains thus a 
vector first integral. If we have = 0ω  too (the non-inertial frame R  does not rotate 
with respect to the inertial frame ′R ), then constO =K  (the moment of momentum 

with respect to the pole O, in the frame R , is reduced to the moment of momentum 
with respect to the same pole, in the frame R ) with respect to the non-inertial frame 
R. 

If in the relation (11.2.24) we make C C+ =M M 0 , then it results constC′ =K , 
the moment of momentum C′K  (calculated with respect to the non-inertial frame R ) 
being conserved in time with respect to the inertial frame ′R ; we notice that this result 
cannot be obtained from the above one, making O C≡ , because it takes place with 
respect to an arbitrary non-inertial frame R. If we have = 0ω  too, then constC =K  
with respect to the non-inertial frame R, and if, in particular, O C≡ , then 

( ) constC
C =K  with respect to a non-inertial frame with the pole at the centre of mass 

(this last first integral can be obtained from the Theorem 11.2.4 of Koenig). 
As a conclusion, one can obtain a vector first integral (equivalent to three scalar first 

integrals) with respect to a non-inertial frame too, but which is not independent of that 
which can be obtained with respect to an inertial frame. 

11.2.2.2  Kinetic Energy and Work with Respect to an Arbitrary Non-inertial 
Frame of Reference. Comoment of Two Torsors 

Squaring the relation (11.2.10'), we can write 

2 2 2( ) 2 ( ) ( )i i i i i iO O O′ ′ ′+ + × = + ⋅ + × + + ×v v r v v v r v rω ω ω .  

Multiplying by im  and summing for all the particles of the discrete mechanical system 
S, it results (we take into account (11.2.14)) 
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2 21 1( , , )
2 2O O C O O O CT T Mv M M T Mv M′ ′ ′ ′ ′ ′ ′= + + ⋅ + = − + ⋅v v v v vω ρ , 

 (11.2.28) 

where we have introduced a quantity of the nature of a kinetic energy 

( )22

1 1

d1 1( )
2 2 d

n n
i

i i i i
i i

T m m
t= =

= + × =∑ ∑ rv rω , 
 

(11.2.28') 

which, as in the case of the moment of momentum, does not represent the kinetic 
energy of the discrete mechanical system S  with respect to the non-inertial frame; 
indeed, the derivative of the position vector ir , in the non-inertial frame R, is taken 
with respect to the inertial frame ′R . This quantity, which is – in fact – the kinetic 
energy of the discrete mechanical system S  with respect to the non-inertial frame R , 
becomes 

( )1
2

O
O O OT T T T= + ⋅ + = + ⋅ +K K Kω ω , 

 

(11.2.28'') 

where 

2

1

1
2

n

i i
i

T m v
=

= ∑  
 

(11.2.28''') 

is the kinetic energy of the discrete mechanical system S  with respect to the non-
inertial frame R, while 

( )2 2 2
1 1 2 2 3 3

1 1 1( )
2 2 2

O
jO jk kT I I I Iω ω ω ω ω= ⋅ = = + +Iω ω ; 

 

(11.2.29) 

we have put thus in evidence also the representation with respect to the principal axes 
of inertia, that is a quantity of the nature of a kinetic energy, which we call 
pseudokinetic energy, of the discrete mechanical system S  with respect to the non-
inertial frame R  having the pole at O. We state 
Theorem 11.2.10 (V. Vâlcovici). The kinetic energy of a discrete mechanical system 
with respect to a given inertial frame of reference ′R  is equal to the sum of the kinetic 
energy of this system with respect to an arbitrary non-inertial frame R , which does 
not rotate with respect to the frame ′R  (the sum of the kinetic energy of the system 
with respect to a non-inertial frame R  with the same pole O as the frame R , the 
scalar product of the angular velocity vector by the moment of momentum of the system 
with respect to the same pole, in the same frame R, and the semi-scalar product of the 
angular velocity vector by the contracted product of the tensor of inertia with respect to 
the pole O by the angular velocity vector) and the scalar product of the velocity of the 

pole O with respect to the frame ′R  by the momentum of the system with respect to 
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the same frame ′R , from which the kinetic energy of the pole O, in the frame ′R , 
where the whole mass of the discrete mechanical system is considered to be 
concentrated, is subtracted. 

If ( )tω  is along the direction Δ of unit vector n at the moment t, then we can write 

2 21 1 1( ) ( )
2 2 2O O IΔω ω⋅ = ⋅ =I n I nω ω , 

 

(11.2.29') 

where we have taken into consideration (3.1.82'), ( )tω ω=  being the magnitude of the 
angular velocity of instantaneous rotation; the axial moment of inertia IΔ  plays thus 
the rôle of a mass for the instantaneous motion of rotation. 

Taking into account (11.1.16), we find also the remarkable solution 

( )1 1 1( )
2 2 2O C O O O COT T M M′′ ′ ′ ′ ′ ′= + ⋅ + + ⋅ − × + ⋅K K v v r v vω ω . 

 

(11.2.30) 

The elementary work of the given and constraint external and internal forces which 
act upon the discrete mechanical system S  is given by 

int int
1 1 1

d d d d ( ) d '( ) d
n n n

i i i iR R ik ik
i i k

W W W W
= = =

′ ′ ′ ′ ′ ′+ + + = + ⋅ + + ⋅∑ ∑∑F R r F R r  

1 1 1 1
( ) '( ) d ( ) d

n n n n

i i i i iik ik O
i i k i= = = =

⎡ ⎤ ′= + + + ⋅ + + ⋅⎢ ⎥⎣ ⎦
∑ ∑∑ ∑F R F R r F R r  

1 1 1 1
'( ) d '( ) d

n n n n

i i i iik ik ik ik
i k i k

t
= = = =

⎡ ⎤+ + ⋅ + × ⋅ + + +⎢ ⎥⎣ ⎦
∑∑ ∑ ∑F R r r F R F Rω , 

 

where we have used the formula (11.2.10'); introducing the torsor of the given and 
constraint external forces at the pole of the non-inertial frame 
( { } { } { }, ,i iO O Oτ + = +F R R M R M , the torsor of the given and constraint internal 
forces being equal to zero) and taking into account the properties of the triple scalar 
product, we read 

int intint intd d d d d d d dR R R RW W W W W W W W′ ′ ′ ′+ + + = + + +  
( ) d ( ) dO O O t′+ + ⋅ + + ⋅R R r M M ω , 

 
 

(11.2.31) 

finding thus the relation between the elementary work of the given and constraint forces 
in the two frames: inertial and non-inertial. For the power of the given and constraint 
forces we have 

int intint int ( ) ( )R R R R O O OP P P P P P P P′ ′ ′ ′ ′+ + + = + + + + + ⋅ + + ⋅R R v M M ω , 
 (11.2.31') 

so that we can state 
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Theorem 11.2.11 The power of the given and constraint external and internal forces 
which act upon a discrete mechanical system, with respect to an inertial frame of 
reference, is equal to the sum of the power of the same forces with respect to an 
arbitrary non-inertial frame and the power of the given and constraint external forces 
applied at the pole of the latter frame with respect to the inertial frame. 

Let { } { }, 1,2,...,i i n≡ =V V  and { } { }, 1,2,...,j j m′ ′≡ =V V  be two systems of 

(bound or sliding) vectors of torsors, at the pole O, { } { },O Oτ ≡V R M  and 
{ } { },O O′ ′ ′τ ≡V R M , respectively. We call torsor product (or comoment) of the two 

torsors the scalar quantity 

{ } { }( ), O O′ ′ ′τ τ = ⋅ + ⋅V V R M R M , (11.2.32) 

where O is an arbitrary pole. Observing that the resultants R and ′R  are invariant by a 

change of pole and that OO O O′ ′= + ×M M R , OO O O′′ ′ ′ ′= + ×M M R , we can 
write 

( ), ,O OO O O O′ ′′ ′ ′ ′ ′ ′⋅ + ⋅ = ⋅ + + ⋅R M R M R M R R R M  

( ), , O OO O′ ′ ′ ′+ = ⋅ + ⋅R R R M R M ; 

 

hence, the comoment of two torsors does not depend on the pole with respect to which 
it is calculated, the definition being thus consistent. 

Introducing the kinematic torsor at the pole O 

{ },O O′≡′ vT ω , (11.2.33) 

for which OO O O′′ ′ ′= + ×v v ω , we can write the relation (11.2.31') in the form 

{ } { }( )int intint int , i iR R R RP P P P P P P P′ ′ ′ ′+ + + = + + + + τ + τ′ F RT , 
 (11.2.31'') 

where we have put in evidence the torsor of the given and constraint external forces. 
Applying the theorem of kinetic energy with respect to an inertial frame of reference 

and starting from (11.2.28), (11.2.28''), (11.2.31'), we can write 

int int
d d
d d O O O C O C R R
T T M M M P P P P
t t

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= − ⋅ + ⋅ + ⋅ = + + +v a a v v a  

int int ( ) ( )R R O O OP P P P ′= + + + + + ⋅ + + ⋅R R v M M ω ; 

 

taking into account (11.2.14), (11.2.15) and (11.2.17), we get 

( ) int int
d , , ( ) ( )
d O O C R R O O
T M M P P P P
t

′ ′+ + ⋅ = + + + + + ⋅a a v M Mω ρ ω , 

 (11.2.34) 
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where 

d 1
d 2

O OOT T
t t t t

∂ ∂∂ ⎛ ⎞= + ⋅ + ⋅ + ⋅ ⎜ ⎟∂ ∂ ∂⎝ ⎠
K I

Kω ω ω ω , 
 

(11.2.34') 

because 

( ) ( )1 1 1 1
2 2 2 2ij j i ij j iO O I Iω ω ω ω⋅ + ⋅ = +I Iω ω ω ω  

( ) ( )( )
1 ( )
2 ij ji i j i j O OijI I Iω ω ω ω= + = = ⋅ = ⋅I Iω ω ω ω . 

 

A scalar product of the equation (11.2.18), (11.2.18') by ω leads to 

int int
1

( )
2

O
O O C R R

T
M P P P P

t t
∂∂ ⎛ ⎞ ′+ ⋅ − ⋅ + ⋅ = + + +⎜ ⎟∂ ∂⎝ ⎠
I

K a vω ω ω , 
 

(11.2.34'') 

where we have used the equation (11.2.34), (11.2.34'). 
The theorem of kinetic energy for the system of equations of motion (11.2.13) has 

the form 

( ) ( )
int int

1 1

n n
i i

i iR R t C
i i

T P P P P
t = =

∂ = + + + + ⋅ + ⋅
∂ ∑ ∑F v F v ; 

 

(11.2.34''') 

taking into account (11.2.13') and (11.2.18'') and observing that the last power vanishes, 
we find again the relation (11.2.34''). 

As V. Vâlcovici has shown, the theorem of kinetic energy with respect to an inertial 
frame of reference maintains its form with respect to a non-inertial frame if and only if 

1
( )

2
O

O O CM
t

∂⎛ ⎞′⋅ + ⋅ = ⋅ ⎜ ⎟∂⎝ ⎠
I

K a vω ω ω . 
 

(11.2.35) 

If we have = 0ω , hence T T= , then the non-inertial frame R  does not rotate and 
we obtain 

2 21 1( ) ( )
2 2O O C O O CT T Mv M T Mv M′ ′ ′ ′ ′ ′= + + ⋅ = − + ⋅v v v v , 

 

(11.2.36) 

so that the theorem of kinetic energy takes the form 

int int( )O C R R
TM P P P P
t

∂′ ⋅ + = + + +
∂

a v . 
 

(11.2.36') 

From here (or from (11.2.35)) we deduce that the theorem of kinetic energy of a free 
or constraint discrete mechanical system maintains its form with respect to a non-
inertial frame which does not rotate ( = 0ω ) if ( ) 0O C O C O′ ′ ′ ′⋅ = ⋅ − =a v a v v , hence 
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in one of the following cases: (i) the pole of the non-inertial frame has a uniform and 
rectilinear motion with respect to an inertial frame, the movable frame being inertial 
too; (ii) the non-inertial frame is a Koenig frame ( C =v 0  and const=ρ , hence one 
can have O C≡ , Theorem 11.2.5); (iii) the projection of the velocity of the centre of 
mass with respect to an inertial frame, on the direction of the acceleration of the pole of 
a non-inertial frame is equal to the projection of the velocity of this pole on the same 
direction, as it was shown by O. Bonnet. As a matter of fact, the case (ii) is a particular 
case of the case (iii). 

As well, from (11.2.28) we obtain a result of O. Bonnet, in conformity to which a 
non-inertial frame of reference which is not rotating is a frame of Koenig type for the 
kinetic energy if ( ) 0O C O C O′ ′ ′ ′⋅ = ⋅ − =v v v v v , hence if the projection of the 
velocity of the mass centre with respect to an inertial frame on the direction of the 
velocity of the pole of a non-inertial frame is equal to the magnitude of the velocity of 
that pole. 

If the pole of the non-inertial frame of reference coincides with the mass centre of 
the discrete mechanical system (O C≡ , hence = 0ρ ), then we obtain a formula of 
Koenig type 

( ) 21
2

C
CT T Mv′ ′= +  

 

(11.2.37) 

and the theorem of kinetic energy reads 

( )
( ) ( ) ( )( )

int int
d ( )

d

C
C C CC

C CR R
T P P P P

t
= + + + + + ⋅M M ω ; 

 
(11.2.37') 

if we have = 0ω  too, then the non-inertial frame R  is a Koenig frame, so that 

( ) 21
2

C
CT T Mv′ ′= + ,   

( )
( ) ( ) ( )( )

int int

C
C C CC

R R
T

P P P P
t

∂ = + + +
∂

. 
 

(11.2.38) 

From (11.2.28'') we notice that the first formula (11.2.38) of Koenig can take place also 
for ≠ 0ω  if 

( ) ( )1 1 0
2 2C C C C⋅ − ⋅ = ⋅ + ⋅ =K I K Iω ω ω ω ω ω ; 

 
(11.2.39) 

we can also write 

2 pr C
CI

ω = − Kω , 
 

(11.2.39') 

where CI  is the moment of inertia of the discrete mechanical system with respect to the 
instantaneous axis of rotation of the non-inertial frame of reference with the pole at the 
centre of mass. We find thus again a result of V. Vâlcovici, according to which the first 
formula (11.2.38) of Koenig takes place only and only if the angular velocity vector of 
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the non-inertial frame with respect to the inertial one is directed in an opposite sense to 
that of the projection of the moment of momentum of the discrete mechanical system on 
the instantaneous axis of rotation, having a magnitude equal to the double of the 
magnitude of this projection divided by the moment of inertia of the system with 
respect to the instantaneous axis. 

As well, using the condition (11.2.35), we notice that the second formula (11.2.38) 
of Koenig takes place for 0ω ≠  too if 

1
2

C
C t

∂⎛ ⎞⋅ = ⋅ ⎜ ⎟∂⎝ ⎠
I

Kω ω ω . 
 

(11.2.40) 

Equating to zero the relative motion with respect to the non-inertial frame of 
reference, we find – from (11.2.28), (11.2.28'') – the transportation kinetic energy 

(tr )T O′  of the discrete mechanical system S, by the non-inertial frame R, with 
respect to the inertial frame ′R  (we make i =v 0  in the formula (11.2.10'), so that 

(tr )i iOO′ ′= + ×v v rω ). To calculate the transportation kinetic energy (tr )T O ′  of 
the discrete mechanical system S  by the inertial frame ′R , with respect to the non-
inertial frame R, we introduce the kinematic torsor { },O O′ ′≡ − vωT ; observing that 

O O
O O O OOt t

′
′

′ ∂∂′ ′ ′ ′= + × = − + × = − + ×
∂ ∂

rr
v r r v rω ω ω , 

 

we have 

(tr ) ( ) ( ) (tr )i i i iO OOO O′′ ′= + − × + = − − × = −v v r r v r vω ω .  

Thus, C. Iacob showed that 

21 1(tr ) (tr ) ( , , ) ( )
2 2O O OT O T O Mv M′ ′ ′ ′= = + + ⋅v Iω ρ ω ω . 

 

(11.2.41) 

With this result, the relations (11.2.28), (11.2.28'') may be written also in the form 

(tr ) O C OT T T O M′ ′ ′= + + ⋅ + ⋅v v Kω , (11.2.42) 
(tr ) O C OT T T O M′ ′ ′ ′ ′= − + ⋅ + ⋅v v Kω , (11.2.42') 

where we have invert the rôle of the frames ′R  and R, taking into account the 
previous results and the relation ( )O O CO M′′ ′ ′ ′= + ×K K r v . 

11 Dynamics of Discrete Mechanical Systems 

Thus, as it has been stated by V. Vâlcovici, the theorem of kinetic energy remains 
invariant in its form with respect to a non-inertial frame of reference with the pole at the 
mass centre if and only if the scalar product of the angular acceleration vector of the non-
inertial frame with respect to an inertial one by the moment of momentum of the 
discrete mechanical system, relative to the non-inertial frame, is equal to the half of 
the scalar product of the angular velocity vector of the same frame with respect to the 
inertial one by the contracted product of the derivative with respect to time of the tensor 
of inertia with respect to the centre of mass of the system, in the non-inertial frame, by 
the considered angular velocity vector. 
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Summing the relations (11.2.42), (11.2.42'), observing that CM=H v , CM′ ′=H v , 
introducing the kinematic torsor (11.2.33) and the kinetic torsors { },O Oτ = H K , 

{ },O O′ ′ ′τ = H K , we get 

( )1 ,
2

T T τ τ′ ′= + +′T .  

Let be also the kinematic torsor { },O O′= −′ vωT , which corresponds to the motion of 
the inertial frame of reference with respect to the non-inertial one; taking into account 
the relation between O ′v  and O′v  and the relation ( )O CO O M′ ′= + ×K K r v , we 
obtain the reciprocity relation 

( ) ( )1 1, ,
2 2

T Tτ τ′ ′− = −′T T , 
 

(11.2.43) 

due to C. Iacob. 
In particular, if = 0ω , then we have 

21(tr ) (tr )
2 OT O T O Mv′ ′ ′= = . 

 

(11.2.41') 

From (11.2.36') we notice that for = 0ω  and 0O C′ ⋅ =a v , hence for the conditions 
found by O. Bonnet in case of scleronomic constraints (for which int 0R RP P= = ), 
assuming that the given internal forces derive from a simple or from a generalized 
potential, we can write a theorem of mechanical energy of a discrete mechanical 
system, free or with scleronomic constraints, with respect to a non-inertial frame which 
does not rotate with respect to an inertial one, in the form 

E P
t

∂ =
∂

,   E T V= + , 
 

(11.2.44) 

where V is the potential energy of the system with respect to the pole O of the movable 
frame. If 0P = , in a certain interval of time, we get constE =  for this interval, 
hence a conservation theorem of mechanical energy (a scalar first integral), which is not 
independent from that which could be obtained with respect to an inertial frame. 

11.2.2.3 Problem of n Particles 

We will consider now the problem of n particles with respect to a non-inertial frame of 
reference R, which does not rotate with respect to an inertial frame ′R , but which is 
not a Koenig frame (see Sects. 11.1.2.8 and 11.2.1.3 too). If the origin O of the non-
inertial frame coincides with one of the particles, e.g., with the particle 1P , of position 
vector 1′r , with respect to the frame ′R , we can write 1i i′ ′= +r r r , 2,3,...,i n= , 

1 =r 0 . The equations of relative motion with respect to the frame R  are 
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( )

1
'

n
i

i i ik t
k

m
=

= +∑r F F ,   ( )i
i it m ′= −F r ,   2,3,...,i n= ; 

 

noting that 

13 3 3 3
1 1 1 2

1
' ' '

n n n n
iik k i ik

ik k k k
i k k k kiik iki k

f m f m fm f m
m r r r= = = =

−
= = − = − +

−∑ ∑ ∑ ∑r r r rrF
r r

, 

11
1 3 3 3

1 2 2 2 21 1

1 n n n n
k k k

k k k k
k k k kk kk

f m f m f m
m r r= = = =

−
= = − =

−∑ ∑ ∑ ∑r r r r
F

r r

3 3
2
'

n
i k

i k
ki k

f m m
r r=

⎛ ⎞= +⎜ ⎟
⎝ ⎠

∑ rr
, 

we can write these equations in the form (the operator i∇  is considered with respect to 
the non-inertial frame) 

1 3( ) i
i i i i

i
f m m R

r
+ + =rr ∇ ,   3

2

1
'

n
i k

i k
ikk k

R f m
r r=

⋅⎛ ⎞= −⎜ ⎟
⎝ ⎠

∑ r r
,    2,3,..,i n= . 

 (11.2.45) 

In the particular case 2n = , it results 0iR =  (we have only 2i = ); the equation 
(11.2.45) is reduced to an equation of the form (11.1.51), hence to the equation of 
motion corresponding to the problem of two particles. Thus, the influence of the other 
particles upon the motion of the particle iP  is given by the perturbing function iR . 
These equations are used in the study of the motion of the planets with respect to the 
Sun, in the frame of the solar system. In this case, the Sun is considered to be the 
particle 1P  (the centre of mass of the Sun is chosen as origin O of the frame R ), 
having the mass 1m , which does not intervene in iR ; we may thus state that the values 
of the perturbing function are very small. 

Another possibility to study  the problem, due to Jacobi, is based on the introduction 
for the discrete mechanical subsystems { }1 2, ,...,i iP P P≡S , 1,2,..., 1i n= − , of 

1n −  non-inertial frames iR , with the poles at the mass centres iC  of position 
vectors 

1

1 i

i j j
i j

m
M =

′ ′= ∑ rρ ,   
1

i

i j
j

M m
=

= ∑ ,   1,2,..., 1i n= − , 
 

(11.2.46) 

with respect to the inertial frame ′R , and which do not rotate about the latter frame; 
the motion of the particle 1P  is thus considered with respect to the inertial frame ′R , 
while the motion of the particle 1iP +  is considered with respect to the non-inertial 
frame  iR , having the position vector 1i +r  with respect to that frame. Observing that 

1 1 ii i+ +′ ′= −r r ρ , it results 
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1 1
1

i

i i j ji i
j

M M M+ +
=

′ ′= − ∑r r r ; 
 

(11.2.46') 

taking into account (11.1.48'), we can write the equation of motion with respect to the 
frame  iR  in the form 

1 1
1 1

i

i ji i
i j

MM U U
m+ +

+ =
′ ′= − ∑r ∇ ∇ ,   1,2,..., 1i n= − , 

 
(11.2.47) 

the operator ( )/ i
i k kx′ ′ ′= ∂ ∂i∇  being taken with respect to the inertial frame ′R . By 

means of the relation (11.2.46') and using the notation (11.2.46), we can express the 
operators i′∇ , taken with respect to the frame ′R , by the operators 1i +∇ , taken with 
respect to the frames  iR ; we obtain thus 

1

1 1 1
1

1n

k
kk

m
M

−

+
=

′ = − ∑∇ ∇ ,   
1

1 1 1 1
1

1n

i i i k
kk i

m
M

−

+ + + +
= +

′ = − ∑∇ ∇ ∇ ,   

1,2,..., 2i n= − ,   n n′ =∇ ∇ . 

 
 

(11.2.46'') 

Replacing in (11.2.47) and observing that 

1 1

1 1
1 2 1

1i i i n nj
j j ik k

k kj j j k j k i

m
M

M M

− −

+ +
= = = = =

′ = − = −∑ ∑ ∑∑ ∑∇ ∇ ∇ ∇ , 
 

(11.2.46''') 

we can write the equation of motion (11.2.47) of the particle 1iP +  with respect to the 
frame  iR  in the form 

1 1 1i i im U+ + +=r ∇ ,   1,2,..., 1i n= − , 
 

(11.2.47') 

where we have introduced the notation 1 1 1( / )ii i im M M m+ + +=  and where 
( ) ( )i ik kU U′ ′− = −r r r r . To can calculate the last form U  of the potential, we start 

from the relation (11.2.46), which leads to 

1 1 2 2 1 2 1 1( ) ( )i ii i i i i i i iM M M M− − − − − − − −′ ′− = − − −r r r rρ ρ  
1 1 1 2 1( )i i i i im M M− − − − −′ ′= = −r r , 

 

wherefrom 

2
1 1

1

i
i ii i

i

M
M

−
− −

−
′ ′− = −r r r r ; 

 
(11.2.48) 

writing these relations for successive values of the index i and summing for all the 
indices, we obtain the relation 
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1i
k

i j i j k
kk j

m
M

−

=
′ ′− = − + ∑r r r r r , 

 
(11.2.48') 

useful for the goal had in view. 
Introducing the canonical co-ordinates (the generalized co-ordinates ( )i

k jq x=  and 

the generalized momenta ( )i
ik k kjp m x m q= = , 3( 1)k i j= − + , 1,2,..., 1i n= − , 

1,2, 3j = ), we can write the equations of motion (11.2.47') in the canonical form 

k
k

Hq
p

∂=
∂

,   k
k

Hp
q

∂= −
∂

,   1,2,..., 3( 1)k n= − , 
 

(11.2.49) 

where we have introduced Hamilton’s function 

3( 1) 3( 1)
2

1 1

1 1 1
2 2

n n

k k k
kk k

H p U p q U
m

− −

= =
= − = −∑ ∑ . 

 
(11.2.49') 

These equations are particularly useful for the study of the motion of satellites if 
these ones are influenced by only one celestial body, excepting that one with respect to 
which one considers the motion (e.g., the study of the motion of the Moon, taking into 
account the influence of the Sun and of the Earth). 
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Chapter 12 

Dynamics of Continuous Mechanical Systems 

The motion of a continuous mechanical system with respect to an inertial (Galilean) 
frame of reference is studied in this chapter, considering free and constraint systems; 
one passes then to the case of a non-inertial (non-Galilean) frame of reference. In 
particular, some one-dimensional mechanical systems are dealt with. 

12.1 General Considerations 
A continuous mechanical system (continuous medium, continuous body, continuous 
material) S  represents the mathematical model of a body which is entirely immersed in 
a domain D of the space 3E ; this domain is the geometric support Ω of the considered 
system. After some notions with introductory character and after presenting the general 
principles which allow to set up the mathematical model of such a mechanical system, 
one passes to the corresponding general theorems and to the conservation ones. 

12.1.1 Introductory Notions. General Principles 
To pass from a discrete mechanical system to a continuous one represents – in fact – to 
pass from a mechanical system with a finite number of degrees of freedom to a 
mechanical system with an infinite number of degrees of freedom. The mathematical 
model used in the first case must be completed and Newton’s principles must be 
consequently adapted. 

12.1.1.1 Introductory Notions 
As it was shown in Chap. 1, Sect. 1.1.8, a continuous mechanical system constitutes a 
mathematical model formed by a domain D  to which is associated a mass; the 
quantities in connection with such a system are, in general, represented by continuous 
functions. In computations, we will consider a point P  of a continuous mechanical 
system S ; but that one is not a particle in the sense considered till now, having not a 
finite mass (however, we will use also the denomination of particle of the continuous 
mechanical system). The topology of the Euclidean domain D is the topology of the 
mechanical system S  too, while the distance between two points of that system is the 
Euclidean distance between their positions at the same moment t; these positions will be 
considered, in general, with respect to an inertial frame of reference. If the distances 
between all pairs of points of the continuous mechanical system S  remain invariable in 
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time, then we have to do with a rigid solid; otherwise, this mechanical system is 
deformable (deformable continuous medium). In Chap. 1, Sect. 1.1.10 has been made a 
classification of such media, i.e.: deformable solids and fluids (liquids, gases, plasma); 
as well, the properties of elasticity, plasticity and viscosity of those mechanical systems 
have been put in evidence. 

Under the action of external charges (which can be: concentrated or distributed 
forces, other concentrated charges (applied on the external surface of the body, hence 
on the frontier of the domain in which is immersed the body or on its interior), volumic 
(or massic) forces or moments, forces of inertia, charges produced by a thermic or by an 
electromagnetic field, charges produced by radioactive radiations, deformations 
provoked by various causes, imposed displacements etc.), the particles (infinitesimal 
elements) which form a solid body change (eventually, in time) the position (with 
respect to an inertial frame of reference, considered fixed) which they had before the 
action of those charges. If, after a translation and a rotation, all the particles of the body, 
subjected to the action of charges, have the same mutual positions as before the 
application of those charges, then we say that we have to do with a rigid solid motion; 
otherwise, the body is subjected to a deformation. The totality of the deformations of a 
particle of the body forms the state of deformation at a point (the point is the geometric 
support of the considered particle). The totality of the states of deformation 
corresponding to all points (particles) of the solid body constitutes the state of 
deformation of the body. Together with the notion of deformation, the notion of 
displacement is put in evidence too. The totality of the displacements corresponding to 
all the points of the solid body constitutes the state of displacement of the body. 
Corresponding to what was specified before, the bodies which allow only 
displacements of rigid body are called rigid solids; the other solid bodies are 
deformable solids. Due to deformations, the (static or dynamic) equilibrium of the 
constraint forces which act between the particles of the body does no more hold, so that 
supplementary internal forces arise; the totality of those internal forces (called efforts, if 
they act upon an arbitrary section of the body, or stresses, if they correspond to the 
efforts acting on a unit area), which correspond to a particle, form the state of stress at a 
point (geometric support of the considered particle). The totality of the states of stress 
corresponding to all the points (particles) of the solid body forms the state of stress of 
the body. 

In case of a fluid (which changes much its form under the action of the external 
causes), the deformation at a point is replaced by the velocity of deformation at that 
point, while the displacement of a point of the mechanical system is replaced by its 
velocity; thus, we have to do with a state of velocity of deformation and with a state of 
velocity, respectively. 

The mathematical model of continuous deformable media (solids or fluids) must be 
completed by a constitutive law (of theoretical and experimental nature), which 
represents a relation between the state of deformation (of velocity of deformation) and 
the state of stress of the respective continuous medium. The results of theoretical nature 
(the geometrical-kinematical and mechanical aspects) mentioned above, valid for an 
arbitrary continuous deformable mechanical system, are thus specified for a certain 
continuous deformable medium. 
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In general, the motion of a particle P  of the continuous mechanical system S  is 
given by an equation of the form 

( );t=r r P , (12.1.1) 

which specifies thus the position of that particle at any moment [ ]0 1,t t t∈ =T , with 
respect to an inertial frame of reference, considered fixed. The velocity and the 
acceleration of the particle are thus defined by the relations 

( )d ;
d

t
t

= =v r r P ,   ( )
2

2
d ;
d

t
t

= = =a v r r P . 
 

(12.1.1') 

The totality of motions of each particle defines the motion of the continuous mechanical 
system S. In this case, to the continuous deformable medium corresponds a domain 

( )t=D D , by the mapping ( );tr S , that is the geometric support Ω of the medium at 

a moment t. This domain represents the configuration of the continuous mechanical 
system S at the respective moment; hence, the motion of the mechanical system S  is a 
succession of configurations. The configuration in which the particles P  of the 
continuous mechanical system S  are identified with their positions (the locations 0P  
occupied by them, specified by the position vectors 0r ) is called reference 
configuration. In case of a deformable solid, this configuration is called the non-
deformed configuration (state), while in case of a fluid it will be the initial 
configuration (state)  0D , corresponding to a moment 0t t= ; the configuration at an 

arbitrary moment t, specified by the point P of position vector r, is called actual 
configuration (state). Corresponding to Chap. 1, Sect. 1.1.9, the motion of the particle 
P  is described by the equation 

( )0 ;t=r r r ,   ( )0 0 0
1 2 3, , ;i ix x x x x t= ,   1,2,3i = , 

 

(12.1.2) 

defined on  0 ×D T . The vector r travels through the configuration D  if the vector 0r  
travels through the configuration  0D ; we may write 

( ) 0 ;t=D D D , (12.1.2') 

defining thus a mapping of the space 3E  in itself. The velocity and the acceleration at a 

certain moment t are given by (the position vector 0r  is considered to be constant) 

( )0
d ;
d

t
t

= =v r r r ,   ( )
2

02
d ;
d

t
t

= = =a v r r r . 
 

(12.1.2'') 

The co-ordinates 0
ix , 1,2,3i = , are called material co-ordinates (identifying the 

particle P  by the point 0P  of position vector 0r , one follows the motion of that one in 
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time), corresponding to a material (Lagrangian) description of the motion; they are 
called Lagrangian co-ordinates too (although they have been introduced by Euler) or 
reference co-ordinates (corresponding to a reference configuration). In this case, ix , 

1,2,3i = , are the unknown functions of the problem. If the displacements are great 
(e.g., in case of a fluid), it is convenient to choose as independent variables the co-
ordinates ix , 1,2,3i = , which will be called spatial co-ordinates (of the place P in 

space, through which passes a particle P  at the moment t), corresponding to a spatial 
(Eulerian) description of the motion; they are called Eulerian co-ordinates too (in fact, 
they have been introduced by d’Alembert). In this case, 1 2 3( , , ; )iv x x x t , 1,2,3i = , 

are the unknown functions of the problem. We assume that the Jacobian J, defined by 
the relation (1.1.75'), is non-zero in  0D  (eventually, excepting some singular points, 
lines or surfaces), so that – from the relation between the elements of volume 
( 0d dV J V= ) – we deduce that the geometric support Ω cannot vanish or become 
infinite; to the axiom of continuity (the particles preserve their individuality) correspond 
thus the indestructibility and the impenetrability of the matter, respectively. From a 
mathematical point of view, the mapping (12.1.2) is a bijection between  0D  and D. 
The theorem of implicit functions allows to write 

( )0 0 ;t=r r r ,   ( )0 0
1 2 3, , ;i ix x x x x t= ,   1,2,3i = , (12.1.2''') 

on ×D T ; these functions are univocally determinate (in particular, 
( )0 0 0 0

1 2 3, , ;i ix x x x x t= , 1,2,3i = ) if (necessary and sufficient condition), at least in a 

neighbourhood of the considered point 0P , the functions (12.1.2) are of class ( ) 
1

0C D  
(as a matter of fact, in this case also the functions (12.1.2''') are of class 1 ( )C D ). If the 
functions (12.1.2) are of class ( ) 

2
0C D , then the points which are initially 

neighbouring remain neighbouring also at the moment t; in this case, the functions 
(12.1.2''') are of a class 2 ( )C D  too. 

In a material description (convenient in case of deformable solids) we can express 
the equation (12.1.2) in the form 

0 0( ; )t= +r r u r  (12.1.3) 

on  0 ×D T , where u is the displacement vector of the particle P  from the non-
deformed configuration  0D  to the deformed configuration D (Fig. 12.1); the velocity 
and the acceleration of that particle will be expressed in the form 

t
∂= = =
∂
uv r u ,   

2

2t
∂= = =
∂

ua r u , 
 

(12.1.3') 

the vector 0r  being constant with respect to time. In general, in case of a (scalar or 
vector) field 0( ; )tΦ r or 0( ; )trΨ , respectively, defined on S, the derivative with 
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respect to the time t is reduced to the corresponding partial derivative ( / tΦ Φ= ∂ ∂  or 
/ t= ∂ ∂Ψ Ψ , respectively); this derivative is called material derivative. We notice that 

one can use the relation (12.1.3) also in the form 

0 ( ; )t= −r r u r  (12.1.3'') 

on ×D T . 

 
Fig. 12.1  Material and spatial co-ordinates 

In a spatial description (convenient in case of fluids) we define the characteristic 
quantities (velocity, density, pressure etc.) as functions of r and t; e.g., to have ( ; )tv r  
means to know the velocities of all particles (at any moment) which pass through all the 
points P (of the domain D ). From the equations 

d ( ; )
d

i
i

x v t
t

= r ,   1,2,3i = , 
 

(12.1.4) 

we obtain the trajectories of motion; indeed, if the solution exists and is unique, then we 
can write the independent first integrals 1 2 3( , , ; )i if x x x t C= , constiC = , 1,2,3i = , 
which, on the basis of the theorem of implicit functions, lead to the relations (12.1.2) 
(we assume that for 0t t=  we have 0

i ix x= , hence ( )0 0 0
1 2 3 0, , ;i iC f x x x t= ). But, in 

general, it is sufficient to determine fields (e.g., scalar fields) of the form ( ; )f f t= r ; 
the derivative of such a quantity with respect to time (the material derivative) is given 
by the formula 

,
dd

d d
i

i i
i

xf f f
f v f f f

t t x t
∂ ∂= + = + = + ⋅
∂ ∂

v ∇ , 
 

(12.1.5) 

on ×D T . Analogously, one obtains the material derivative of a vector field too; the 
acceleration is given by 

d ( )
dt

= = + ⋅va v v v∇  
 

(12.1.6) 

on ×D T . If we take into account the relation (12.1.2), then we notice that a quantity 
( ; )f tr , defined in spatial co-ordinates, may be studied in a material description in the 

form 0( ; ) ( ( ; ); )f t f t t=r r r . 
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We call material variety (point, curve, surface, three-dimensional domain) a variety 
formed of particles; often, the use of such a variety can very much simplify the study of 
the motion of the considered mechanical system S. In conformity to the conservation 
theorem of material varieties, their images are varieties of the same order. Taking into 
account the conditions (3.2.18) imposed to a particle subjected to finite constraints, one 
can show that (Euler-Lagrange criterion) a surface of equation ( ; ) 0tΦ =r  is material 
(is the image of a material surface) if (necessary and sufficient condition) 

d grad 0
dt
Φ

Φ Φ= + ⋅ =v . 
 

(12.1.7) 

In case of a vector field ( ; )trΨ , its lines are material curves if and only if the formula 
(Helmholtz-Zorawski criterion) 

[ ]curl( ) div× + × + =v v 0Ψ Ψ Ψ Ψ , (12.1.8) 

which can be put in connection with the formula (A.2.81'), holds. In particular, for 
= vΨ  it results 

× =v v 0 , (12.1.8') 

that is the necessary and sufficient condition for the field lines (current lines) of the 
velocity to be trajectories. 

The mass ( )m S  of the mechanical system S  (including a continuous mechanical 
system) has been introduced in Chap. 1, Sect. 1.1.6, its mathematical model having 
certain properties: i) ( ) 0m >S ; ii) the property of additivity; iii) . 0m = . 
Differentiating in the sense of the theory of distributions, we find the density 

( ; )tμ μ= r , which is given by the relation (1.1.71). 
Besides the formulae given in Chap. 1, Sect. 1.1.9 and in Ann., Sect. 2.3.5, it is 

useful to establish other two formulae of differentiation for the integrals which depend 
on a parameter. Let be such an integral of the form 

1 2 3 1 2 3( ) ( )
( , , ; ) ( , , ; )dD t D t

I F x x x t x x x tμ τ≡ ∫∫∫ , 
 

(12.1.9) 

where dτ is the element of volume. Observing that div( ) div( )F Fμ μ=v v  
gradFμ+ ⋅v , we may write  

( )( )

( ) ( )

d
div( ) d grad d

d
D t

D t D t

I FF F
t t t

μ
μ τ μ τ

∂ ∂⎡ ⎤= + + + ⋅⎢ ⎥∂ ∂⎣ ⎦∫∫∫ ∫∫∫v v ; 
 

according to the relation (1.1.79'), the first integral vanishes, while the relation (12.1.5) 
allows to write 

( )

( )

d d d
d d
D t

D t

I F
t t

μ τ= ∫∫∫ . 
 

(12.1.9') 
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Analogously, for the vector integral 

( ) ( )
( ; ) ( ; )dD t D t

t tμ τ≡ ∫∫∫I V r r , 
 

(12.1.10) 

we obtain 

( )

( )

d d d
d d
D t

D tt t
μ τ= ∫∫∫

I V . 
 

(12.1.10') 

We notice that the physical properties of material bodies, which are modelled as 
mechanical systems, do not depend neither on the frame of reference, nor if that one is 
at rest or in motion; hence, these properties are characterized by objective quantities 
(independent on the frame), which satisfy the principle of objectivity (the principle of 
material indifference, the principle of frame independence). The most general relation 
between co-ordinates and time with respect to a frame R  and a chronology C or a 
frame ′R  and a chronology ′C , respectively, is of the form 

( )0( ) ( ) ( )i ij j j ix t Q t x x c t′ ′ = − + ,   1,2,3i = ,    

0t t t′ = + ,   0
0, constjx t = , 

 
(12.1.11) 

where Q is a proper orthogonal matrix ( T T= =QQ Q Q I , det 1=Q ), the frames 
being right-handed orthonormed, while ( )tc  is a vector. A scalar quantity s is objective 
if 

( ; ) ( ; )s t s t′ ′ =r r , (12.1.12) 

a vector quantity V is objective if 

( ; ) ( ) ( ; )t t t′ ′ ′ =V r Q V r ,   i ij jV Q V′ = ,   1,2,3i = , (12.1.12') 

while a tensor quantity T of second order is objective if 

T( ; ) ( ) ( ; ) ( )t t t t′ ′ ′ =T r Q T r Q ,   ij ik jl klT Q Q T′ = ,   , 1,2,3i j = . (12.1.12'') 

Because the considered frames are movable ( ( )t=Q Q  and ( )t=c c ), these relations 
are different from those which define a scalar, a vector or a tensor of second order. One 
can easily see that the position vector, the velocity and the acceleration are not objective 
vectors. The unit mass is an objective scalar. 

12.1.1.2 General Principles 

The principles of mechanics, so as they have been enounced in Chap. 1, Sect. 1.2.1 for 
a particle and as they have been used in Chap. 11 for a discrete mechanical system (a 
finite number of particles), cannot satisfactorily describe the evolution of a continuous 
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mechanical system S. To pass from discrete to continuum, from a finite to an infinite 
number of particles, it is necessary much rigour; as a matter of fact, this represents the 
passing from a finite number to an infinite number of degrees of freedom (excepting the 
case of the rigid solid). Indeed, the notion of particle (of finite positive mass) loses its 
sense, because it would lead to an infinite mass for the mechanical system S. The 
notions of velocity and acceleration are linked to a point (hence to a particle), so that 
Newton’s law (1.1.89) can no more be applied in this form; as  a matter of fact, all 
principles of mechanics must be formulated of new and consequently adapted. The 
principles which allow the mathematical modelling of a continuous mechanical system 
must be formulated so as to can reduce them to Galileo-Newton principles in case of a 
discrete mechanical system. 

To express these principles, we denote by S a subsystem of the system S, D ⊂ D  
being the domain occupied by that one, while ω Ω⊂  is its geometric support. The 
principles of motion of the continuous deformable media are expressed by balance 
relations of the form 

d dd d d d
d d D D D

m V S V
t tω

μ μ
∂

= = +∫∫∫ ∫∫∫ ∫∫ ∫∫∫Q Q Rn S ,  D∀ ⊂ D , 
 

(12.1.13) 

where Q and S are tensors of the same order defined on D × T , while R is a tensor of 
an order greater with a unity, defined on D × T , D D D= ∪ ∂ ; hence, at any 
moment t, the increasing (or decreasing) of a quantity of density μ for any subsystem S 
is due to a flux of entering (or exit) through D∂  and of positive (or negative) internal 
sources, μS being their intensity on the unit volume. Applying the formula (12.1.10') to 
the integral at the left, as well as a formula of flux-divergence type (of the type of the 
formula (A.2.67)), we get 

( )d div d
D D

V Vμ μ= +∫∫∫ ∫∫∫Q R S ,   D∀ ⊂ D ;  

assuming that R are fields of class 1 ( )C D  and μQ  and μS are fields of class 0 ( )C D  

and observing that D is an arbitrary subdomain, we obtain the local form of the balance 
equations (for continuous motions) 

div μ μ+ =R S Q . (12.1.13') 

We can enounce thus four important principles, i.e.: 
i) Conservation principle of mass. The mass ( )m S  of any subsystem S ⊂ S  is 

conserved during the motion. 
This principle, which synthesizes all the three axioms at the basis of the definition of 

mass, may be expressed in the form 

( ) 0m S = ,   S∀ ⊂ S , (12.1.14) 
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and may be obtained from (12.1.13) if one makes = =R S 0  and =Q I . In a material 
description, one gets d’Alembert’s condition of mass continuity (1.1.76), while, in a 
spatial description, it results Euler’s condition of mass continuity in the form (1.1.79) or 
in the form (1.1.79'). The latter relation is equivalent to 

div( ) d 0
D

V
t
μ

μ
∂⎡ ⎤+ =⎢ ⎥∂⎣ ⎦∫∫∫ v . 

 

Applying the Gauss-Ostrogradskiĭ formula (A.2.67), we obtain 

d d
D D

V S
t
μ

μ
∂

∂ = − ⋅
∂∫∫∫ ∫ v n ,   D∀ ⊂ D ; 

 

(12.1.15) 

this equation (called transportation equation of mass) shows that the mass variation of 
D in a unity of time (the left member) is due to the flux of matter through the frontier 

∂D (we are led to a decrease of mass if 0⋅ >v n  or to an increase of mass if 
0⋅ <v n ). 

ii) Principle of internal forces (Cauchy). For any subsystem S ⊂ S  which 
occupies the domain D ⊂ D  there exists a distribution of internal forces p on the 
frontier ∂D, the action of which upon the subsystem S is equivalent to the action of the 
subsystem SS  upon the same subsystem. 

 
Fig. 12.2  Continuous mechanical system. Internal forces (a);  

stress vector (b); body force (c) 

This principle is, in fact, a postulate of existence. It corresponds to the Theorem 
11.1.27 of dynamic equilibrium of parts for discrete mechanical systems, being an 
extension of it for a continuous case (Fig. 12.2a). In case of a discrete mechanical 
system, upon a subsystem of it may act external forces on a part of the frontier (which 
can be also zero) and internal forces on the rest of it (which can be the whole frontier 
too); analogously, a particle subjected to constraints may be considered as being a 
subsystem of the system formed by that particle and the subsystem which generates the 
constraints. In case of a continuous mechanical system arises just such a situation, 
where the internal forces p are not known a priori; they must be determined using the 
equations of motion (equilibrium). The superficial forces p represent a density and 
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form – obviously – an absolutely continuous surface field. Corresponding to Cauchy’s 
mathematical modelling, the internal force p at a point P of position vector r on ∂D  is 

the same for all surfaces of same external normal n and of same tangent plane at P; this 
dependence is expressed in the form (Fig. 12.2b) 

( , ; )t=p p n r , (12.1.16) 

the vector p (denoted sometimes by ( ; )n n t=p p r ) being called stress vector. In case of a 
fluid, the internal normal (of unit vector −n) is used, because the stress vector 
corresponds to a predominant phenomenon of compression (in case of a deformable 
solid, both compression and stretching appear). 

Besides the stress vectors p, which represent contact actions, we will consider 
actions at distance too, expressed by a field of body (mass) forces F, referred to a unit 
mass, which we assume to be absolutely continuous functions of volume. Unlike the 
stress vectors, which depend on the configuration of the continuous mechanical system, 
the body forces do not depend on this configuration ( ( ; )t=F F r , Fig. 12.2c). As the 
contact actions, the actions at distance are represented by objective quantities; such 
quantities are the body force F ( ′ =F QF ) and the stress vector p ( ′ =p Qp ). 

We have seen that the principle ii) corresponds to the theorem of dynamic 
equilibrium of parts. In the mathematical modelling of a continuous mechanical system, 
we use – further – the results obtained for discrete mechanical systems, adapting them 
consequently. Thus, the theorem of rigidity, which – applied to all subsystems of a 
discrete mechanical system – gives sufficient equations to describe the motion of that 
system, may be extended to a continuum, enouncing 

iii) Principle of variation of kinetic torsor. The derivative with respect to time of 
the kinetic torsor of any subsystem S ⊂ S , in any of its configurations, with respect to 
a fixed pole, is equal to the torsor of the forces which act upon that subsystem, with 
respect to the same pole. 

Obviously, the forces which act upon the considered subsystem S are body forces F 
(given forces) and internal forces p (forces linking with the subsystem SS ), 
postulated by Cauchy. As well, we assume the existence of an inertial frame of 
reference and of a chronology with respect to which we may enounce this principle. In 
fact, this principle contains two parts: 

iii1) Principle of variation of momentum. The derivative with respect to time of the 
momentum of any subsystem S ⊂ S , in any of its configurations, is equal to the 
resultant of the forces which act upon that subsystem. 

Starting from the relation of definition (11.1.1) of the momentum of an arbitrary 
mechanical system S, we can write 

( ) ( ; ) ( ; )d
D

S t t Vμ= ∫∫∫H r v r  
 

(12.1.17) 

for a subsystem S ⊂ S  of a continuous mechanical system, where D is the domain 

occupied by that subsystem in the actual state, at the moment t. Introducing the actions 
of contact and at distance mentioned above, we may express this principle in the form 
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d d d d
d

n

D D D
V S V

t
μ μ

∂
= +∫∫∫ ∫∫ ∫∫∫v p F ,   D∀ ⊂ D . 

 

(12.1.17') 

iii2) Principle of variation of moment of momentum. The derivative with respect 
to time of the moment of momentum of any subsystem S ⊂ S , in any of its 
configurations, with respect to a fixed pole, is equal to the moment of the forces which 
act upon that subsystem, with respect to the same pole. 

The relation of definition (11.1.2) of the moment of momentum of an arbitrary 
mechanical system S  with respect to a given pole O leads to 

[ ]( ) ( ; ) ( ; ) dO D
S t t Vμ= ×∫∫∫K r r v r  

 

(12.1.18) 

for the subsystem S ⊂ S  of a continuous mechanical system. Putting in evidence the 
moment of the forces of contact or at distance considered above, we have 

d ( )d d ( )d
d

n

D D D
V S V

t
μ μ

∂
× = × + ×∫∫∫ ∫∫ ∫∫∫r v r p r F ,   D∀ ⊂ D . 

 

(12.1.18') 

In the case in which S ≡ S , it results D ≡ D , while the stress vectors np  become 
given external superficial forces. The two equations (12.1.17'), (12.1.18') have, in this 
case, the advantage to contain only given external forces, hence known ones, but 
represent only necessary conditions to describe the motion of the continuous 
mechanical system S. 

The formula (12.1.10') allows to express the equations (12.1.17'), (12.1.18') also in 
the form 

d d dn

D D D
V S Vμ μ

∂
= +∫∫∫ ∫∫ ∫∫∫a p F ,   D∀ ⊂ D , 

 

(12.1.19) 

( )d d ( )dn

D D D
V S Vμ μ

∂
× = × + ×∫∫∫ ∫∫ ∫∫∫r a r p r F ,   D∀ ⊂ D , 

 

(12.1.19') 

being thus led to another principle, equivalent to the principle iii); we may enounce 
iii') Principle of variation of the dynamic torsor. The dynamic torsor of any 

subsystem S ⊂ S , in any of its configurations, with respect to a fixed pole, is equal to 
the torsor of the forces which act upon that subsystem, with respect to the same pole. 

This principle contains the principle of variation of the dynamic resultant (12.1.19) 
and the principle of variation of the dynamic moment (12.1.19'). 

The conditions of static equilibrium are obtained writing that the position vector of 
each particle remains constant in time ( =v 0 ); 0t∀ ≥ , these conditions have the form 

d dn

D D
S Vμ

∂
+ =∫∫ ∫∫∫p F 0 ,   D∀ ⊂ D , 

 

(12.1.20) 

d ( )dn

D D
S Vμ

∂
× + × =∫∫ ∫∫∫r p r F 0 ,   D∀ ⊂ D . 

 

(12.1.20') 

Applying the principle of variation of momentum to a subdomain of the form of a 
cylinder the height of which tends to zero, we may state 
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Theorem 12.1.1 (Cauchy). At the same point of a continuous mechanical system and at 
the same moment, the stress vector verifies the relation 

( , ; ) ( , ; )t t= − −p n r p n r . (12.1.21) 

Considering a domain in the form of a three-orthogonal tetrahedron, for which the 
height relative to the inclined face tends to zero, and applying the principle of variation 
of momentum, we find the relation 

( , ; ) ( , ; )j jt t n=p n r p i r . (12.1.22) 

where jn  are the components of the unit vector n of the external normal to the element 

of surface which passes through the point P of position vector r. Projecting this relation 
on the co-ordinate axis of unit vector ji , we can state 
Theorem 12.1.2 (Cauchy’s basic theorem). The state of stress (the stress vector p) 
around a point of a continuous mechanical system may be linearly expressed by means 
of a tensor of second order (the stress tensor σ) in the form 

T( , ; ) ( ; )t t=p n r r nσ ,   n
ji jip nσ= ,   ( , ; )ij j ip tσ = i r ,   , 1,2,3i j = . 

 

(12.1.22') 

Applying also the principle of variation of moment of momentum to the same domain, 
one can see that the stress tensor is symmetric (the relation T=σ σ , ij jiσ σ= , 

, 1,2,3i j = , takes place). We notice that the tensor σ defined on D is an objective one. 
Taking into account the Theorem 12.1.2, we can write the principles iii1) and iii2) by 

means of the balance equations 

Td d d d
d D D D

V S V
t

μ μ
∂

= +∫∫∫ ∫∫ ∫∫∫v n Fσ ,   D∀ ⊂ D , 
 

(12.1.23) 

Td ( )d ( )d ( )d
d D D D

V S V
t

μ μ
∂

× = × + ×∫∫∫ ∫∫ ∫∫∫r v r n r Fσ ,   D∀ ⊂ D , 

 (12.1.23') 

which are of the form (12.1.13); the local form of those balance equations is 
Tdiv μ μ+ =F aσ ,   ,ji j i iF aσ μ μ+ = ,   1,2,3i = . 

 

(12.1.23'') 

Assuming that ( , ; )tp n r  is the given superficial force which acts upon the 
continuous mechanical system S  (the jump of the stress vector by passing through the 
frontier ∂D is equal to zero), the basic theorem of Cauchy, expressed in the form 
(12.1.22'), allows to put the boundary conditions in stresses at any moment 0t t≥ . For 
a complete formulation of the boundary value problem of a continuous mechanical 
system we enounce also 

iv) Principle of initial conditions. The evolution of a continuous mechanical system 
S  may be determined 0t t∀ >  if the state (positions and velocities) of that system at 
the initial moment 0t  is known. 
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This principle puts in evidence the deterministic aspect of classical models of the 
continuous mechanical systems (in general, of any mechanical system). 

Corresponding to the ideas expressed in Chap. 11, Sect. 1.2.7, we can enounce the 
first principle of thermodynamics (see relation (11.1.47''') in the form 

intd d( ) d d d dE T V E W Q W= + + = + + ,   D∀ ⊂ D , (12.1.24) 

where V is the potential energy, T is the kinetic energy given by (11.1.6) and expressed 
in the form 

21( ) ( ; ) ( ; )d
2 D

T S t v t Vμ= ∫∫∫ r r , 
 

(12.1.25) 

D being the domain occupied by the subsystem S ⊂ S  in the actual state at the 

moment t, intE  is the internal energy (an objective scalar state quantity) of the 

subsystem S, due to the internal non-conservative forces and postulated as an absolutely 

continuous function of mass, having the form (e is the unit internal energy, an objective 
quantity too) 

int ( ) d ( ; ) ( ; )d
D

E S e m t e t V
ω

μ= =∫∫∫ ∫∫∫ r r , 
 

(12.1.26) 

while dW  is an elementary work of non-mechanical and non-calorical nature (e.g., of 
electromagnetic nature); the sum intE T V E= + +  is called total energy. In case of a 
continuous mechanical system S, adiabatically non-isolated, the quantity of energy 
may be increased by a flux of heat dQ, even without the intervention of an external 
mechanical work (if the mechanical system S  is adiabatically isolated, then we have 
d 0Q = ); we can express d /dQ t  as a sum of a function q, absolutely continuous of 

area (an action of contact, due to the phenomenon of conduction), and a function r, 
absolutely continuous of volume (an action at distance, due to the phenomenon of 
radiation or due to thermal sources) 

d ( , ; )d ( ; ) ( ; )d
d D D

Q q t S t r t V
t

μ
∂

= +∫∫ ∫∫∫n r r r , 
 

(12.1.27) 

where r is a unit quantity (with respect to the unit mass), while q is a quantity given by 

( , ; ) ( ; )q t t= − ⋅n r n q r , (12.1.27') 

q being the heat current density vector (the sign − puts in evidence the internal normal, 
corresponding to the heat received). The relation (12.1.27') represents the Fourier-
Stokes principle of heat flux, corresponding to the basic theorem of Cauchy. The 
elementary work of the forces which act upon the subsystem S ⊂ S , in the actual 
configuration at the moment t, is expressed in the form 
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d ( , ; ) d d ( ; ) ( ; ) d d
D D

W t S t t Vμ
∂

= ⋅ + ⋅∫∫ ∫∫∫p n r r r F r r , 
 

(12.1.28) 

the power of those forces being given by 

d ( , ; ) ( ; )d ( ; ) ( ; ) ( ; )d
d D D

WP t t S t t t V
t

μ
∂

= = ⋅ + ⋅∫∫ ∫∫∫p n r v r r F r v r . 
 

(12.1.28') 

Analogously, the power of actions of non-mechanical and non-calorical nature will be 

d
d
WP
t

= . 
 

(12.1.29) 

The principle of energy variation can be written in the form 

intd( ) d d
d d d

T V E QP P
t t t
+

+ = + + ,   D∀ ⊂ D , 
 

(12.1.24') 

corresponding to the first principle of thermodynamics (12.1.24). Taking into account 
(12.1.25) and (12.1.28'), as well as the differentiation formula (12.1.10'), we can write 
this principle in the form 

intddd d
d dD D

EVV S
t t

μ
∂

⋅ + + = ⋅∫∫∫ ∫∫v v p v  

dd
dD

QV P
t

μ+ ⋅ + +∫∫∫ F v ,   D∀ ⊂ D . 

 
 
 

(12.1.24'') 

Putting the condition that the principle of energy variation be invariant to rigid 
displacements, A.E. Green and R.S. Rivlin have shown that, starting from this principle, 
one can obtain the principle of torsor variation. For instance, if the relation (12.1.24'') 
takes place for any field of velocities, hence for the field of velocities +v c , 

const=c , too, then we may write 

intdd( ) d ( )d
d dD D

EVV S
t t

μ
∂

+ ⋅ + + = ⋅ +∫∫∫ ∫∫v c v p v c  

d( )d
dD

QV P
t

μ+ ⋅ + + +∫∫∫ F v c ,   D∀ ⊂ D ; 

 

taking into account (12.1.24''), there results 

( )d d d 0
D D D

V S Vμ μ
∂

⋅ − − =∫∫∫ ∫∫ ∫∫∫c v p F ,   D∀ ⊂ D .  

But the velocity c is arbitrary, hence the parenthesis vanishes; thus, we find again the 
principle of variation of the dynamic resultant, equivalent to the principle of variation 
of momentum. 

Assuming that the mechanical system S  is adiabatically isolated ( d /d 0Q t = ) and 

that the power P  vanishes ( 0P = ), we write the power P in the form (we take into 
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account the basic theorem of Cauchy and use the Gauss-Ostrogradskiĭ formula 
(A.2.67), observing that T( ) ( ) ( ) ( )ji j i ji i jn v v nσ σ⋅ = = = ⋅n v v nσ σ , 

( ) [ ]T d d div( ) d
D D D

P S V Vμ μ
∂

= ⋅ + ⋅ = + ⋅∫∫ ∫∫∫ ∫∫∫n v F v v F vσ σ  

[ ] ( )[ ], , ,( ) d dji i j i i ji j i i ji i jD D
v F v V F v v Vσ μ σ μ σ= + = + +∫∫∫ ∫∫∫  

( )di i ij ijD
v a a Vμ σ= +∫∫∫ , 

 

where we have used the decomposition [ ], ,( , )i j i ji jv v v= + , we have noticed that 

[ ], 0ij i jvσ =  and we have introduced the deformation velocity tensor 

( ), ,( , )
1
2ij i j j ii ja v v v= = + ; 

 

(12.1.30) 

finally, we can write (a generalization of Clapeyron’s principle, corresponding to the 
static case) 

d
d
TP P
t

′= + ,   D∀ ⊂ D , 
 

(12.1.31) 

where 

dij ijD
P a Vσ′ = ∫∫∫  

 

(12.1.32) 

represents the variation of deformation energy. 
We mention that, in the static case, ija  is replaced by the strain tensor 

( ), ,( , )
1
2ij i j j ii ju u uε = = + , 

 

(12.1.30') 

the velocity v being replaced by the displacement u. 
In case of conservative internal forces, we have d /dP V t′ = , the contribution of 

eventual non-conservative internal forces (or of a non-conservative part of them) being 
contained in intd /dE t . 

Obviously, the first principle of thermodynamics (12.1.24), as well as the principle 
of variation of energy (12.1.24') (or (12.1.24'')) or the generalization (12.1.31) of 
Clapeyron’s principle may be written for a continuous mechanical system S  
(corresponding to the domain D) too; but these relations represent only necessary 
conditions to describe the motion. 
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12.1.2 General Theorems. Conservation Theorems 
In what follows, we present the universal theorems for a continuous mechanical system, 
both for an inertial and a non-inertial frame of reference; starting from these theorems, 
we put in evidence some conservation theorems. 

12.1.2.1 General and Conservation Theorems with Respect to an Inertial Frame 
of Reference 

Starting from the principle of variation of the torsor, enounced in the preceding 
subsection, we can write (corresponding to the relations (11.1.53) and (11.1.53'') too) 

d
dt

= +H R R ,   ( ; ) ( ; )dt t Vμ= ∫∫∫D
H r v r , 

1

n

i
i =

= ∑R F ,   
1

n

i
i =

= ∑R R , 

 
 
 

(12.1.33) 

d
d

O
OOt

= +
K

M M ,   [ ]( ; ) ( ; ) dO t t Vμ= ×∫∫∫D
K r r v r , 

1

n

i iO
i =

= ×∑M r F ,   
1

n
O i i

i =
= ×∑M r R , 

 
 
 

(12.1.33') 

for the continuous mechanical system S, where iF  and iR , 1,2,...,i n= , are given 
and constraint external forces which act upon this system; we can add to these forces 
also absolute continuous body forces, as in the formulae (12.1.17') and (12.1.18'). We 
thus state: 
Theorem 12.1.3 (theorem of momentum). The derivative with respect to time of the 
momentum of a continuous mechanical system subjected to constraints is equal to the 
resultant of the given and constraint external forces which act upon that system. 
Theorem 12.1.4 (theorem of moment of momentum). The derivative with respect to time 
of the moment of momentum of a continuous mechanical system subjected to 
constraints, with respect to a fixed pole, is equal to the resultant moment of the given 
and constraint external forces which act upon that system, with respect to the same 
pole. 

These theorems take place for both holonomic and non-holonomic constraints; as 
well, we can assume the existence of unilateral constraints. The above mentioned 
theorems can be included in 
Theorem 12.1.5 (theorem of kinetic torsor). The derivative with respect to time of the 
kinetic torsor of a continuous mechanical system subjected to constraints, with respect 
to a fixed pole, is equal to the torsor of the given and constraint external forces which 
act upon that system, with respect to the same pole. 

Introducing the impulse of the resultant of the given and constraint external forces, 
as well as the impulse of the resultant moment of the same forces in a given interval of 
time, one can write relations of the form (11.1.54 to 11.1.54'') concerning the finite 
variation of the quantities considered above. Analogously, we can state 
Theorem 12.1.6 (theorem of dynamic torsor; Newton-Euler). The dynamic torsor of a 
continuous mechanical system subjected to constraints, with respect to a fixed pole, is 
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equal to the torsor of the given and constraint external forces which act upon that 
system, with respect to the same pole. 

This theorem includes the theorems of dynamic resultant and of dynamic moment. 
Let be a continuous mechanical system S, the support of which is the domain D, 

separated into two subsystems 
 1S  and 

 2S   (
  1 2∪ =S S S , 

  1 2∩ = ∅S S ), of 
supports 1D  and  2D , and let be { }1 1,R M  and { }2 2,R M  the torsors of the external 
forces acting upon the subsystems 

 1S  and 
 2S , respectively, with respect to the same 

pole O; corresponding to the principle ii), we denote by { }12 12,R M  and { }21 21,R M  
the torsors of the internal forces with which the subsystem 

 2S  acts upon the subsystem 

 1S  and with which the subsystem 
 1S  acts upon the subsystem 

 2S , respectively, with 

respect to the mentioned pole O. The theorem of torsor (in one of the two forms) allows 
to write 

 1
1 12

d d
d

V
t

μ = +∫∫∫D
v R R ,   

 2
2 21

d d
d

V
t

μ = +∫∫∫D
v R R , 

1 2
d d
d

V
t

μ = +∫∫∫D
v R R , 

 1
1 12

d ( )d
d

V
t

μ× = +∫∫∫D
r v M M ,   

 2
2 21

d ( )d
d

V
t

μ× = +∫∫∫D
r v M M , 

1 2
d ( )d
d

V
t

μ× = +∫∫∫D
r v M M ; 

 

taking into account the property of additivity of the integral, we get 

12 21+ =R R 0 ,   12 21+ =M M 0 , (12.1.34) 

so that we can state 
Theorem 12.1.7 (theorem of action and reaction). Be given a mechanical system S, the 
torsor of the actions exerted by a subsystem 

 1 ⊂S S  upon another subsystem 

 2 ⊂S S  (
  1 2∪ =S S S , 

  1 2∩ = ∅S S ) equilibrates the torsor of the actions 
(reactions) exerted by the subsystem 

 2S  upon the subsystem 
 1S . 

If, in particular, both subsystems are reduced to two particles 1P  and 2P , then the 
relations (12.1.34) become 

12 21+ =R R 0 ,   12 1 2P Pλ=R ,   λ scalar, 
 

(12.1.34') 

finding again the principle of action and reaction in Newton’s formulation. 
Starting from the relation (3.1.3), we can write the position vector of the centre of 

mass of the subsystem S ⊂ S  in the form 

1( ) ( ; ) d
( ) D

S t V
m S

μ= ∫∫∫ r rρ ,   D∀ ⊂ D ; 
 

(12.1.35) 
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taking into account the differentiation formula (12.1.10') and the formula (12.1.17), we 
get 

( ) ( ) ( )CS m S S=H v ,   S∀ ⊂ S . (12.1.35') 

Differentiating once more with respect to time and taking into account the principle iii1) 
of variation of the impulse, expressed in the form (12.1.17'), we can write 

( ) ( ) d dn
C D D

m S S S Vμ
∂

= +∫∫ ∫∫∫a p F ,   D∀ ⊂ D ; 
 

(12.1.36) 

we enounce thus (a principle equivalent to the principle iii1) or a theorem, considered as 
a consequence of the latter principle) 

iii'1) Principle of motion of the centre of mass. The centre of mass of any 
subsystem S ⊂ S , in any configuration of it, is moving as a free particle, where it is 
supposed to be concentrated the whole mass of that subsystem and which is acted upon 
by the resultant of the forces which act upon it. 

For the continuous mechanical system S  of mass M it results 

CM = +a R R , (12.1.36') 

so that we can state 
Theorem 12.1.8 (theorem of motion of the centre of mass). The centre of mass of a 
continuous mechanical system subjected to constraints is moving as a free particle at 
which would be concentrated the whole mass of that system, being acted upon by the 
resultant of the given and constraint external forces. 

If the moment of momentum is calculated with respect to a pole Q rigidly linked to 
the inertial frame R, then both the principle of moment of momentum and the theorem 
of moment of momentum remain, further, valid. If the pole Q is movable, but the 
computation is effected with respect to the same inertial frame R, then 

( )O Q OQ= + × +K K R R  and 

d
d

Q
QQ Qt

= + − ×
K

M M v H . 
 

(12.1.37) 

In the case in which d d 0Q W= = , we can state (we use the same formula 
(11.1.55)) 
Theorem 12.1.9 (theorem of kinetic energy). The differential of the kinetic energy of a 
continuous mechanical system subjected to constraints is equal to the elementary work 
of the given and constraint external and internal forces which act upon that system. 

In case of scleronomic constraints we have intd d 0R RW W= = ; the theorem of 
kinetic energy takes a simpler form ( intd d dT W W= + ), eventually the form 
(12.1.31), written for the whole domain D. 

As in the case of a discrete mechanical system (see Sect. 11.1.2.9), we can obtain, in 
certain conditions, conservation theorems also for the continuous mechanical system S. 
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Thus, if + =R R 0  (necessary condition for statical equilibrium), then we can state a 
conservation theorem of momentum, the mass centre having a rectilinear and uniform 
motion, while if OO + =M M 0  (necessary condition for statical equilibrium), then we 
can state a conservation theorem of moment of momentum. 

In case of scleronomic constraints and of internal conservative forces (the stress 
tensor derives from a potential) we obtain a relation of the form (corresponding to the 
relation (12.1.31)) 

intd d dW T W= + , (12.1.38) 

where the external work (given by loading of the mechanical system S  by external 
loads), the internal work (corresponding to the unloading of the system S ) and the 
kinetic energy are given by 

d ( ; ) ( ; )d ( ; ) ( ; ) ( ; )d
d

nW t t S t t t V
t

μ
∂

= ⋅ + ⋅∫∫ ∫∫∫D D
p r v r r F r v r , 

intd
d

d ij ij
W

a V
t

σ= ∫∫∫D
,   21 ( ; ) ( ; )d

2
T t v t Vμ= ∫∫∫D

r r , 

 
 

(12.1.39) 

respectively. 
Assuming, in case of a deformable solid, that the natural state of stress (the state of 

stress – the existence of which is supposed – for which all the stresses vanish) and the 
initial state of deformation (for which all the quantities which characterize the 
deformation are – by definition – equal to zero) correspond to the initial moment 0t = , 
then one obtains a generalization of Clapeyron’s theorem of the statical case 

intW T W= + ; (12.1.38') 

in fact, that is a conservation theorem of energy. In  the statical case ( 0T = ), it results 
Clapeyron’s theorem in the form 

intW W= , (12.1.38'') 

with 

1 1( ) ( )d ( ) ( ) ( )d
2 2

nW S Vμ
∂

= ⋅ + ⋅∫∫ ∫∫∫D D
p r u r r F r u r , 

 

(12.1.39') 

where ( )u r  is the displacement vector. 

12.1.2.2 General and Conservation Theorems with Respect to a Non-inertial 
Frame of Reference 

We refer the continuous mechanical system S  to an inertial (fixed) frame of reference 
′R  and to a non-inertial (movable) frame R  (Fig. 12.3), using the notations in Sect. 

11.2.2. We can write 
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O′ ′= +r r r ,   O′ ′= + + ×v v v rω  (12.1.40) 

for a particle P. Defining the momentum of this system in the form 

dVμ′ ′= ∫∫∫D
H v  

 

(12.1.41) 

and taking into account 

dM Vμ= ∫∫∫D
,   dM Vμ= ∫∫∫D

rρ , 
 

(12.1.40') 

we obtain the formula (11.2.11) too, the Theorem 11.2.6 remaining valid also for a 
continuous mechanical system. As well, applying the theorem of momentum, we find 
again the equation (11.2.15), corresponding to the motion of the mass centre. 

 
Fig. 12.3  Inertial frame of reference ′R  and  non-inertial frame of reference R 

The moment of momentum is defined in the form 

( )dO Vμ′′ ′ ′= ×∫∫∫D
K r v ; 

 

(12.1.42) 

taking into account (12.1.40), (12.1.40'), we find again the formula (11.2.16) of the 
moment of momentum, where the velocity C′v  is given by (11.2.14) and where the 
moment of momentum with respect to a non-inertial frame R , which does not rotate 
about the inertial frame ′R , is expressed in the form 

d( )d d
dO V V
t

μ μ= × + × = ×∫∫∫ ∫∫∫D D

rK r v r rω . 
 

(12.1.43) 

Introducing at the pole O the tensor of inertia defined by the relation (3.1.81) and using 
the contracted product of this tensor by the angular velocity rotation vector, we get 

( )d OVμ × × =∫∫∫D
r r Iω ω , 

 

(12.1.44) 
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being thus lead to the relation (11.2.17') too, where the moment of momentum of the 
continuous mechanical system S  with respect to the pole O of the non-inertial frame 
R  is given by 

dO Vμ= ×∫∫∫D
K r v . 

 

(12.1.42') 

The Theorem 11.2.7 may be thus stated for a continuous mechanical system S  too, 
while the theorem of moment of momentum maintains its form (11.2.18), (11.2.18'), 
observing that the relation 

( )d ( )d OV V
t

μ μ
∂

× × + × × =
∂∫∫∫ ∫∫∫D D

I
r v v rω ω ω  

 

(12.1.44') 

takes place. 
If, in particular, the frame R  does not rotate ( = 0ω , hence O O=K K  too) or the 

pole of the frame R  coincides with the mass centre (O C≡ , hence = 0ρ ), then one 
obtains again the formulae (11.2.19–11.2.21'); we remark, especially, the frames and 
the formulae of Koenig type. Finally, if both conditions mentioned above hold 
simultaneously, then the frame R  is a Koenig frame and Koenig’s theorems hold too. 

For a subsystem S ⊂ S  we can write the second theorem (11.2.22) in the form 

( )( ) ( ) ( ) ( )d d ( )dnC C C CV S V
t

μ μ
∂

∂ × = × + ×
∂ ∫∫∫ ∫∫ ∫∫∫D D D

r v r p r F ,   D∀ ⊂ D , 

 (12.1.45) 

and may enounce (a principle equivalent to the principle iii2) or a theorem considered as 
a consequence of the latter principle) 

iii'2) Principle of variation of moment of momentum with respect to the centre 
of mass. The derivative with respect to time, in a Koenig frame of reference, of the 
moment of momentum of any subsystem S ⊂ S , in any configuration of it, with 
respect to the mass centre, is equal to the moment of the forces which act upon that 
subsystem, with respect to the same pole. 

For the continuous mechanical system S  it results a formula of the form (11.2.24''), 
so that we can state (second theorem of Koenig for the moment of momentum) 
Theorem 12.1.10 (theorem of moment of momentum with respect to the centre of 
mass). The derivative with respect to time, in a Koenig frame of reference, of the 
moment of momentum of a continuous mechanical system subjected to constraints, with 
respect to the centre of mass, is equal to the moment of the given and constraint 
external forces, with respect to the same pole. 

The theorem of momentum in the form (11.2.15) corresponds to the motion of the 
centre of mass, while the theorem of moment of momentum in the form (11.2.24'') 
describes the rotation of the continuous mechanical system about the centre of mass, the 
privileged rôle of which is thus put in evidence. 

As in Sect. 11.2.2.1, we can prove a formula of the form (11.2.23'); the Theorem 
11.2.9 of C. Iacob can be thus stated for a continuous mechanical system too. As well, 
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the theorem of moment of momentum will have, in general, the same form (11.2.24). 
Obviously, in the particular cases = 0ω  or = 0ρ  we obtain the same results. 

We can introduce the dynamic resultant of the continuous mechanical system S 

d( ; ) ( ; )d
d

t t V
t

μ′ ′ ′ ′∫∫∫D
A r v r=  

 

(12.1.46) 

and the dynamic moment of the same system 

d( ; ) ( ; ) d
dO t t V
t

μ′
⎡ ⎤′ ′ ′ ′ ′× ⎢ ⎥⎣ ⎦∫∫∫D

D r r v r= , 
 

(12.1.46') 

obtaining the results expressed by the formulae (11.2.11') and (11.2.24–11.2.26'). 
Conservation theorems (hence, first integrals) can be obtained only with respect to 

the inertial frame of reference ′R , in conditions analogous to those put in evidence in 
Sect. 11.2.2.1. 

The kinetic energy is defined in the form 

21 d
2

T v Vμ′ ′= ∫∫∫D
; 

 

(12.1.47) 

taking into account (12.1.40), (12.1.40'), we find again the formula (11.2.28) of the 
kinetic energy, where the velocity C′v  is given by (11.2.14), the kinetic energy T  with 
respect to the frame R  being expressed in the form 

( )221 1 d( ) d d
2 2 d

T V V
t

μ μ= + × =∫∫∫ ∫∫∫D D

rv rω . 
 

(12.1.48) 

Introducing the moment of momentum (12.1.43), we can express the kinetic energy T  
in the form (11.2.28''), where the kinetic energy of the continuous mechanical system S  
with respect to the non-inertial frame R  is given by 

21 d
2

T v Vμ= ∫∫∫D
. 

 

(12.1.47') 

The Theorem 11.2.10 of V. Vâlcovici can be thus stated also for a continuous 
mechanical system S ; as well, one can use also the formulae (11.2.29–11.2.30). 

The elementary work and the power of the given and constraint, external and internal 
forces may be further expressed by the formulae (11.2.31), (11.2.31'), so that the 
Theorem 11.2.11 can be stated for a continuous mechanical system too. As a matter of 
fact, assuming catastatic internal constraints, we have int intd dR RW W′ =  

int int 0R RP P′= = = , the elementary work of deformation being contained in intdW ′  
and intdW  (or in intP ′  and intP ), respectively; indeed, we can assume that the 
mechanical system S  is formed by several continuous subsystems, being thus subjected 
to internal constraints. 
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The theorem of kinetic energy is written in the form (11.2.34), (11.2.34') or in the 
form (11.2.34''). We notice that all the considerations made in Sect. 11.2.2.2, by 
particularization, hold. The same observations can be made for the formulae (11.2.41–
11.2.42') and for the reciprocity relation (11.2.43) of C. Iacob. 

A theorem of mechanical energy of a continuous mechanical system, free or 
subjected to constraints, as well as a conservation theorem of that energy (hence, a 
scalar first integral) may be obtained in conditions analogous to those of a discrete 
mechanical system. 

12.2. One-dimensional Continuous Mechanical Systems 

A study of the motion of threads and straight bars is presented in this paragraph; 
results concerning longitudinal and transverse vibrations are also included. 

12.2.1 Motion of Threads 

In what follows, one makes some general considerations on one-dimensional 
continuous mechanical systems; results concerning the motion and the vibrations of 
threads are then dealt with. 

12.2.1.1 General Considerations 

A one-dimensional continuous mechanical system L  is modelled as a material line 
(a one-dimensional variety in the space 3E , to which we associate a mass depending on 

a single variable; see Chap. 1, Sect. 1.1.8 too). Let be a curve C, the geometric support 
of the mechanical system L ; its linear density is given by 

d( ; ) 0
d
ms t
s

μ = > ,   ( )m m s= , 
 

(12.2.1) 

s being the curvilinear co-ordinate along that curve (a possible dependence on time is 
also put in evidence). Hence, the mass of L  is expressed in the form 

1

0( )d ( )d
P

C P
M s s s sμ μ= =∫ ∫ , 

 

(12.2.1') 

0P  and 1P  being the extremities of the material line; if that line is homogeneous, then 
we have 

M lμ= ,   constμ = , (12.2.1'') 

where l is its length. A material line can be a thread or, eventually, a bar (see Chap. 1, 

Sect. 1.1.10 too). If A is the area of the cross section (a finite area), then we can write 
( ; ) ( ; )s t t Aμ μ= r , where ( ; ) 0tμ >r  is the volume density; it is necessary that 
( ; ) (1/ )t Aμ = Or , because ( ; )s tμ  is a bounded function. The position of the mass 

centre is given by 
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1

0

1 1( ) d ( ) d
P

C P
s s s s

M M
μ μ= =∫ ∫r rρ , 

 

(12.2.2) 

with respect to an arbitrary pole O. 
We assume that at the moment 0t t=  the material line occupies the initial position 

0 0( )C t C= , while, at the moment t, the actual position is given by ( )C t C=  
(Fig. 12.4). Introducing a parameter [ ]0 1,λ λ λ∈ , we can express the equation of the 

curve C occupied by the material line at the moment t in the form 

( ; )tλ=r r ; (12.2.3) 

for 0t t=  we obtain the curve 0C , while 0λ λ=  and 1λ λ= , respectively, specify the 

extremities of the material line at an arbitrary given moment. The parameter λ plays 
thus the rôle of a generalized co-ordinate. The velocity and the acceleration of a particle 
in motion are given by (λ is fixed) 

 
Fig. 12.4  Material line at the moment 0t  and at the moment t 

( ; )t
t
λ∂

=
∂

r
v ,   

2

2
( ; )t
t
λ∂

=
∂
r

a . 
 

(12.2.4) 

For t fixed, these formulae give the distribution of velocities and accelerations along the 
curve ( )C t ; in particular, for 0t t=  are obtained the velocities and the accelerations at 
the initial state (along the curve 0C ) 

0 0( ; ) ( )tλ λ=r r ,   0 0( ; ) ( )tλ λ=v v ,   0 0( ; ) ( )tλ λ=a a . (12.2.4') 

For the curvilinear integral 

( ) ( ; )dC t C
I F t s= ∫ r  

 

(12.2.5) 

one obtains the formula (A.2.82'), which can be written also in the form 
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( )2
d d d d
d d

C
C C

I F s F s
t t

λ λ

λ

∂ ∂⋅
∂ ∂= +

∂
∂

∫ ∫
r v

r
. 

 
 

(12.2.5') 

The principle of mass conservation is written in the form (the material line P P′ ′′  is a 
subsystem of the continuous mechanical system 0 1P P , its extremities being specified 
by the values λ ′  and λ ′′  of the parameter λ) 

0 0 0( ; )d ( ; )ds t s s t s
λ λ

λ λ
μ μ

′′ ′′

′ ′
=∫ ∫ ,  

where the elements of arc are given by 

d ds λ
λ

∂=
∂

r ,   0
0d ds λ

λ
∂

=
∂
r

; 
 

(12.2.3') 

the relation must take place for any λ ′  and λ ′′ , so that one obtains the continuity 
condition of d’Alembert in the form 

0
0( ; ) ( )tμ λ μ λ

λ λ
∂∂ =

∂ ∂
rr ,   0 0( ) ( ; )tμ λ μ λ=  

 

(12.2.6) 

or in the form 

0 0( ; )d ( )ds t s s sμ μ= ,   0 0 0( ) ( ; )s s tμ μ= . (12.2.6') 

One can write this principle in the form 

d ( ; )d 0
d

s t s
t

λ

λ
μ

′′

′
=∫   

too; applying the formula (12.2.5') and noting that the limits λ ′  and λ ′′  are arbitrary, it 
results the condition of continuity 

( )2 ( ; )
( ; ) 0

t
t

t
μ λ

μ λ
λ λ λ

∂∂ ∂ ∂+ ⋅ =
∂ ∂ ∂ ∂

r r v , 
 

(12.2.6'') 

corresponding to the continuity condition of Euler (1.1.79). These conditions of 
continuity are, obviously, equivalent. 

Taking ( ; ) ( ; ) ( ; )F t t tΦ λ μ λ=r , applying the formula (12.2.5') and taking into 
account (12.2.6''), we get 

d ( ; ) ( ; )d d
d C C

t t s s
t t

Φ
Φ λ μ λ μ

∂=
∂∫ ∫ ; 

 

(12.2.7) 
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analogously, we have 

d ( ; ) ( ; )d d
d C C

t t s s
t t

Φ
Φ μ λ μ

∂=
∂∫ ∫r , 

 

(12.2.7') 

as well as 

d ( ; ) ( ; )d d
d C C

t t s s
t t

μ λ μ
∂=
∂∫ ∫r ΨΨ , 

 

(12.2.7'') 

d ( ; ) ( ; )d d
d C C

t t s s
t t

λ μ λ μ
∂=
∂∫ ∫
ΨΨ . 

 

(12.2.7''') 

Upon the material arc P P′ ′′  in the actual state (at the moment t) there are exerted 
actions at distance (volume forces ( )dsλp  and volume moments ( )dsλm ; in case of 
deformable solids it is convenient to report these quantities to the unity of volume) on 
all its length and actions of contact (the resultants ( )λ ′−R  and ( )λ ′′R  and the 
resultant moments ( )λ ′−M  and ( )λ ′′M ) at its extremities (Fig. 12.5a). 

 
Fig. 12.5  Dynamic equilibrium of a material arc ′ ′′P P  (a).  

Efforts on a cross section (b)

The momentum and the moment of momentum with respect to a fixed pole O are 
given by 

′′

′
= ∫H v( ; )dt s

λ

λ
μ λ ,   [ ]

′′

′
= ×∫K r v( ; ) dO t s

λ

λ
μ λ .  

The principle of variation of momentum and the principle of variation of moment of 
momentum allow to write 

′′

′
′′ ′= + −∫

H p R Rd ( )d ( ) ( )
d

s
t

λ

λ
λ λ λ ,  
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′′

′
′′ ′′ ′ ′= × + × − ×∫

K
r p r R r R

d
( ) ( )d ( ) ( ) ( ) ( )

d
O s
t

λ

λ
λ λ λ λ λ λ  

′′

′
′′ ′+ + −∫ m M M( )d ( ) ( )s

λ

λ
λ λ λ . 

Eventual concentrated forces or moments acting along the material arc P P′ ′′  can be 
contained in ( )dsλp  and ( )dsλm ; but these quantities must be, in this case, 
represented by distributions. Taking into account (12.2.7''') and observing that 

( ) ( ) d
λ

λ
λ λ λ

λ
′′

′

∂′′ ′− =
∂∫
RR R ,   ( ) ( ) d

λ

λ
λ λ λ

λ
′′

′

∂′′ ′− =
∂∫
MM M , 

( ) ( ) ( ) ( ) ( )d
λ

λ
λ λ λ λ λ

λ
′′

′

∂′′ ′′ ′ ′× − × = ×
∂∫r R r R r R , 

 

we obtain 

( )d 0s
t s

λ

λ

λ
μ

λ
′′

′

∂ ∂ ∂− − =
∂ ∂ ∂∫
v Rp , 

( ) d d( ) ( ) d 0
d d

s
t s s

λ

λ

λ λ
μ λ

λ λ
′′

′

∂ ∂ ∂⎡ ⎤× − − × − − =⎢ ⎥∂ ∂ ∂⎣ ⎦∫
v Mr p r R m . 

 

Because the limits λ ′  and λ ′′  are arbitrary, we can write 

s t
μ μ

∂ ∂+ = =
∂ ∂
R vp a , 

 

(12.2.8) 

as well as 

( )t s s s
μ

∂ ∂ ∂ ∂× − − − × − − =
∂ ∂ ∂ ∂
v R r Mr p R m 0 ; 

 

taking into account (12.2.8), we get the second equation of motion ( / s= ∂ ∂rτ   is the 
unit vector of the tangent to the material curve ( )C t  (Fig.12.5b)) 

s
∂ + × + =
∂
M R m 0τ . 

 

(12.2.8') 

In the static case, we find again the equations (4.2.36) corresponding to a curved bar 
(one-dimensional continuous mechanical system). We notice that, in the dynamic case, 
we use the partial derivative with respect to the curvilinear co-ordinate s, because the 

considered quantities depend on the temporal variable t too, e.g., ( ; )s t=r r . The 
condition of continuity (12.2.6'') must also be associated to these equations. 
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12.2.1.2 Equations of Motion of Threads 
A thread will be modelled by its axis; thus, the points of application of the external 
forces as well as those of the efforts are situated on the same axis. If, in the equations of 
motion (12.2.8), (12.2.8'), we neglect the concentrated moments M and the external 
loads given by distributed moments m (the thread being perfect flexible and 
torsionable), then we can express these equations in the form 

( ; )
( ; ) ( ; )

s t
s t s t

s t
μ

∂ ∂+ =
∂ ∂

R
p v ,   ( ; ) ( ; )s t s t× =R 0τ , 

 

(12.2.9) 

where ( ; )s tp  is the external load (distributed on the unit length of the thread), applied 

at the point of curvilinear abscissa s at the moment t, while ( ; )s tR  is the resultant of 
the efforts on the corresponding cross section. Taking into account the second equation 
(12.2.9) (corresponding to the chosen model for the thread), ( ; )s tR  is reduced to the 
axial force ( ; )s tT  of traction (the tension ( ; )s tT  along the direction of the unit vector 
τ, tangent to the thread (see Fig. 4.47 too)) and we can state 
Theorem 12.2.1 At any point of a perfect flexible and torsionable thread, in any of its 
configurations, the tension is tangent to the curve occupied by the thread. 

The equation of motion is reduced to 

( ; )
( ; ) ( ; )

s t
s t s t

s t
μ

∂ ∂+ =
∂ ∂

T
p v . 

 

(12.2.10) 

Noting that ( ; ) ( ; ) ( ; )s t T s t s t=T τ , ( ; ) 0T s t ≥ , is the tension in the thread at the 

cross section of curvilinear co-ordinate s, it results 

( ; )
( ; ) ( ; ) ( ; )

s t
T s t s t s t

s s t
μ

∂∂ ∂⎛ ⎞ + =⎜ ⎟∂ ∂ ∂⎝ ⎠

r
p v ; 

 

(12.2.10') 

in Frenet’s frame, the equations have the form 

T p v
s τ μ

∂ + =
∂

,   2T p vν
μ

ρ ρ
+ = ,   0pβ = . 

 

(12.2.10'') 

The third equation (12.2.10'') shows that, to have dynamic equilibrium at any point of 
the thread, the external force p must be contained in the corresponding osculating plane 
(in other words, the osculating plane to the deformed configuration of the thread 
contains, at any moment, the support of the external force p). 

Finally, the equations 

2

2
1 T

t
λμ

λ
λ λ

∂⎛ ⎞
⎜ ⎟∂ ∂ ∂= + ⎜ ⎟∂ ∂∂∂ ⎜ ⎟

∂ ∂⎝ ⎠

r
r p r r , 

 
 

(12.2.11) 
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( )2 2
0

t t
μ

μ
λ λ λ

∂ ∂ ∂ ∂+ ⋅ =
∂ ∂ ∂ ∂ ∂

r r r , 
 

(12.2.11') 

constitute a system of four scalar equations with partial derivatives for five unknown 
functions: ( ; )T T tλ= , ( ; )tμ μ λ=  and ( ; )i ix x tλ= , 1,2,3i = . To solve the 
problem, it is necessary to associate a fifth equation, corresponding to the constitutive 
law of the material. 

The curvilinear abscissa of the particle individualized by the parameter λ on the 

curve ( )C t  at the moment t is given by 

0
( ; ) ds t

λ

λ
λ λ

λ
∂=
∂∫

r ; 
 

at the same moment t, we have 

( ; )
d d

t
s

λ
λ

λ
∂

=
∂

r
, 

 

while for the moment dt t+  we can write 

( ; d ) ( ; )
d d d d d

t t t
s s t

t
λ λ

λ λ
λ λ

∂ + ∂∂′ = = +
∂ ∂ ∂

r r
, 

 

neglecting the terms of higher order. The variation of the linear strain in the time 
interval dt is written in the form 

( ; )
( ; )d d d d d

d d ( ; )

t
tts s t t

s t s t

λ
λλ λ

λ λ
λ

∂∂
∂ ∂∂′ − ∂= =

∂ ∂ ∂
∂

r
r

r
. 

 

The velocity of strain is given by ( ( ; )tε ε λ=  is the linear strain; see the formula 
(12.1.30')) 

( ) ( )

2

2 2
tλ λ λ λε

λ λ

∂ ∂ ∂ ∂⋅ ⋅
∂ ∂ ∂ ∂ ∂= =

∂ ∂
∂ ∂

r r r v

r r
; 

 
 

(12.2.12) 

in this case, the condition of continuity (12.2.11') can be written in the form 

0μ με+ = , (12.2.12') 

so that 
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ln Cε μ+ = ,   e Cεμ = , (12.2.12'') 

where ,C C  are constant with respect to time. An elastic constitutive law is of the form 

( )T T ε= ; (12.2.13) 

in particular, if 

T kε= ,   constk = , (12.2.13') 

then the constitutive law is linearly elastic. 
In the case in which 0ε = , hence if ε is constant in time (the tension T has the same 

property), then from (12.2.12') it results 0( ; ) ( ; ) ( )t tμ λ μ λ μ λ= =  too, the thread 
being, in general, non-homogeneous; if the thread is homogeneous, then we have 

0( ) ( ) constμ λ μ λ= = . From (12.2.1) one obtains 

( ; )
const

tλ
λ

∂
=

∂
r

. 
 

(12.2.14) 

If in the motion of the thread we have 0( ; ) ( ; ) ( )s t s t sλ λ λ= = , then we can take as 

parameter on the curve ( )C t  the curvilinear abscissa s (instead of λ). If, in particular, 
0ε = , then the thread is inextensible. 

The motion of a perfect flexible and torsionable thread is thus governed by the 
equation (taking into account (12.1.3')) 

( )2

2
( ; )

( )
s t

s T
s s st

μ
∂ ∂ ∂ ∂= + = +

∂ ∂ ∂∂
u T rp p , 

 
(12.2.15) 

which, in projection on the three co-ordinate axes, leads to 

2

2
( ; ) ( ; )

( ) i i
i

u s t x s t
s p T

s st
μ

∂ ∂∂ ⎛ ⎞= + ⎜ ⎟∂ ∂∂ ⎝ ⎠
,   1,2,3i = . 

 
(12.2.15') 

To this equation is associated the condition of continuity, which, for 0ε = , is of the 
form 

( ; )
1

s t
s

∂
=

∂
r

. 
 

(12.2.15'') 

One can thus determine the four unknown functions ( ; )T T s t=  and ( ; )i ix x s t= , 
1,2,3i = ; the linear density is, in this case, a given function. 

If the thread is subjected to constraints, the influence of the constraint forces is added 
too; if the thread is constrained to stay on a surface, then to the distributed force p is 
added a distributed constraint force R, which must be determined. In Chap. 4, 
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Sect. 2.2.4 one has considered the static problem of a thread constrained to stay on a 
surface, in particular the case in which the thread is situated along the directrix of a 
circular cylinder; thus, one can change the direction of a force (Fig. 12.6). As well, a 
weight P can be raised by means of a force Q, so that, in the absence of friction, 
Q P=  (see also the static problem of the pulley in Chap. 4, Sect. 2.1.6); but if the 
phenomenon of friction appears too, it is possible to be necessary a force Q for which 
Q P  (see Chap. 4, Sect. 2.2.4). In this case, one uses a pulley, hence a cylinder 
movable around a horizontal axle. Due to friction, the (perfect flexible) thread abuts on 
the cylinder along BC, moving as a rigid (Fig. 12.6). We assume that the forces P and 

Q, applied at A and D, respectively, are constant as direction, the angle BOC  being 
constant during the motion of the thread (the thread is inextensible and does not slide on 
the pulley). We neglect the rolling friction in the bearing of the axle through O, the 
normal constraint forces leading to a vanishing moment with respect to that point. The 
velocity of a point of the thread is Rω, where ω is the angular velocity of rotation; if μ 
is the density of the thread, then its moment of momentum is 

 
Fig. 12.6  Change of direction of a force with the aid of a pulley 

( )2 2d d d
AB BC CD

r s s s r mω μ μ μ ω+ + =∫ ∫ ∫ ,  

where m is the mass. Applying the theorem of moment of momentum to the system 
pulley-thread, we can write 

( )2 ( )OI mr Q P rω+ = − , 
 

(12.2.16) 

where OI  is the moment of inertia of the pulley with respect to the axis passing through 

O. Neglecting the mass of the thread and its moment of inertia with respect to OI , it 
results, with a good approximation, 

( )OI Q P rω = − . (12.2.16') 

In case of equilibrium ( 0ω = ) or in case of a uniform motion ( 0ω = ) we get Q P= ; 
we obtain the same result if we assume that also the pulley has a negligible mass, hence 
that the moment of inertia OI  is very small. The pulley allows thus to change the 
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direction of a force, modifying only a little its intensity. As an illustration of those 
results, we mention the Atwood engine, which was considered in Sect. 11.1.2.2. 

For a complete formulation of the boundary value problem, one must give also the 
initial conditions and the conditions on the frontier. Thus, the initial conditions (at the 
moment 0t t= ) are, in general, of the form 

0 0( ; ) ( )s t s=r r ,   
0

0
( ; )

( )
t t

s t
s

t =

∂
=

∂
r

v ,   [ ]0 1,s s s∈ , 
 

(12.2.17) 

specifying the position of the thread and the repartition of the velocities at that moment. 
In case of a thread of finite length, the conditions on the contour are bilocal conditions. 
For instance, one can give the position vectors 

0 0( ; ) ( )s t t=r r ,   1 1( ; ) ( )s t t=r r ,   [ ]0 1,t t t∈ , (12.2.18) 

or the velocities 

0 0( ; ) ( )s t t=r r ,   1 1( ; ) ( )s t t=r r ,   [ ]0 1,t t t∈ , (12.2.18') 

at the extremities of the thread; eventually, one can put mixed bilocal conditions 
(position vector at one extremity and velocity at the other extremity) or one extremity or 
two extremities can be fixed. As well, one can give the external forces which act at 
those points 

0 0( ; ) ( )s t t− =T F ,   1 1( ; ) ( )s t t=T F ,   [ ]0 1,t t t∈ . (12.2.18'') 

In the absence of the force p, assuming that 2 2( ) ( ; )/ 0s s t tμ ∂ ∂ ≅u , the equation 
(12.2.15) takes the form ( ; ) ( )s t t=T C , ( ; ) ( )T s t T t= , so that / s∂ ∂r  

( )/ ( )t T t= C , ( ) 0T t ≠ ; thus, it results 

0
( )

( ; ) ( )
( )
t

s t s t
T t

= +
C

r C . 
 

(12.2.19) 

If ( ) 0T t ≡ , then the thread can take any form at the moment t. 

12.2.1.3 Longitudinal and Transverse Vibrations of Threads 

Let be a thread stretched between two points O and Q at a distance l , along the 3Ox -
axis, by the action of a static tension 0T ; we assume that the thread is acted upon by a 
longitudinal force 3p  too, of intensity 3 3 3( ; )p p x t=  (Fig. 12.7). Making 3i =  in the 
equation (12.2.15') and observing that 3s x= , we obtain 

,3 3 3T p uμ+ = . (12.2.20) 
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The tension in the thread is given by 0 33T T Aσ= + , where A is the area of the cross 
section, while the normal stress 33σ  is linked to the linear strain 33ε  by Hooke’s linear 
constitutive law 33 33Eσ ε= , where E is the modulus of longitudinal elasticity; we find 

thus a linear elastic constitutive law 0 33T T EAε= + , where EA is the rigidity in 
traction (longitudinal effort). Taking into account Cauchy’s relation 33 3,3uε =  
(corresponding to (12.1.30')), the equation (12.2.20) of longitudinal vibrations of 
threads takes the form 

3,33 3 3EAu p uμ+ = , (12.2.20') 

where the unknown function 3 3 3( ; )u u x t=  is the displacement component along the 

3Ox -axis. The boundary conditions are conditions on the contour and initial conditions. 
In our case, the conditions on the contour are bilocal conditions of the form (thread with 
fixed extremities) 

 
Fig. 12.7  Longitudinal vibrations of threads 

3 3(0; ) ( ; ) 0u t u l t= = ,   0t t≥ , (12.2.21) 

while the initial conditions are of Cauchy type 

0
3 3 3 3( ;0) ( )u x u x= ,   0

3 3 3 3( ;0) ( )u x u x=  (12.2.21') 

for [ ]3 0,x l∈ . In case of a thread of infinite length, we put analogous conditions at 
infinity, the initial conditions being of the same form for 3x−∞ < < ∞ . Obviously, we 
can imagine also other bilocal conditions for a thread of finite length (e.g., imposed 
displacements or given tensions, depending on time). 

 
Fig. 12.8  Transverse vibrations of threads 

Let us consider also a thread stretched between the points O and Q by the action of a 
static tension 0T , acted upon by a transverse force 1p , of intensity 1 3( ; )p x t , in the 
plane 1 3Ox x  (Fig. 12.8); in this case, taking into account that the force 1p  must be 
contained at each point of the thread in the osculating plane, it results that the actual 
configuration of the thread is contained in the same plane. The relation (12.1.3) allows 
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to write 0
1 1 1x x u= + , where 1 1 3( ; )u u x t=  is the displacement component along the 

direction of the 1Ox -axis; because 0
1 0x = , corresponding to a point of the non-

deformed thread (along the 3Ox -axis), it results 1 1x u= . The equation (12.2.15') is 
thus written in the form 

1
1 1

u
T p u

s s
μ

∂∂ ⎛ ⎞ + =⎜ ⎟∂ ∂⎝ ⎠
 

 

(12.2.22) 

for 1i = . Taking into account the relation 3 3 0/T x s T T∂ ∂ = = , as well as 

3 / 1x s∂ ∂ ≅  in case of small deformations, we can assume that 0 constT T≅ = ; on 
the other hand, we notice that ( ) ( )3 3 3/ / / /s x x s x∂ ∂ = ∂ ∂ ∂ ∂ ≅ ∂ ∂ , according to the 
same linear approximation. The equation (12.2.22) of the transverse vibrations of 
threads will be of the form 

0 1,33 1 1T u p uμ+ = . (12.2.22') 

The contour (bilocal) conditions are, in general, of the form 

1 1(0; ) ( ; ) 0u t u l t= = ,   0t t≥ , (12.2.23) 

while the initial conditions (of Cauchy type) read 

0
1 3 1 3( ;0) ( )u x u x= ,   0

1 3 1 3( ;0) ( )u x u x= ,   [ ]3 0,x l∈ . (12.2.23') 

As well, we can write the transverse vibrations equation of threads in the plane 2 3Ox x  
in the form 

0 2,33 2 2T u p uμ+ = , (12.2.24) 

and the boundary conditions are analogously put. 
We notice that the equations (12.2.20') and (12.2.22') have the same form. Referring, 

for instance, only to the equation (12.2.22') we obtain, in absence of external forces, 
d’Alembert’s equation of the vibrating string (the homogeneous equation) 

1,33 12
1 0u u
c

− = ,   02 T
c

μ
= . 

 

(12.2.25) 

We assume firstly that the thread is of infinite length, the initial conditions being of 
the form (12.2.23') for 3x−∞ < < ∞ . By means of Heaviside’s function ( )tθ , we 
introduce the positive part of the function 1 3( ; )u x t  in the form 

1 3 1 3
1 3

    0       for  0,
( ; ) ( ; ) ( )

( ; )  for  0.

t
u x t u x t t

u x t t
θ

<⎧⎪= = ⎨ ≥⎪⎩
 

 
(12.2.26) 
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Passing from this piecewise continuous function to the corresponding regular 
distribution, the formula (1.1.50) allows to write 

1 1 0
1 ( )

u u
u t

t t
δ

∂ ∂
= +

∂ ∂
,   

2 2
1 1 0 0

1 12 2 ( ) ( )
u u

u t u t
t t

δ δ
∂ ∂

= + +
∂ ∂

,   
2 2

1 1
2 2
3 3

u u
x x

∂ ∂
=

∂ ∂
; 

 

observing that for 0t ≥  we have 

2
1

12
u

u
t

∂
=

∂
,   

2
1

1,332
3

u
u

x
∂

=
∂

, 
 

the equation (12.2.25) may be written with the aid of regular distributions in the form 
(assuming that 0

1u , 0
1 ( )u K ′∈ , being thus distributions, we introduce the direct 

product) 

2 0 0
1 1,33 1 1( ) ( )u c u u t u tδ δ= + × + × , 

 

(12.2.25') 

the initial conditions being included too. We assume that the equation maintains its 
form also if 1u  is a singular distribution; we apply the Fourier transform with respect to 
the space variable (the regularity conditions at infinity are thus ensured, see App., Sect. 
3.2.1) and the Laplace transform with respect to the time variable (see App., Sect. 
3.2.2). We get 

( ) [ ][ ] [ ] [ ]2 2 2 0 0
3 1 1 1L F F Fc p u u p uα + = + ,  

wherefrom 

[ ][ ] [ ] [ ]( )0 0
1 1 12 2 2

3

1L F F Fu u p u
c pα

= +
+

,  

3α  and p being the new variables in the spaces of Fourier and Laplace transforms, 
respectively. Taking into account the inverse Laplace transforms 

31
2 2 2

33

sin1L
ct

cc p
α

αα
− ⎡ ⎤ =⎢ ⎥+⎣ ⎦

,   1
32 2 2

3
L cosp ct

c p
α

α
− ⎡ ⎤ =⎢ ⎥+⎣ ⎦

, 
 

we can write 

[ ] [ ] [ ]30 0
1 1 1 3

3

sin
F F F cos

ct
u u u ct

c
α

α
α

= + ; 
 

observing that 

( )31 2 2 2
3

3

sin 1F ( )
2

ct
t c t x

c c
α

θ θ
α

− ⎡ ⎤ = −⎢ ⎥⎣ ⎦
,   [ ] ( )1 2 2 2

3 3 3F cos ct x x c tα δ− = − , 
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where 

( ) ( ) ( ) ( )2 2 2
3 3 3 3c t x ct x x ct x ctθ θ θ θ− = − = + − − ,   0c > ,  

is a distribution corresponding to a characteristic function of interval (Fig. 12.9), while 

( ) ( ) ( )[ ]2 2 2
3 3 3

3

1
2

x c t x ct x ct
x

δ δ δ− = − + − − ,   0c > ,  

and using the formula (A.3.15), we get 

[ ] ( )[ ]0
1 1 3

1F F ( )
2

u u t ct x
c

θ θ= ∗ −  

( )[ ] ( )[ ]( )0 0
1 3 1 3

1 F F
2

u x ct u x ctδ δ+ ∗ + + ∗ − . 

 

 
Fig. 12.9  Characteristic function of interval 

By means of the formula (A.3.6'), it results, finally, 

( ) ( )[ ] ( )0 0 0
1 3 1 3 1 3 1 3

1 1( ; )
2 2

u x t u x ct u x ct u ct x
c

θ= + + − + ∗ − . 
 

(12.2.27) 

If 0 1
1 3( )u x C∈ , 0 0

1 3( )u x C∈ , then we write the solution of Cauchy’s problem 
corresponding to the equation (12.2.25) in the form 

( ) ( )[ ] 3

3

0 0 0
1 3 1 3 1 3 1

1 1( ; ) ( )d
2 2

x ct

x ct
u x t u x ct u x ct u

c
ξ ξ

+

−
= + + − + ∫ , 

 

(12.2.27') 

obtaining thus d’Alembert’s formula. Denoting 

0
10

( ) ( )d
z

s z u ξ ξ= ∫ , 
 

(12.2.28) 

we may also write 

( ) ( )[ ] ( ) ( )[ ]0 0
1 3 1 3 1 3 3 3

1 1( ; )
2 2

u x t u x ct u x ct s x ct s x ct
c

= + + − + + − − , 

 (12.2.28') 

putting thus in evidence the symmetric and the antisymmetric parts of the deformed 
thread with respect to the origin 3 0x = , respectively; an initial deformation of the 
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thread (a “crest”) given by 0
1 3( )u x  (Fig. 12.10a) will be symmetrically propagated with 

the propagation speed c, while a deformation 3( )s x  corresponding to the deformation 
velocity (Fig. 12.10b) will be antisymmetrically propagated, with the same propagation 
velocity c (the “wave” advances by c in a unity of time). 

In case of a semi-infinite thread, we put the condition at finite distance 0
1 (0; ) 0u t = , 

being thus led to the solution 

( ) ( ) ( ) ( ) ( )[ ]0 0 0
1 3 1 3 3 1 3 3 1 3

1( ; )
2

u x t u x ct x ct u x ct ct x u ct xθ θ= + + − − − − −  

( ) ( )[ ] ( ) ( )[ ]3 3 3 3
1 1
2 2

s x ct s x ct s x ct s x ct
c c

+ + − − = + − −  

( ) ( )[ ]

( ) ( )[ ]

0 0
1 3 1 3 3

0 0
1 3 1 3 3

1  for  ,
2
1  for  .
2

u x ct u ct x x ct

u x ct u x ct x ct

⎧ + − − <⎪+ ⎨
⎪ + + − >⎩

 

 
 

(12.2.29) 

 
Fig. 12.10  Deformed configuration of the thread: symmetric propagation (a);  

antisymmetric propagation (b) 

If a perturbing force 1 1 3( ; )p p x t=  intervenes too, the equation of motion becomes 

1,33 1 32
1 ( ; )u u f x t
c

− = ,   3 1 3
0

1( ; ) ( ; )f x t p x t
T

= − . 
 

(12.2.30) 

The solution 3( ; )E E x t=  of the equation 

,33 3 32
1 ( ; ) ( ) ( )E E x t x t
c

δ δ δ− = = ×  
 

(12.2.30') 

is the fundamental solution in the sense of the theory of distributions of the equation 
(12.2.30). Using the method of integral transforms, we get 

( ) 3
3 3

   for   ,
2( ; ) ( )

2   0    otherwise;

c x ctcE x t t ct xθ θ
⎧− ≤⎪= − − = ⎨
⎪⎩

 
 
 

(12.2.30'') 
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the fundamental solution is equal to /2c−  in the hatched zone and equal to zero in the 
exterior of it (Fig. 12.11). The corresponding solution of the equation (12.2.30) reads 

( )1 3 3 3( ; ) ( ; )
2
cu x t ct x f x tθ= − − ∗ ; 

 

(12.2.31) 

if 0f C∈ , then we can write 

3

3

( )
1 3 0 ( )
( ; ) ( , )d d

2
t x c t

x c t

cu x t f
τ

τ
ξ τ ξ τ

+ −

− −
= − ∫ ∫ . 

 

(12.2.31') 

If the thread has a finite length, then we put boundary conditions of the form 
(12.2.23), (12.2.23'). In case of steady-state vibrations, we assume that (we can obtain 
separately solutions in cos tω  or in sin tω ) 

i
1 3 3( ; ) ( )e tu x t u x ω= ,   ie cos i sint t tω ω ω= + ,   0ω > , (12.2.32) 

 
Fig. 12.11  Fundamental solution for the forced transverse vibrations of a thread 

where i is the imaginary unity; replacing in the equation (12.2.31), we find the equation 

2
,33 0u uα+ = ,   

22
2

2
0Tc

μωω
α = = , 

 

whose general integral is 3 3 3( ) cos sinu x A x B xα α= + . Putting the bilocal 
conditions (12.2.23) (we cannot put initial conditions, because the vibrations are 
stationary), we get 0A =  and 0B ≠ , with the characteristic equation sin 0lα = , 
which leads to the eigenvalues 

n
n
l
π

α = ,   n ∈ , 
 

(12.2.33) 

and then to the proper pulsations (circular frequencies) 

0
n n

Tnc
l
π

ω α
μ

= = ; 
 

(12.2.33') 

the proper form of the free vibrations is thus given by 

i
1 3 3( ; ) e sinnt

n nnu x t B xω α= ,   n ∈ . (12.2.33'') 
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We see that 1 3 1 3( ; ) ( ; )n nu x t u x tλ+ =  for 2lλ = ; λ is called wave length. As well, 

1 3 1 3( ; ) ( ; )nn nu x t u x tτ+ =  for the period 2 / /n n ncτ π ω λ= = , where c is the 
propagation velocity of the wave. We notice that the transverse displacement 

1 3( ; )nu x t  vanishes for 3 / /2x kl n k nλ= = , 0,1,2,...,k n= , the vibrations of the 

thread having thus n–1 nodes between the fixed extremities. The frequency of the 
vibrations (the number nf  of vibrations in a unity of time) is given by 

1/ /n nf ncτ λ= = , defining thus the height of the tone emitted by the wave 
(important, e.g., in acoustics); for 1n =  one obtains the fundamental tone, while for 

2n =  we have the octave of the fundamental tone. 
In case of forced vibrations, due to the perturbing force 

i
1 3 3( ; ) ( )e tp x t p x ω= ,   0ω > , (12.2.32') 

the equation (12.2.30) reads 

2
0 ,33 0T u u pμω+ + = .  

Applying the sinus Fourier transform and observing that 

2
,33 3 3 ,3 3 3 3 3000 0

sin d sin cos sin d
l ll l

n n n n n nu x x u x u x u x xα α α α α α= − −∫ ∫  

2 2
3 30

sin d F [ ]
l

n n n su x x uα α α= − = −∫ , 

 

because (0) ( ) 0u u l= =  and sin 0 sin 0n nlα α= = , we get 

( )2 2
0F [ ] F [ ] 0s n su T pα μω− − + = ,  

so that (we use the proper pulsation (12.2.33')) 

[ ]2 2
0

F [ ]
F [ ]

1 ( / )
s

s
n n

p
u

T α ω ω
=

−
; 

 

effecting the inverse Fourier transform, it results 

[ ]
3i

1 3 2 2 00 1

sin2( ; ) e ( )sin d
1 ( / )

lnt
n

n nn

x
u x t p

T l
ω α

ξ α ξ ξ
α ω ω

∞

=
=

−∑ ∫ . 
 

(12.2.34) 

We notice that a phenomenon of resonance can take place if the pulsation ω of the 
forced vibrations is very close to one of the proper pulsations nω  (the displacement 1u  
tends to infinity and the stability is lost by divergence); it is true that, in this case, the 
hypothesis of small displacements with respect to the length of the thread does no more 
hold. In case of the action of a concentrated force i

1 3 3( ; ) e ( )tp x t xω δ ξ= −  at the 
point 3x ξ= , we notice that, by abuse of notation, we can write 
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3 3 30
( )sin d sin

l
n nx x xδ ξ α α ξ− =∫ ,  

so that we obtain Green’s function of the equation (12.2.30) in the form 

[ ]
3i

1 3 32 2
0 1

sin sin2( ; ) e ( , ; )
1 ( / )

n nt

n nn

x
u x t G x t

T l
ω α α ξ

ξ
α ω ω

∞

=
= =

−∑ , 
 

(12.2.35) 

corresponding to a line of influence for the thread. We notice the relation 

3 3( , ; ) ( , ; )G x t G x tξ ξ= , (12.2.35') 

that is a reciprocity theorem of Betti type (the displacement at the point 3x , due to a 

unitary concentrated force applied at ξ, is equal to the displacement at ξ, due to a 
unitary concentrated force applied at 3x ). In this case, we obtain 

1 3 30
( ; ) ( ) ( , ; )d

l
u x t p G x tξ ξ ξ= ∫  

 

(12.2.35'') 

for an arbitrary load (12.2.32'). We can express Green’s function also in a finite form by 
the relation (expanding this relation into a Fourier series, we get (12.2.35)) 

i 3 3
3

0 3 3

sin sin ( )   for   0 ,e( , ; )
sin sin sin ( )   for  . 

t x l x
G x t

T l l x x l

ω α α ξ ξ
ξ

α α αξ α ξ

− < <⎧⎪= ⎨ − < <⎪⎩
 

 
(12.2.35''') 

If the vibrations are arbitrary (non-stationary), we impose the initial conditions 
(12.2.23') too. Effecting a Laplace transform and a finite sinus Fourier transform on the 
equation (12.2.25), brought to the form (12.2.25') in distributions, we get 

[ ][ ] [ ] [ ]( )0 0
1 1 12 2 2

1F L F Fs s su u p u
p cα

= +
+

;  

using the same method of computation, it results, finally, 

0 0
1 3 1 1 30 01

2 sin( ; ) cos ( )sin d ( )sin d sin
l ln

n n n n
nn

tu x t t u u x
l

ω
ω ξ α ξ ξ ξ α ξ ξ α

ω

∞

=

⎡ ⎤= +⎢ ⎥⎣ ⎦∑ ∫ ∫ , 

 (12.2.36) 

with the notations (12.2.33), (12.2.33'). 
Taking into account the action of a perturbing force 1 1 3( ; )p p x t= , we apply, 

analogously, the Laplace transform and the finite sinus Fourier transform to the 
equation (12.2.30); neglecting the influence of the initial conditions (homogeneous 
initial conditions), we obtain 

[ ][ ] ( ) [ ][ ]1 12 2 2
1F L F Ls su p

p cμ α
=

+
,  
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wherefrom, using the convolution theorem, we get 

3
1 3 10 00 1

sin2( ; ) sin d ( ; )sin ( )d
l tn

n n
nn

xcu x t p t
T l

α
α ξ ξ ξ τ ω τ τ

α

∞

=
= −∑ ∫ ∫ . 

 

(12.2.36') 

If the thread is acted upon by a concentrated unitary force at the initial moment (a 
shock), at the point 3x ξ= , we can write 1 3 3( ; ) ( ) ( )p x t x tδ ξ δ= − × , obtaining the 
corresponding Green function 

3
3 3

0 1

sin2( , ; ) sin sin ( ) ( , ; )
sin

n
n n

nn

xcG x t t G x t
T l

α
ξ α ξ ω ξ

α

∞

=
= =∑ , 

 

(12.2.37) 

so that, for an arbitrary load 0
1 3( ; )p x t C∈ , it results 

1 3 3 10 0
( ; ) d ( , ; ) ( ; )d

l t
u x t G x t pξ ξ τ ξ τ τ= −∫ ∫ . 

 

(12.2.37') 

12.2.2 Motion of a Straight Bar 

The straight bar is a rectilinear one-dimensional continuous mechanical system for 
which, in the computation of the momentum H and of the moment of momentum OK , 

one must take into account the cross section of area A. In what follows, we present 
some results concerning the motion and the vibrations of a straight bar. 

12.2.2.1 Equations of Motion of a Straight Bar 

Assuming that the linear unit mass μ is constant on the cross section of area A (it does 
not depend on the position vector r situated in the plane of that section and having the 
origin on the bar axis), we can write ( 3d ds x= ) 

3
1= ( , ; )d d

A
t A x

A
λ

λ
μ λ

′′

′
⎡ ⎤
⎣ ⎦∫ ∫H v r , 

3
1= ( ) ( , ; )d dO A

t A x
A

λ

λ
μ λ

′′

′
⎡ ⎤+ × ⎣ ⎦∫ ∫K r r v r . 

 

Proceeding as in Sect. 12.2.1.1 and observing that ( ( )/ t∂ + ∂ =r r v ) 

( ) d d d
A A A

A A A
t t

∂ ∂+ × − × = ×
∂ ∂∫ ∫ ∫r r v r v r a ,  

we obtain the equations 

,3 d d d
A A A

A A A
A t A A
μ μ μ∂+ = = =

∂ ∫ ∫ ∫R p v a u , 
 

(12.2.38) 

,3 3 d d
A A

A A
A A
μ μ+ × + = × = ×∫ ∫M i r m r a r u , 

 

(12.2.38') 
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where we have used an orthonormed right-handed fixed frame 1 2 3Ox x x , the 3Ox -axis 
being along the bar axis, and where we took into account the displacement acceleration 
(12.1.3'). In the frame of the notation convention used in technical mechanics of 
deformable solids, the components of the torsor of internal forces (the efforts on the 
cross section) are given by (4.2.41) and the external load is expressed in the form 
(4.2.41') (Fig. 12.12ab); there results the relations (the rectilinear continuous 
mechanical system is flexible, torsionable and extensible) 

2,3 1 1dA
T p u A

A
μ− + = ∫ ,   1,3 2 2dA

T p u A
A
μ+ = ∫ , 

1,3 3 3dA
N p u A

A
μ+ = ∫ , 

 
 

(12.2.39) 

1,3 1 1 2 3dA
M T m x u A

A
μ− + = ∫ ,   2,3 2 2 1 3dA

M T m x u A
A
μ− + = − ∫ , 

( ),3 3 1 2 2 1 dt A
M m x u x u A

A
μ+ = −∫ . 

 
 

(12.2.39') 

Eliminating the shearing forces, we get 

( )1,33 1,3 2 2 2 3,3 d
A

M m p u x u A
A
μ+ + = +∫ ,   

( )2,33 2,3 1 1 1 3,3 d
A

M m p u x u A
A
μ+ − = − +∫ . 

 
 

(12.2.40) 

 
Fig. 12.12  Efforts on a cross section of a straight bar: forces (a), moments (b) 

In case of external loads contained in the plane 1 3Ox x  we have 2 0p = , 

1 3 0m m= = ; it results 

1,3 2dA
T u A

A
μ= ∫ ,   1,3 1 2 3dA

M T x u A
A
μ= + ∫ , 

( ),3 1 2 2 1 dt A
M x u x u A

A
μ= −∫ , 

 
 

(12.2.41) 

wherefrom, integrating with respect to 3x , we obtain, successively, the efforts 1T , 1M  
and tM . If we have 2 0m =  too, then the other relations can be written in the form 
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2,3 1 1dA
T p u A

A
μ= − ∫ ,   ,3 3 3dA

N p u A
A
μ= − + ∫ , 

2,3 2 1 3dA
M T x u A

A
μ= − ∫ , 

 
 

(12.2.41') 

wherefrom 

( )2,33 1 1 1 3,3 d
A

M p u x u A
A
μ= − +∫ . 

 

(12.2.41'') 

2.2.2 Longitudinal and Torsional Vibrations of a Straight Bar 

If the efforts on the cross section are reduced to the axial force N, we are in the 
particular case in which 1 2 0p p= = , 1 2 3 0m m m= = = ; the components of the 
displacement vector are 1 2 0u u= = , 3 3 1 2( , ; )u u x x t= . The equations (12.2.39), 
(12.2.39') are reduced to the second equation (12.2.41'), the other equations being 
identically verified; observing that the axial force is given by 

33 33 3,3N A AE EAuσ ε= = = , where EA is the rigidity by axial efforts, this equation 
takes the form (12.2.10') or the form 

3,33 32
1 0u u
c

− = ,   2 EAc
μ

= , 
 

(12.2.42) 

corresponding to the equation (12.2.15), in the absence of the perturbing force. We can 
thus state that the longitudinal vibrations of the straight bar are governed by the same 
partial derivative equations as the longitudinal vibrations of threads. 

The solutions of the boundary value problem depend on the conditions on the end 
cross sections of the bar (bilocal conditions) and on the initial conditions. Thus, in case 
of a bar of infinite length with initial conditions (12.2.21') for 3 ( , )x ∈ −∞ ∞ , we find 

[ ] 3

3

0 0 0
3 3 3 3 3 3 3

1 1( ; ) ( ) ( ) ( )d
2 2

x ct

x ct
u x t u x ct u x ct u

c
ξ ξ

+

−
= + + − + ∫ . 

 

(12.2.42') 

In case of free longitudinal vibrations of a simply supported bar of finite length l, 
hence for which the bilocal conditions (12.2.21) are put, we impose the same initial 
conditions (12.2.21'); we obtain thus 

0 0
3 3 3 3 30 01

2 sin( ; ) sin cos ( )sin d ( )sin d
l ln

n n n n
nn

tu x t x t u u
l

ω
α ω ξ α ξ ξ ξ α ξ ξ

ω

∞

=

⎡ ⎤= +⎢ ⎥⎣ ⎦∑ ∫ ∫ , 

 (12.2.43) 

with the proper pulsations 

n n
n EAc
l
π

ω α
μ

= = ,   n
n
l
π

α = , 
 

(12.2.43') 
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corresponding to the formula (12.2.36). For the forced vibrations of the bar, due to the 
perturbing force 3 3 3( ; )p p x t= , the formula (12.2.36') allows to write 

3
3 3 30 01

sin2( ; ) sin d ( ; )sin ( )d
l tn

n n
nn

xcu x t p t
EA l

α
α ξ ξ ξ τ ω τ τ

α

∞

=
= −∑ ∫ ∫ ; 

 

(12.2.43'') 

in particular, in case of the perturbing force i
3 3 3( ; ) ( )e tp x t p x ω= , 0ω > , it results 

[ ]
3i

3 3 2 2 01

sin2( ; ) e ( )sin d
1 ( / )

lnt
n

n nn

x
u x t p

EAl
ω α

ξ α ξ ξ
α ω ω

∞

=
=

−∑ ∫ , 
 

(12.2.43''') 

corresponding to the formula (12.2.34). In case of other types of supports, the 
corresponding boundary conditions are modified; e.g., if the right end cross section 
( 3x l= ) is free, then the normal stress 33σ  must vanish, i.e. 

3,3 ( ; ) 0u l t = ,   0t t≥ , (12.2.44) 

taking into account Hooke’s law. 
In case of a phenomenon of torsion, the moment of torsion is given by t tM GI θ= , 

where tGI  is the torsional rigidity (G is the modulus of transverse elasticity and tI  is 
the moment of inertia by torsion, which is reduced to the polar moment of inertia OI  in 
case of a circular or annular cross section), while ,3θ ϑ=  is the angle of unit rotation 
( ϑ  is the rotation angle); one can show that 1 2u x ϑ= − , 3 1u x ϑ= , so that from the 
third equation (12.2.39') we obtain the equation of free torsional vibrations of the 
straight bar in the form 

,33 3t OGI m I
A
μ

ϑ ϑ+ = , 
 

(12.2.45) 

where OI  is the polar moment of inertia of the cross section. This equation is of the 
same form as the equation of longitudinal vibrations of the bar. In the absence of the 
perturbing moment 3m , the homogeneous equation (12.2.45) can be written in the form 

,33 2
1 0
c

ϑ ϑ− = ,   2 t

O

IGAc
Iμ

= , 
 

(12.2.45') 

where GA is the shearing rigidity. If the left end cross section of the bar is built-in, the 
condition 

(0; ) 0tϑ =  (12.2.46) 

is imposed, while if it is free one must have 

,3 (0; ) 0tϑ = ; (12.2.46') 
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the initial conditions are put in the form 

3 0 3( ;0) ( )x xϑ ϑ= ,   3 0 3( ;0) ( )x xϑ ϑ= ,   [ ]3 0,x l∈ . (12.2.46'') 

Thus, the study of the boundary value problems is made as in the preceding cases. 

2.2.3 Transverse Vibrations of the Straight Bar 

In case of a straight bar subjected to bending and shearing in the plane 1 3Ox x , due to 
an external load 1 0p ≠ , it results 1 1 0tN T M M= = = =  and we have 

2 2 1,33M EI u= , corresponding to the Bernoulli-Euler equation, 3 1 1,3u x u= −  and 

1,1 2,2 0u u= = , corresponding to the hypothesis of plane cross sections of Jacob 
Bernoulli (a plane cross section, normal to the bar axis before deformation remains 
plane and normal to the deformed axis after application of the external loads; a segment 
of a line normal to this axis is not subjected to linear strains); here, 2EI  is the bending 
rigidity of the bar, 2I  being the moment of inertia with respect to the 2Ox -axis (the 
neutral axis of the bar). The equation (12.2.41'') becomes 

2 1,3333 1 2 1,33 1EI u u I u p
A
μ

μ+ − = . 
 

(12.2.47) 

The influence of the term 2
2 1,33 2 1,33(1/ )A I u i u= , where 2i  is the gyration radius with 

respect to the 2Ox -axis, given by a formula of the form (3.1.30'), on the acceleration 

1u  is small; the researches of Rayleigh showed that this term is important only for high 
frequencies of the vibrations. We will use thus the simplified equation of the transverse 
vibrations of the straight bar 

12
1,3333 1

p
c u u

μ
+ = ,   22 EI

c
μ

= , 
 

(12.2.47') 

to which we associate the initial conditions (12.2.23'), together with two other 
conditions at the end cross sections of the bar (bilocal conditions). The efforts on an 
arbitrary cross section of the bar are given by (the third relation (12.2.41') leads to 

2
2 2 1,333 2 1,3T EI u i uμ= − , so that we make the same approximation as above) 

2 3 2 1,33( ; )M x t EI u= ,   2 3 2 1,333( ; )T x t EI u= , (12.2.47'') 

where 1 1 3( ; )u u x t=  is the solution of the equation (12.2.47'). If the end cross section 

3 0x =  is hinged, then it results 

1 (0; ) 0u t = ,   2 2 1,33(0; ) (0; ) 0M t EI u t= = , (12.2.48) 

if this section is built-in, then we have 

1 (0; ) 0u t = ,   1,3 (0; ) 0u t =  (12.2.48') 
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and, finally, if the respective cross section is free, then we put the conditions 

2 2 1,33(0; ) (0; ) 0M t EI u t= = ,   2 2 1,333(0; ) (0; ) 0T t EI u t= = . (12.2.48'') 

In case of free vibrations of a bar of infinite length one puts only initial conditions of 
the form 

0
1 3 1 30 0

lim ( ; ) ( )
t

u x t u x
→ +

= ,   0
1 3 1,33 30 0

lim ( ; ) ( )
t

u x t cU x
→ +

= , 
 

(12.2.49) 

where c is a constant, while 0
1 3( )u x  and 0

1 3( )U x  are given distributions, the 
differentiation being effected in the sense of the theory of distributions; the equation of 
motion will be 

2
1,3333 1 0c u u+ = ,   0t > . 

 

(12.2.49') 

To can replace the differential equation (12.2.49') by a differential equation in 
distributions, as it was shown by W. Kecs and P.P. Teodorescu, we introduce the 
generalized displacement ( ( )tθ  is Heaviside’s distribution) 

1 3 1 3( ; ) ( ) ( ; )u x t t u x tθ= , (12.2.50) 

by a prolongation at left with null values; at the initial moment 0t =  appears a 
discontinuity of the first kind. Using the formula (1.1.51), we can write 

4 4

1 3 1 34 4
3 3

( ; ) ( ; )u x t u x t
x x
∂ ∂=

∂ ∂
,   0

1 3 1 3 1 3( ; ) ( ; ) ( ) ( )u x t u x t u x t
t t

δ
∂ ∂= +
∂ ∂

, 

2 2
0 0

1 3 1 3 1,33 3 1 32 2( ; ) ( ; ) ( ) ( ) ( ) ( )u x t u x t cU x t u x t
t t

δ δ
∂ ∂= + +
∂ ∂

, 

 

so that the equation (12.2.49') becomes, in a modified form (we have 2 2
1 1 /u u t= ∂ ∂  

and 4 4
1,3333 1 3/u u x= ∂ ∂  for 0t > ), 

2 0 0
1,3333 3 1 3 1,33 3 1 3( ; ) ( ; ) ( ) ( ) ( ) ( )c u x t u x t cU x t u x tδ δ+ = + , (12.2.49'') 

which contains the initial conditions too, being written in distributions. To find the 
solution of the equation (12.2.49''), we apply the Laplace transform, with respect to the 
time variable, and the Fourier transform, with respect to the space variable. We obtain 
thus 

[ ][ ] [ ][ ]2 4 2
3 1 3 1 3( i ) F L ( ; ) F L ( ; )c u x t p u x tα− +  

[ ] [ ]2 0 0
3 1 3 1 3( i ) F ( ) F ( )c U x p u xα= − + , 

 

wherefrom 
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[ ][ ] [ ] [ ]
2
30 0

1 3 1 3 1 32 4 2 2 4 2
3 3

F L ( ; ) F ( ) F ( )
cpu x t u x U x

p c p c
α

α α
= −

+ +
. 

 

Applying the inverse Laplace transform and taking into account formulae of the form 

[ ] 2 2L ( )cos px x
p

θ ω
ω

=
+

,   [ ] 2 2L ( )sinx x
p

ω
θ ω

ω
=

+
,   Re 0p > , 

 

(12.2.51) 

we can write 

[ ] [ ] ( ) [ ] ( )0 2 0 2
1 3 1 3 3 1 3 3F ( ; ) F ( ) cos F ( ) sinu x t u x ct U x ctα α= − .  

Applying the inverse Fourier transform to the latter relation, we get 

[ ] ( )[ ] [ ] ( )[ ]1 0 2 1 0 2
1 3 1 3 3 1 3 3( ; ) F F ( ) cos F F ( ) sinu x t u x ct U x ctα α− −= − .  

Observing that 

( )
2 2
3 3 2

3F cos sin 2 2 cos
4 4
x x

ct ct
ct ct

π α⎡ ⎤+ =⎢ ⎥⎣ ⎦
, 

( )
2 2
3 3 2

3F cos sin 2 2 sin
4 4
x x

ct ct
ct ct

π α⎡ ⎤− =⎢ ⎥⎣ ⎦
 

 

and taking into account the formula (A.3.15) concerning the Fourier transform of a 
convolution product, in the case in which one of the factors is a temperate distribution, 
while the other factor is a distribution with bounded support, we can write the solution 
of the problem in the form 

2 2
3 30

1 3 1 3
1( ; ) ( ) cos sin

4 42 2
x x

u x t u x
ct ctctπ

⎡ ⎛ ⎞= ∗ +⎜ ⎟⎢⎣ ⎝ ⎠
 

2 2
3 30

1 3( ) cos sin
4 4
x x

U x
ct ct

⎛ ⎞ ⎤− ∗ −⎜ ⎟ ⎥⎝ ⎠ ⎦
. 

 
 
 
 

(12.2.52) 

If 0
1 3( )u x  and 0

1 3( )U x  are locally integrable functions, then we have 

2 2
0

1 3 1 3
1( ; ) ( ) cos sin

4 42 2
u x t u x

ct ctct
ξ ξ

ξ
π

∞

−∞

⎡ ⎛ ⎞= − +⎜ ⎟⎢⎣ ⎝ ⎠∫  

2 2
0
1 3( ) cos sin d

4 4
U x

ct ct
ξ ξ

ξ ξ⎛ ⎞ ⎤− − −⎜ ⎟ ⎥⎝ ⎠ ⎦
,   0t ≥ ; 

 
 
 
 

(12.2.52') 

introducing a new variable λ by the relation 2 2 / 4ctλ ξ= , we find again the solution 
given by Boussinesq 
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( ) ( )[ 0 2 2
1 3 1 3

1( ; ) 2 cos sin
2

u x t u x ctλ λ λ
π

∞

−∞
= − +∫  

( ) ( ) ]0 2 2
1 3 2 cos sin dU x ctλ λ λ λ− − − ,   0t ≥ . 

 
 
 

(12.2.52'') 

In case of a semi-infinite bar ( 3 [0, )x ∈ ∞ ) with homogeneous initial conditions 
( 1 3( ;0) 0u x = , 1 3( ;0) 0u x = ) and for which the displacement 1 (0; ) ( )u t u t= , 

0t > , has been imposed, the end cross section being free of stresses ( 1,33 (0; ) 0u t = , 
0t > ), we find an analogous solution, given also by Boussinesq ( ( )u t  is a locally 

integrable function) 

3

2 2 2
3

1 3 2/ 2

1( ; ) sin cos d
2 22x ct

x
u x t u t

c
λ λ

λ
π λ

∞ ⎛ ⎞ ⎛ ⎞= − +⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠∫ ,   0t ≥ . 
 

(12.2.53) 

To determine the free vibrations of a bar of finite length l, we assume that 

i
1 3 3( ; ) ( )e tu x t U x ω= ,   [ ]3 0,x l∈  (12.2.54) 

the homogeneous equation (12.2.47') leading to the differential equation 

4
,3333 0U Uλ− = ,   

2
4

2c
ω

λ = ; 
 

(12.2.54') 

on the same way, using the formula (1.1.51), we can write this equation in distributions 
in the form ( 3 3 3( ) ( ) ( )U x x U xθ= ) 

4
,3333 3 3 ,333 3 ,33 ,3 3( ) ( ) (0) ( ) (0) ( )U x U x U x U xλ δ δ− = +  

,3 ,33 3 ,333 3(0) ( ) (0) ( )U x U xδ δ+ + . 

 

 
(12.2.54'') 

Applying the Laplace transform and taking into account the formula (A.3.21), we 
obtain 

[ ] [ ]3 2
3 ,3 ,33 ,3334 4

1L ( ) (0) (0) (0) (0)U x p U p U pU U
p λ

= + + +
−

,  

which leads to 

3 1 3 ,3 2 3
1( ) (0) ( ) (0) ( )U x U f x U f xλ λ
λ

= +  

,33 3 3 ,333 342 3
1 1(0) ( ) (0) ( )U f x U f xλ λ
λ λ

+ + ,   3 0x ≥ , 

 
 
 

(12.2.55) 

where the functions 
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1 3 3 3
1( ) (cosh cos )
2

f x x xλ λ λ= + ,   2 3 3 3
1( ) (sinh sin )
2

f x x xλ λ λ= + , 

3 3 3 3
1( ) (cosh cos )
2

f x x xλ λ λ= − ,   3 3 34
1( ) (sinh sin )
2

f x x xλ λ λ= − , 

 
 

(12.2.56) 

verify the relations 

1,3 3 34( ) ( )f x f xλ λ λ= ,   2,3 3 1 3( ) ( )f x f xλ λ λ= , 

3,3 3 2 3( ) ( )f x f xλ λ λ= ,   3 3 34,3 ( ) ( )f x f xλ λ λ= . 

 
(12.2.56') 

Taking into account (12.1.47''), we notice that (0)U , ,3 (0)U , ,33 (0)U  and ,333 (0)U , 
hence the quantities which appear in the Cauchy type conditions, are quantities in direct 
proportion to the displacement, the rotation, the bending moment and the shearing 
force, respectively, at the left end cross section of the bar. As a matter of fact, these 
quantities can be easily calculated in any cross section of the bar ( [ ]3 0,x l∀ ∈ ) in the 
form 

,3 3 3 ,3 1 34( ) (0) ( ) (0) ( )U x U f x U f xλ λ λ= +  

,33 2 3 ,333 3 32
1 1(0) ( ) (0) ( )U f x U f xλ λ
λ λ

+ + , 

2
,33 3 3 3 ,3 34( ) (0) ( ) (0) ( )U x U f x U f xλ λ λ λ= +  

,33 1 3 ,333 2 3
1(0) ( ) (0) ( )U f x U f xλ λ
λ

+ + , 
3 2

,333 3 2 3 ,3 3 3( ) (0) ( ) (0) ( )U x U f x U f xλ λ λ λ= +  

,33 3 ,333 1 34(0) ( ) (0) ( )U f x U f xλ λ λ+ + . 

 
 
 
 
 

(12.2.55') 

Using bilocal conditions of the form (12.2.48 – 12.2.48''), two of the quantities (0)U , 

,3 (0)U , ,33 (0)U , ,333 (0)U  are equated to zero, while the relations (12.2.55), (12.2.55') 
allow to calculate the other two quantities. One can thus obtain the frequency of the 
proper vibrations and their corresponding modes. For instance, in case of a simply 
supported bar we impose the conditions ,33 ,33(0) (0) ( ) ( ) 0U U U l U l= = = = , 
wherefrom 

,3 2 ,333 42
1(0) ( ) (0) ( ) 0U f l U f lλ λ
λ

+ = ,   ,3 ,333 24 2
1(0) ( ) (0) ( ) 0U f l U f lλ λ
λ

+ = ;  

this homogeneous system has non-trivial solutions if 2 2
2 4( ) ( ) 0f l f lλ λ− =  leading to 

sinh sin 0l lλ λ =  or to nl nλ π= , n ∈ . With the notations (12.2.47'), (12.2.54') we 
obtain the proper pulsations 

2 2
2

2n
EIn

l
π

ω
μ

= ,   1,2,...n = . 
 

(12.2.57) 
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In this case [ ]2
,333 2 ,3 ,34(0)/ ( )/ ( ) (0) (0)U f l f l U Uλ λ λ= − = − , so that the modes of 

the proper vibrations are sinusoidal 

3 ,3 3 3
1( ) (0)sin sinn n n n
n

U x U x C xλ λ
λ

= = , 
 

(12.2.57') 

where constnC =  for a certain mode of vibration. If the bar is built-in at the left end 
cross section and simply supported at the right one (complex problem, the bar being 
statically indeterminate), we put the conditions ,3(0) (0) 0U U= = , ,33( ) ( )

0
U l U l=

= ; we are thus led to the system of homogeneous equations 

,33 3 ,333 42 3
1 1(0) ( ) (0) ( ) 0U f l U f lλ λ
λ λ

+ = ,   

,33 1 ,333 2
1(0) ( ) (0) ( ) 0U f l U f lλ λ
λ

+ = , 

 

which admits non-trivial solutions if 

3 2 14( ) ( ) ( ) ( ) 0f l f l f l f lλ λ λ λ− = .  

We obtain thus the characteristic equation tanh tanl lλ λ=  with the roots 
1 3.927/lλ = , 2 7.069/lλ = , 3 10.210/lλ = , 4 13.352/lλ = , 5 16.493/lλ = ; for 

5n >  we can use the asymptotic formula (4 1) / 4n n lλ π= + . The proper pulsations 
are thus given by 

22 2
n n n

EI
cω λ λ

μ
= = ,   1,2,...n = . 

 

(12.2.58) 

The modes of vibrations are 

3
3 3 3 34

4

( )
( ) ( ) ( )

( )
n

n n n
n

f l
U x C f x f x

f l
λ

λ λ
λ

⎡ ⎤= −⎢ ⎥⎣ ⎦
, 

 
(12.2.58') 

where 2
,33 (0)/ nC U λ=  for a certain mode of vibration. Other cases of support may be 

analogously studied. 
Considering also the particular solution of the equation (12.2.47') for 1 0p ≠ , we 

obtain results which put in evidence the forced transverse vibrations of the straight bar. 
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Chapter 13 

Other Considerations on Dynamics of Mechanical Systems 

In this chapter, we consider firstly the case of motions with discontinuity, putting in 
evidence the phenomenon of collision in case of a discrete mechanical system. We deal 
then with some problems concerning mechanical systems of variable mass. 

13.1 Motions with Discontinuity 

Using the results obtained in Chap. 5, Sect. 1.2.6 concerning the acceleration of a 
particle, its motion with discontinuity has been considered in Chap. 10, Sect. 1; the 
results thus obtained have been then applied to the study of the corresponding 
phenomenon of collision. The relations of jump which have been put in evidence with 
this occasion, as well as the relations of jump presented in Sect. 11.1.2, concerning the 
discrete mechanical systems, are also useful in the study of the phenomenon of 
collision. Starting from the case of only one particle, we pass to a finite system of 
particles, modelling mathematically the phenomenon of collision and presenting the 
corresponding general theorems. We make then a general study of elastic collisions, 
while for the plastic collisions we introduce a space of plastic collisions. 

13.1.1  Phenomenon of Collision in Case of a Discrete  
Mechanical System 

After some general considerations, we present various aspects of the phenomenon of 
collision in case of a single particle; passing to the case of a discrete mechanical system, 
a particular attention is given to the general theorems, including the Carnot and Kelvin 
ones, as well as the principle of virtual work. 

13.1.1.1 General Considerations 

In general, during the motion of a mechanical system, the velocity (hence, the 
momentum) of each particle has a continuous variation. If in the evolution of these 
quantities appear discontinuities, then we say that the mechanical system is subjected to 
a shock; the corresponding mechanical phenomenon is called collision. We mention 
thus various cases of simple technique: nail beating, modelling by beating with a 
hammer etc. or forging, pressing, boring, riveting, beating a pile with a drop hammer 
etc., as well as the collision of a car with a wall (the velocity decreases from a finite 
value to zero in a very short time). The phenomenon of collision appears also by 
applying suddenly a rigid link upon a mechanical system in motion (the velocities and 
the momenta have a sudden variation); but a sudden loss of a link does not lead to 
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collision, because the velocities and the momenta have a continuous variation. As well, 
the sudden rigid linking of two mechanical systems, one of them being in motion and 
the other at rest (the clutch of two mechanisms) is a collision; but the sudden separation 
of those mechanical systems (the clutch release of two mechanisms) is a continuous 
phenomenon from the point of view of velocities and momenta. 

In the frame of the collision phenomenon, in a very short but finite interval of time 
[ ]′ ′′,t t , called interval of collision, the velocities of the particles of the (discrete or 
continuous) mechanical system have finite variations (in magnitude and direction), their 
positions remaining practically unchanged. As a matter of fact, a deformation of the 
bodies in collision takes place in case of continuous mechanical systems; this 
deformation may be permanent (a plastic one) or not (an elastic one). On the other 
hand, during the mechanical phenomenon, a growth of heat takes place, but it will be 
neglected in what follows. The fundamental problem consists in the determination of 
the velocities of the particles of a mechanical system after collision, assuming that the 
corresponding velocities before the phenomenon are known. 

In the interval of collision, between the bodies (in general, mechanical systems) in 
contact are developed forces, the intensity of which increases quickly, reaching very 
great values, and then decreases; under the action of these forces, the bodies are 
deformed and we distinguish a compression phase and a relaxation phase, so that the 
model of rigid solid is no more sufficient. It is extremely difficult to establish 
theoretically or to determine experimentally the variation law of these forces in time. 
We are thus led to the notion of percussion, as it was defined in Chap. 10, Sect. 1.2.3, 
starting from the notions of generalized force and impulse of the generalized force. 

 
Fig. 13.1  Collision of a heavy body with an elastic spring  

(model of a collision phenomenon) 

We illustrate the above affirmations, together with R. Voinaroski, considering the 
falling along the vertical of a heavy body (modelled as a particle P of mass m), which 
comes in contact with a spring vertically guided; the spring is deformed till a position 
for which the velocity vanishes and, due to its relaxation, the body is launched up, and 
then is separated from the spring. The equation of motion of the particle P in contact 
with the spring is = −mx mg kx , where > 0k  is the elastic constant of the spring, 
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the Ox-axis being directed along the descendent vertical (Fig. 13.1). At the initial 

moment = 0t  we impose the conditions =(0) 0x , = =0(0) 2x v gh , h being the 

height of free falling of the particle P. Denoting =2 /k mω , > 0ω , we obtain 

= − + 2( ) cos( ) gx t a tω ϕ
ω

,   = − −( ) sin( )v t a tω ϕ , 
 

(13.1.1) 

where 

= +2 2 2
2

1a g v ω
ω

,   ⎛ ⎞= −⎜ ⎟
⎝ ⎠

0arc tan
v
g
ω

ϕ ; 
 

(13.1.1') 

the spring is compressed in the time interval beginning with = −0 0arctan( / )/t v gω ω  
till =0( ) 0x t , and then it is relaxed till the moment Δ = 02t t  for which Δ = − 0( )v t v , 
the jump of the velocity being Δ = − Δ = 0(0) ( ) 2v v v t v . The maximal variation of the 
position of the contact point between the body and the spring is given by 

( )Δ = = + +2 2 2 2
0( ) /x x t g g v ω ω . Let be a helical cylindrical spring of elastic 

constant = ⋅ 43 10  daN/mk  and a particle of mass = 10 kgm , which falls from 1 m 
height; it results −= ⋅2 4 23 10  sω , ≅0 4.429 m/sv  (we have taken = 29.81 m/sg ), 
Δ ≅ 8.858 m/sv , −≅ ⋅ 3

0 9.142 10 st , −Δ ≅ ⋅ 21.829 10 st , Δ ≅ 0.026 mx , 
Δ = Δ = ⋅ = ⋅88.58 kg m/s 8.858 daN sH m v . The maximal intensity of the force by 

which the spring acts upon the particle P is given by = Δ ≅max 780 daNF k x , hence 
much greater than the weight ≅ 9.81 daNmg  of it. The percussions given by each of 
these forces will be 

= + = Δ + Δ∫
0

0 00
2 ( )d 2 2

t
kx t t mv mgt m v mg t  

≅ + ⋅ = ⋅ = ⋅(88.58 1.79) kg m/s 90.37  kg m/s 9.037  daN s , 

= = Δ = ⋅ = ⋅∫
0

00
2 d 2 1.79 kg m/s 0.179 daN s

t
mg t mgt mg t . 

 

The above case can be considered to be a first modelling of a collision, in which some 
aspects of this phenomenon (e.g., the mass of the spring, the variation of the unknown 
intensity of the percussive force, modelled as an elastic force, the deformation of the 
body modelled as a particle etc.) have been neglected; we mention also that the moment 
of detachment of the particle from the spring (in calculation has been considered a 
relaxation till the moment Δt) has not been specified. As well, replacing the spring by a 
damper or by a model formed by a spring and a damper (in parallel or in series), we can 
obtain a model closer to the reality for the considered mechanical phenomenon. But we 
can obtain thus useful conclusions to set up a mathematical model with a general 
character for this phenomenon. We notice thus that ≅0.179/9.037 0.020, hence the 
percussion due to usual forces (which act permanently) may be neglected with respect 
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to the percussion due to the forces which appear only in the interval of percussion (in 
the considered case, the usual forces have a contribution of only 2% in what concerns 

the percussion). We notice also that the interval of percussion Δt is small with respect to 

the time in which the mechanical phenomenon takes place and that the displacement Δx 
can be neglected with respect to the dimensions of the mechanical systems which 
intervene; indeed, if we assume, e.g., that the body modelled by the particle P is of 
steel, then its volume would have approximately 30.001282 m , so that, for any of its 
form, it would have dimensions much greater that Δx (moreover, the particle modelling 
implies the neglecting of the dimensions of the body, so much the more the neglecting 
of the displacement Δx). 

 
Fig. 13.2  Internal percussions of two particles 

The interval of collision is called also interval of percussion. The forces which 
appear in the interval of percussion and which have a great intensity (provoking great 
variations of the momentum), in a very short interval of time (the percussion interval), 
are called percussive forces, the other forces (the weight of bodies, the elastic forces, 
the resistance of the air etc.) being usual (non-percussive) forces. Therefore, the 
percussive forces as well as the percussion interval are thus difficult to estimate; we can 
put better in evidence the mechanical phenomenon with the aid of the percussion 
defined by the formula (10.1.40). Thus, the two quantities (a vector and a scalar one), of 
very different order of magnitude, are replaced by a vector quantity of a mean order of 
magnitude. Because the percussions are obtained starting from the percussive forces, 
these ones can be classified analogously. We distinguish thus between given percussive 
forces and constraint percussive forces, as well as between external percussive forces 
and internal percussive forces. Obviously, in case of a mechanical system, starting from 
the internal forces Fij  and Fji , which represent the actions of the particles iP  and jP , 
respectively, one upon the other, having as support the straight line i jP P  and being 
linked by the relation (1.1.81), we can define the internal percussions Pij  of support 

i jP P  ( =Pij i jP Pλ , λ scalar) and the internal percussion Pji , respectively, both 
percussions being linked by the relation (Fig. 13.2) 

+ =P P 0ij ji ; (13.1.2) 

corresponding to the relation (2.2.50), the above properties of the internal percussions 
(either given or constraint ones) can be expressed in a concise form (the pole O is 
arbitrary) 
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{ }τ =P P 0,ij jiO . 
 

(13.1.2') 

Before passing to limit in the formula (10.1.40), we can write the relation 
corresponding to a mean percussion in the form 

′′

′
= ∫P F( )d

t
m

t
t t ; 

 

(13.1.3) 

if Fm  is the mean percussive force in the percussion interval, then we have 

′′ ′= − = ΔP F F( )m m mt t t . (13.1.3') 

Assuming that, till the moment [ ]′ ′′∈0 ,t t t  takes place a compression phase (in the 
interval [ ′ 0,t t ), a relaxation phase being then developed in the interval ]′′0 ,t t , we 
can define the corresponding mean percussions 

′
= ∫P F0 ( )d

t
cm

t
t t ,   

′′
= ∫P F

0
( )d

t
rm

t
t t , 

 

(13.1.4) 

with the obvious relation 

= +P P Pm cm rm . (13.1.4') 

Passing to limit in the sense of the theory of distributions (F is a generalized force in the 
sense defined in Chap. 10, Sect. 1.1.2), we obtain 

′′− → +
= ∫P F0

0 0 0
lim ( )d

t
c

tt t
t t ,   

′′

′′− → +
= ∫P F

00 0 0
lim ( )d

t
r

tt t
t t , 

 

(13.1.5) 

with the relation 

= +P P Pc r . (13.1.5') 

Together with the generalized force F(t ) appears Dirac’s distribution too, so that we 
can write 

= −F P 0( ) ( )t t tδ , (13.1.6) 

justifying thus the denomination of shock given to the respective phenomenon; the 
percussive forces F(t ) are thus temporal distributions. 

In case of ideal constraints, the constraint percussions PRn  are normal to the surface 
elements of contact, while, in case of constraints with friction, the percussions have not 
only a normal component PRn  but also a tangential one PRt , collinear with the sliding 
velocity and opposite to the latter one; we can assume the Coulombian law 

≤P PRt Rnf , f being a coefficient of sliding friction. The dimensional equation of 
the percussion is [ ] −= = 1FT LMTP . 
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We notice that the phenomenon of collision is characterized by the relative velocity 
of two bodies and not by the absolute velocity of each one. If the support of the relative 
velocity with which a body strikes another body (the collision line) is normal to the 
surface of the latter one, then the collision is normal, while, otherwise, it is oblique (in 
fact, the component of the relative velocity along the collision line intervenes); as well, 
if the support of this velocity passes through the mass centre, then the collision is 
central. For instance, the normal collision of two homogeneous spherical balls is a 
central one. 

For a mathematical modelling of the collision phenomenon, we make some 
hypotheses which, taking into account the above considerations and the simplified 
model studied, correspond sufficiently well to the physical reality. We assume thus that: 

i) The principles of mechanics are applied in the conditions considered in Chap. 10, 
Sect. 1.1.2; especially, the second principle of mechanics is applied in the form 
(1.1.89), the differentiation being in the sense of the theory of distributions, using 
generalized forces of the form (10.1.5), (10.1.5'). 

ii) The usual (non-percussive) forces are neglected with respect to the percussive 
ones (as it was shown in Chap. 10, Sect. 1.2.3). 

iii) It is assumed that, in the interval of percussion, the bodies have not rigid motions 
(translation or rotation), but only deformations; the position vectors of the points of 
contact are constant in this interval. 

It is assumed that, for two given materials, the ratio between the magnitudes of the 
normal components of relaxation and compression percussions, respectively, is constant 

=nr

nc

P k
P

, 
 

(13.1.7) 

the constant k being a restitution coefficient (coefficient of elasticity by collision). 
Experimentally, it is seen that < <0 1k , the magnitude of the normal collision in the 
relaxation phase being smaller than the magnitude corresponding to the compression 
phase; the respective collision is called elastic-plastic (natural) collision too. In the 
ideal case = 1k  we have =nr ncP P , the collision being elastic (e.g., for steel, ivory 
etc.), while for = 0k  it results = 0nrP  and we have to do with a plastic collision (the 
bodies, e.g., wax, plasticine, clay etc., remain in contact also after the phenomenon of 
collision). 

13.1.1.2 Collision Phenomenon in Case of a Single Particle 

In case of a particle subjected to collision, the corresponding mathematical model is 
based on the hypotheses in the preceding subsection and the fundamental equation 
which replaces Newton’s one is the jump relation (10.1.41); the Theorem 10.1.11 of the 
momentum may be thus considered as a basic principle. Unlike Newton’s equation, 
which is a differential equation, the relation (10.1.41) is an algebraic (finite) relation, 
which implies the jump of the momentum (in fact, of the velocity) at the theoretic 
moment 0t  of collision and the percussion at that moment. Assuming that the particle is 
subjected to constraints too, we can write this relation (or the relation (10.1.43)) in the 
form 
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′′ ′Δ = = − = +H v v v P P0 0( ) ( ) Rm m , (13.1.8) 

where ′v  is the velocity of the particle before collision, ′′v  is the velocity of the same 
particle after collision, while P and PR  are the resultants of the percussions 
corresponding to the given and constraint forces, respectively, at the moment 0t . 

Starting from the equation d dt=r v , taking into account the formula (13.1.8) and 
integrating between the limits of the interval of percussion (we use a mean value 
formula), we obtain (by Pc  and PRc  and by Pr  and PRr  we mean the percussions in 

the compression and relaxation phase, respectively, at a moment t) 

′′ ′′

′ ′ ′

+⎛ ⎞′′ ′ ′− = = + = +⎜ ⎟
⎝ ⎠∫ ∫ ∫ ∫

P P
r r v v v v0 0

0
d d d d

t t t t c Rc
t t t t

t t t t
m

 

( )
′′ +⎛ ⎞ ⎡ ⎤′′ ′ ′+ − = + + −⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠∫

P P
v v P P

0
0

1d ( )
t r Rr

cm Rcmt
t t t

m m
 

( )⎡ ⎤′′ ′′+ − + −⎢ ⎥⎣ ⎦
v P P 0

1 ( )rm Rrm t t
m

; 

 

we thus see that the displacement at the contact zone (the difference ′′ ′−r r ) is of the 
order of magnitude of the collision time. Passing to limit ( ′− → +0 0 0t t  and 

′′ − → +0 0 0t t ) and noting that the velocities and the percussions are finite 
magnitudes, it results ′′ ′− →r r 0 ; the hypothesis iii) is thus theoretically justified at 
the limit (at the theoretically collision moment). 

Analogously, the relation (10.1.42) leads to the relation 

( )Δ = × Δ = × +K r H r P P0 0 0 0( ) ( )O R , (13.1.8') 

corresponding to the theorem of the moment of momentum. 
Starting from the relations (10.1.45) and (10.1.45'), we obtain the theorem of kinetic 

energy in the form ( = 2
0 0 /2T mv , ′′ ′ ′′ ′Δ = − = −2 2

0( ) /2 /2T T T mv mv ) 

( ) ′′Δ + = + ⋅P P v0 0( ) RT T , (13.1.9) 

an analogue of the theorem of kinetic energy being given by 

( ) ′Δ − = + ⋅P P v0 0( ) RT T . (13.1.9') 

In particular, if ( ) ′′+ ⋅ =P P v 0R , then we obtain Carnot’s theorem in the same form 
(10.1.47), while if ( ) ′+ ⋅ =P P v 0R , then an analogue of this theorem is given by 
(10.1.47'). As a matter of fact, Carnot’s theorem takes place at the moment of a sudden 
apparition of a rigid constraint, corresponding to a plastic collision. As well, starting 
from (10.1.48) to (10.1.48'), we can establish Kelvin’s theorem or an analogue of this 
theorem, respectively, in the form 
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( ) ′ ′′Δ = + ⋅ +P P v v0
1( ) ( )
2 RT , 

 

(13.1.10) 

( )= + ⋅P P v0 0
1
2 RT . 

 

(13.1.10') 

We notice that all the relations obtained above are algebraic (finite) relations, which– 
obviously – influence (and simplify, in a great measure) the mathematical character of 
the considered problems. Thus, in case of a free particle P, the velocity ′v  before 
collision and the percussion P which appears in the interval of collision are considered 
as known; the velocity of the particle after collision will be given, in this case, by the 
relation (13.1.8) with =P 0R , in the form 

′′ ′= +v v P1
m

. 
 

(13.1.11) 

Taking into account (13.1.11), the relations (13.1.10), (13.1.10') have the remarkable 
form 

′ ′′Δ = ⋅ + = ⋅ −P v P P v P2 2
0

1 1( )
2 2

T
m m

, 
 

(13.1.12) 

= P2
0

1
2

T
m

. 
 

(13.1.12') 

Let us suppose now that the particle P is subjected to a unilateral holonomic (finite), 
rheonomous constraint, of the form 

≡ ≥r 1 2 3( ; ) ( , , ; ) 0f t f x x x t ; (13.1.13) 

hence, it can be on a surface S or aside it, so as it was shown in Chap. 3, Sect. 2.2.5. We 
consider, at the beginning, that the constraint is weak (it is a strict constraint), the 
particle having a free motion given by the equation =r r( )t , [ )∈ ∞0,t ; let ′t  be the 
smallest positive root of the equation = =r r 01 2 3( ( ), ( ), ( ); )x t x t x t t , for which the 

particle P reaches the surface S with the velocity ′v . If the particle moves on the uni-

lateral constraint or leaves it at the moment t, then its velocity must verify the 
condition ≥d /d 0f t  or 

⋅ + ≥vgrad 0f f , (13.1.14) 

corresponding to the results in Chap. 3, Sect. 2.2.5; the inequality appears when the 
particle leaves the constraint. The condition verified by the velocity ′v  when the 
particle reaches the surface S is ′= =d /d 0t tf t . Let us suppose now that v0  is thus 
that ′= <d /d 0t tf t . To put this relation in concordance with the condition (13.1.14), 
we must assume that, in the interval of percussion, appears a constraint percussive 
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force, which leads to a constraint percussion PR ; thus, arises a jump of the particle 
velocity, which – at the end of the percussion interval – will be ′′v , verifying the 
condition (13.1.14). Hence, in the frame of the mathematical model previously set up, 
we must have 

′=
<d

0
d t t

f
t

,   
′′=

≥d
0

d t t

f
t

. 
 

 
Fig. 13.3  Particle subjected to a unilateral constraint – phenomenon of collision 

We can suppose that, at a moment [ ]′ ′′∈0 ,t t t , the particle reaches the surface S, 
where it reaches a velocity v0 , so that to have = =

0
d /d 0t tf t . The velocity ′v  by 

which the particle reaches the surface is called incidental velocity, while the velocity 
′′v  by which that one leaves it reflected velocity; the angles formed by these velocities 

with the external normal to the surface, of unit vector n, are the incidental angle i and 

the reflected angle r, respectively (Fig. 13.3). In case of ideal constraints, the constraint 

percussion PR  is directed along the unit vector n (along grad f ), so that =P nRn RnP . 
The fundamental equation (13.1.8) allows to write =v n0 Rnm P , the variation v0  of 
the velocity taking place along the unit vector n, in its positive sense; it results that both 
velocities ′v  and ′′v  are contained in a plane normal to the surface S, their projections 
on the tangent plane being equal 

′′ ′=sin sinv r v i . (13.1.15) 

The fundamental problem which is put consists in the determination of the reflected 
velocity ′′v  and of the constraint percussion PRn  if the incidental velocity ′v  and the 
position of the particle in the interval of collision (given by the position vector r0 ) are 
known. If ′PRn  and ′′PRn  are the constraint percussions corresponding to the first phase 
and to the second phase of the collision phenomenon, respectively (in case of a 
deformable body, they correspond to the compression phase and to the relaxation phase, 
respectively), then we have 

′ ′− =v v P0( ) Rnm ,   ′′ ′′− =v v P0( ) Rnm , (13.1.16) 
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as well as the obvious relation 

′′ ′ ′ ′′− = = +v v P P P( ) Rn Rn Rnm . (13.1.16') 

The condition == == ⋅ + =v
00 0

0d /d grad 0t tt t t tf t f f  can be transcribed also in 

one of the forms (we take into account the hypothesis iii) 

′= ′=⋅ + =v0grad 0t t t tf f , 
 

(13.1.17) 

′′= ′′=⋅ + =v0grad 0t t t tf f ; 
 

(13.1.17') 

the unknown quantities are thus given by the equations (13.1.16) or (13.1.16') and 
(13.1.17) or (13.1.17'). 

In the particular case of a plastic collision (the first phase of the collision 
phenomenon), the problem to determine the velocity v0  and the constraint percussion 

′PRn  with the aid of the first equation (13.1.16) and of the equation (13.1.17) is put; by 
eliminating the velocity v0  between these equations, one obtains 

′ ′ ′= = =′= ′=
′ ′− ⋅ − = − = ⋅ =v P0 d

grad grad grad
d Rn Rnt t t t t tt t

t t

f
m f m f m f f P

t
, 

so that 

′=
′=

′=

′ = −P 2

d
d

grad
grad

t t
Rn t t

t t

fm
t

f
f

,   ′=
′=

′=

′= −v v0
2

d
d

grad
grad

t t
t t

t t

f
t

f
f

. 

 
 

(13.1.18) 

In general, if the second phase of the collision phenomenon takes place, then one 
must determine the quantities ′′v  and ′′PRn  too, but we dispose only on the second 
equation (13.1.16); we must add a supplementary relation of experimental nature to 
complete the mathematical model of the collision phenomenon. Newton assumed that 
the ratio ′′ ′/Rn RnP P  does not depend on the incidental velocity but only on the physical 
properties of the bodies in collision, so that one may write (corresponding to the 
relation (13.1.7)) 

′′ ′=Rn RnP kP , (13.1.19) 

where k is the restitution (damping) coefficient; in this case, taking into account 
(13.1.16'), we obtain 

′=
′=

′=

′= + = − +P P 2

d
d

(1 ) (1 ) grad
grad

t t
Rn Rn t t

t t

fm
t

k k f
f

, 

 
 

(13.1.20) 
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′=
′=

′=

′′ ′= − +v v 2

d
d

(1 ) grad
grad

t t
t t

t t

f
t

k f
f

. 

 
 

(13.1.20') 

Starting from (13.1.16') to (13.1.17'), we get 

′′=
′=

′=

′′ =P 2

d
d

grad
grad

t t
Rn t t

t t

fm
t

f
f

, 

 
 

(13.1.20'') 

too, so that, together with (13.1.18), (13.1.19), we are led to the remarkable relation 

′′ ′= =
= −d d

d dt t t t

f f
k

t t
. 

 

(13.1.21) 

If, in particular, the constraint is scleronomic (the surface S is fixed), then we have 
= 0f  and the relation (13.1.21) becomes 

′′ ′= =′′ ′⋅ = − ⋅v vgrad gradt t t tf k f   

or, taking into account Fig. 13.3, has the form (we notice that 
( )cos grad cost tf i′= ′⋅ = −v ) 

cos cosv r kv i′′ ′= ; (13.1.21') 

if we use also the relation (13.1.15), it results, finally, 

= =cot tan
cot tan

r ik
i r

. 
 

(13.1.21'') 

With the aid of the first formula (13.1.10), where we make P = 0, we may write (for 
the two phases of the motion) 

( )′ ′ ′− = ⋅ +P v v0 01
2 RnT T ,   ( )′′ ′′ ′′− = ⋅ +P v v0 01

2 RnT T ,  

where 0T  is the kinetic energy at the moment 0t ; taking into account (13.1.17), 
(13.1.17'), we can write 

( )′= ′=′=′ ′= =

′ ′ ⎛ ⎞′ ′− = ⋅ + = −⎜ ⎟
⎝ ⎠

v v0 0 dgrad 2
d2 grad 2 grad

Rn Rn
t t t t

t tt t t t

P P fT T f f
tf f

, 

(13.1.22) 

( )′= ′′=′′=′ ′= =

′′ ′′ ⎛ ⎞′′ ′′− = ⋅ + = −⎜ ⎟
⎝ ⎠

v v0 0 dgrad 2
d2 grad 2 grad

Rn Rn
t t t t

t tt t t t

P P fT T f f
tf f
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too. If, in the case of scleronomic constraints, we take into account (13.1.18), 
(13.1.20''), then we obtain 

′
′− = −

2
0

2
RnP

T T
m

,   
′′

′′ − =
2

0
2
RnP

T T
m

; 
 

(13.1.22') 

using also the relations (13.1.19), (13.1.20), it results 

( ) −′′ ′ ′ ′′Δ = − = − − = −
+

2 2 2
0

1 1 1( ) 1
2 2 1Rn Rn

kT T T k P P
m m k

. 
 

(13.1.22'') 

A relation of the form (13.1.12'), written for a constraint percussion, allows to write 

−Δ + =
+0 0

1( ) 0
1

kT T
k

, 
 

(13.1.23) 

so that we can state 
Theorem 13.1.1 (Carnot’s generalized theorem). In the motion of a particle subjected 
to collision, due to a holonomic and scleronomic unilateral constraint, the sum of the 
variation of the kinetic energy of that particle at the moment of discontinuity and the 
kinetic energy of the lost velocity at the same moment, multiplied by the number 

− +(1 )/(1 )k k , where k is the restitution coefficient, vanishes. 
For = 1k  (elastic collision) we obtain Δ =0( ) 0T , hence ′′ ′=T T , so that a loss 

of kinetic energy cannot take place, for 0 < k < 1 (elastic-plastic collision) we have 
Δ <0( ) 0T  (because >0 0T ), hence the variation of the kinetic energy is negative. As 

a matter of fact, we can replace the notion of variation of the kinetic energy 
( ′′ ′Δ = −0( )T T T ) by the loss of kinetic energy ( ′ ′′Δ = − Δ = −0

0( ) ( )T T T T ), so 
that Δ >0( ) 0T  (the loss of kinetic energy is positive, hence the kinetic energy 
diminishes) and we may write 

−Δ =
+

0
0

1( )
1

kT T
k

, 
 

(13.1.23') 

corresponding to the generalized theorem of Carnot. Finally, in the limit case of a 
plastic collision (k = 0), we find again the Theorem 10.1.14 in the form (the loss of 
kinetic energy is equal to the kinetic energy of the lost velocities) 

Δ =0
0( )T T . (13.1.23'') 

13.1.1.3 Collisions in Case of a Discrete Mechanical System 

We consider a discrete mechanical system S  of particles iP , i = 1,2,...,n, in an inertial 
frame of reference R, subjected to the action of percussive and non-percussive, given 
and constraint, external and internal forces. Corresponding to the hypotheses i) and ii) 
of Sect. 11.1.1.1, we will use Newton’s law and will neglect the non-percussive forces 
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with respect to the percussive ones. Assuming that the time interval [ ],t t′ ′′  contains 
only one moment of discontinuity 0t , so that ′′ ′− <t t ε , > 0ε  arbitrary, and 
passing to limit in the sense of the theory of distributions, as in Chap. 10, Sect. 1.2.3, 
the relation (11.1.54) allows to write 

′′ ′′

′ ′′′ ′− → + =

⎡ ⎤Δ = +⎢ ⎥⎣ ⎦∑ ∫ ∫H F R0 0 0 1
( ) lim ( )d ( )d

n t t
i it tt t i

t t t t ,  

wherefrom 

( )
=

Δ = + = +∑H P P0
1

( )
n

i Ri
i

R R , 
 

(13.1.24) 

so that we can state 
Theorem 13.1.2 (theorem of momentum). The jump of a momentum of a discrete 
mechanical system subjected to constraints, at a moment of discontinuity, is equal to the 
resultant of the given and constraint external percussions which act upon that system at 
the same moment. 

Taking into account (11.1.19), we obtain 

Δ = ΔH v0 0( ) ( )CM , (13.1.24') 

so that we can write the relation (13.1.24) also in the form 

( )′′ ′Δ = Δ = − = +vCM M M R Rρ ρ ρ , (13.1.24'') 

putting thus in evidence the jump of the velocity of the mass centre and being led to the 
Theorem 13.1.2' (theorem of motion of the mass centre). The product of the mass of a 
discrete mechanical system subjected to constraints by the jump of the velocity of the 
mass centre, at a moment of discontinuity, is equal to the resultant of the given and 
constraint external percussions which act upon that system at the same moment. 

Hence, the centre of mass of a discrete mechanical system subjected to constraints, at 
a moment of discontinuity, moves as a particle at which would be concentrated the 
whole mass of the system and which would be acted upon, at that moment, by the 
resultant of the given and constraint percussions which act upon that system. 

Taking into account the hypothesis iii) in Sect. 11.1.1.1, in conformity to which 
=r consti  in the interval of percussion, and passing to limit, as in the preceding case, 

the relation (11.1.54') allows to write 

′′ ′′

′ ′′′ ′− → + =

⎡ ⎤Δ = × + ×⎢ ⎥⎣ ⎦∑ ∫ ∫K r F r R0 0 0 1
( ) lim ( )d ( )d

n t t
i i i iO t tt t i

t t t t  

′′ ′′

′ ′′′ ′− → + =

⎡ ⎤= × +⎢ ⎥⎣ ⎦∑ ∫ ∫r F R
0 0 1

lim ( )d ( )d
n t t

i i it tt t i
t t t t , 

 

wherefrom 
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( )
=

Δ = × + = +∑K r P P0
1

( )
n

i iO Ri O O
i

M M , 
 

(13.1.25) 

so that we can state 
Theorem 13.1.3 (theorem of moment of momentum). The jump of the moment of 
momentum of a discrete mechanical system subjected to constraints, with respect to a 
fixed pole, at a moment of discontinuity, is equal to the resultant moment of the given 
and constraint external percussions which act upon that system, with respect to the 
same pole, at that moment. 

As well, the formula (11.1.54'') leads to 

{ } { } { }Δτ = τ + τH P P0( )i iO O O Ri , (13.1.26) 

and we can state 
Theorem 13.1.4 (theorem of torsor). The jump of the torsor of a discrete mechanical 
system subjected to constraints, with respect to a fixed pole, at a moment of 
discontinuity, is equal to the torsor of the given and constraint external percussions 
which act upon that system, with respect to the same pole, at that moment. 

We notice that the theorem of moment of momentum and the theorem of torsor, 
which depend on the fixed pole O, maintain their form also with respect to another pole 

Q, fixed with respect to the frame of reference R. If the pole Q is movable, the 
calculation being made with respect to the same frame R, then we start from the 
formula (11.1.23); applying a mean value theorem and observing that under the integral 
we have finite quantities, we can write 

0 0
lim ( ) ( )d

t
Qtt t

t t t
′′

′′′ ′− → +
× =∫ v H 0 ,  

so that 

Δ = +K 0( )Q Q QM M , 
 

(13.1.25') 

the theorems of moment of momentum and of torsor maintaining their form with 
respect to the movable pole Q too. 

Analogously, starting from the relations (11.1.66''), (11.1.67'') and (11.1.68'), we can 
express the theorems of the dynamic resultant, of the dynamic moment and of the 
dynamic torsor in the form 

Δ = +A 0( ) R R , (13.1.27) 

Δ = +D 0( )O O OM M , (13.1.27') 

{ } { } { }Δτ = τ + τA P P0( )i iO O O Ri , (13.1.27'') 

respectively. 
Let us suppose now that the frame of reference R  of pole O is a non-inertial one, 

having a continuous motion (hence, the components O′v  and ω of the finite 
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rototranslation are continuous functions) with respect to an inertial frame ′R  of pole 
′O ; to find the form of the general theorems with respect to such a frame, we use the 

results in Sect. 11.2.2. Thus, starting from the formulae (11.2.12), (11.2.12') and 
observing, by applying a mean value theorem on intervals of continuity, that 

′′ ′′

′ ′′′ ′− → +
⎡ ⎤+ =⎢ ⎥⎣ ⎦∫ ∫F F 0( ) ( )

0 0
lim ( )d ( )d

t tC C
t Ct tt t

t t t t ,  

because the complementary forces (the transportation and Coriolis forces), 
corresponding to the centre of mass, vary continuously or have finite jumps (see the 
formula (13.1.24') too), we can state that the Theorem 13.1.2 of the momentum 
(formula (13.1.24)) and the Theorem 13.1.2' of motion of the mass centre (formula 
(13.1.24'') take place also with respect to a non-inertial frame of reference. Applying the 
relation (11.2.10') at the moments ′t  and ′′t , subtracting the relations thus obtained one 
of the other, multiplying by the mass im , summing for all the particles of the discrete 
mechanical system, passing to limit in the sense of the theory of distributions 
( ′′ ′− → +0 0t t ) and taking into account the hypothesis iii) of the considered 
mathematical model and that the rototranslation { },O′v ω  is continuous, we obtain 

′Δ = ΔH H0 0( ) ( ) . (13.1.28) 

As a matter of fact, applying the operator Δ to the relation (11.2.11) we obtain the same 
result, justifying thus the preceding affirmations (the resultants R and R  are invariant 
to a change of pole). 

Starting from the formula (11.2.18), corresponding to the theorem of moment of 
momentum with respect to an inertial frame of reference, and observing that 

[ ]
′′

′′′ ′− → +
′× =∫ a 0

0 0
lim ( ) ( ) d

t
Ott t

t M t tρ ,  

we get Δ = +K 0( )O
O OM M ; hence, the jump (with respect to an inertial frame) of the 

pseudomoment of momentum of a discrete mechanical system subjected to constraints, 
with respect to an arbitrary pole, at a moment of discontinuity, is equal to the resultant 
moment of the given and constraint external percussions which act upon the system, 
with respect to the same pole, at that moment. Taking into account the relation 
(11.2.17') and observing that Δ =I 00( ( ))O ω , it results that Δ = ΔK K0 0( ) ( )O

O ; we 
find thus again the formula (13.1.25'), written in the form (13.1.25). In general, starting 
from (11.2.12') to (11.2.18''') and noting that 

{ }′′

′′′ ′− → + =
⎡ ⎤× + =⎣ ⎦∑ ∫ r F F 0( ) ( )

0 0 1
lim ( ) ( ) d

n t i i
i t Ctt t i

t t t ,  

we can state that the Theorem 13.1.3 of the moment of momentum (the formula 
(13.1.25)) takes place with respect to a non-inertial frame of reference too. As a matter 
of fact, starting from the relation (11.2.10') or applying the operator Δ to the relations 
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(11.2.16), (11.2.17'), taking into account that = constρ  in the interval of percussion 
and using the relation (11.2.24'), we may write 

′′ ′Δ = Δ + × ΔK K r H0 0 0( ) ( ) ( )O OO ; (13.1.28') 

we find thus again the above affirmation, because ′ ′= + ×M M r RO OO  and 

′ ′= + ×M M r RO OO . 
Moreover, from (11.2.16) one observes that this affirmation holds also in the case in 

which the velocity of the pole O has a jump for ≡O C , with the condition Δω =  0. 
Finally, we can affirm that the Theorem 13.1.4 of torsor may be stated also with 

respect to a non-inertial frame in continuous motion with respect to an inertial frame; 
the fundamental equations of the mathematical model of the collision phenomenon do 
not need a privileged frame of reference. Hence, in the collision phenomenon of a 
discrete mechanical system, the jump relations are invariant to a change of frame of 
reference or of pole. 

If, in particular, we have + = 0R R , it results 

Δ =H 00( ) ,   Δ =v 0C , (13.1.29) 

or 

′′ ′=H H ,   ′′ ′=v vC C , (13.1.29') 

so that the momentum of the mechanical system and the velocity of its mass centre 
remain constant in the percussion interval. We find thus again the relation (1.1.26) 
obtained by the collision of two homogeneous spheres of negligible dimensions, for 
which the inertial character of the mass has been put in evidence (see Chap. 1, Sect. 
1.1.6). 

As well, if + = 0O OM M , then we can write 

Δ =K 00( )O , (13.1.30) 

wherefrom 

′′ ′=K KO O , (13.1.30') 

the moment of momentum of the mechanical system remaining constant in the interval 
of percussion. 

13.1.1.4 Case of a Discrete Mechanical System Subjected to Sudden Constraints 

We introduce the notations 

− +

− +

=

=

( )
3( 1)

( )
3( 1)

,

1 ,

i
i ji j

i
ji j

i

m x

F
m

ξ

φ
   = 1,2,...,i n ,   = 1,2,3j , 

 
 

(13.1.31) 
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without summation with respect to i, where ( )i
jx  and ( )i

jF  are the components of the 

position vectors ri  and of the given forces Fi , respectively; as in Chap. 3, Sect. 2.2.2, 

one can pass from the geometric support Ω of the discrete mechanical system S  in the 

space 3E  (formed by the geometric points iP ) to a representative point P (of co-

ordinates kξ , k  = 1,2,…,3n) in a representative space 3n  (of dimensional equation 
1/2M ). We assume that the mechanical system S  is subjected to p bilateral geometric 

constraints of the form (3.2.8''), expressed by 

≡ =1 2 3( ; ) ( , ,..., ; ) 0nl k lf t f tξ ξ ξ ξ ,   = 1,2,...,l p , (13.1.32) 

and by a unilateral geometric constraint 

≥( ; ) 0kf tξ . (13.1.32') 

Lagrange’s equations of motion (11.1.64), written for the mechanical system S  in the 
space 3E , take in the space 3n  the form 

=

∂ ∂= + + =
∂ ∂∑

1
0

p
l

k k l
k kl

f f
ξ φ λ λ

ξ ξ
,   = 1,2,..., 3k n , 

 

(13.1.33) 

where lλ , l = 1,2,…,p, and λ are the Lagrange multipliers. If we assume that the 
constraint (13.1.32') is weak ( >( ; ) 0kf tξ ), the motion of the mechanical system S  
takes place as the respective constraint would  not exist, after a law of the form 

= ( )k k tξ ξ , k = 1,2,…,3n. Let ′t  be the smallest positive root of the equation 
=( ( ); ) 0kf t tξ ; this is the moment at which the mechanical system reaches the 

constraint, the corresponding co-ordinates and velocities being ′ ′= ( )k k tξ ξ  and 
′ ′= ( )k k tξ ξ , respectively. In this case, the velocities thus found satisfy the conditions 

′=
′= ′==

∂ ′= + =
∂∑

3

1

d
0

d

n
l l

k l t t
kt t t tk

f f
f

t
ξ

ξ
,   = 1,2,...,l p , 

 
(13.1.34) 

′=′= ′==

∂ ′= + ≥
∂∑

3

1

d 0
d

n

k t t
t t k t tk

f f f
t

ξ
ξ

. 
 

(13.1.34') 

If the velocities ′kξ  satisfy the relation (13.1.34'), then the mechanical system S  
leaves of new the constraint (strict inequality, sufficient condition) or remains on the 
constraint (equality, necessary condition). But if the relation ′= <d /d 0t tf t , takes 
place, to be in concordance with the condition (13.1.34') we must assume that, in the 
interval of collision, arise constraint percussive forces, which lead to constraint 
percussions ( )i

RlP  and ( )i
RP , i = 1,2,…,n, respectively; there arise jumps of the 
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velocities, which become ′′kξ , and a collision of the mechanical system S  with the 
constraint (13.1.32') takes thus place. If at the moment ′t  the mechanical system leaves 
the constraint, then one must see what happens for the following positive root of the 
equation =( ( ); ) 0kf t tξ , till the exhaustion of all those roots or till one has a root for 
which the system remains on the constraint, intervening the phenomenon of collision. 
We assume that the three hypotheses in Sect. 13.1.1.1 which are mathematically 
modelling this phenomenon hold further, and add a supplementary hypothesis: 

iv) The collision phenomenon does not destroy the bilateral geometric constraints 
(the constraints (13.1.32)) of the mechanical system. 

At the end of the percussion interval (the moment ′′t ) we have 

′=′′= ′==

∂ ′′= + >
∂∑

3

1

d 0
d

n

k t t
t t k t tk

f f f
t

ξ
ξ

. 
 

(13.1.35) 

We suppose that, at a moment [ ]0 ,t t t′ ′′∈ , the velocities 0
kξ  are so that 

′=
= ′==

∂= + =
∂∑

0

3
0

1

d 0
d

n

k t t
t t k t tk

f f f
t

ξ
ξ

. 
 

(13.1.35') 

In the last two relations, we took into account the hypothesis iii). If the phenomenon of 
collision is reduced to the first phase (the interval [ ]′ 0,t t ), then the collision is a plastic 
one; if the second phase (the interval [ ]0 ,t t ′′ ) takes also place, then the collision has an 
elastic-plastic character. We notice that the constraint percussions are given by 

′=′ ′=P ( ) gradi
il lRl t tfλ ,   ′=′ ′=P ( ) gradi

i t tR fλ , 

′=′′ ′′=P ( ) gradi
il lRl t tfλ ,   ′=′′ ′′=P ( ) gradi

i t tR fλ , 

′=′ ′′= + =P P P( ) ( ) ( ) gradi i i
il lRl Rl Rl t tfλ ,   ′=′ ′′= + =P P P( ) ( ) ( ) gradi i i

i t tR R R fλ , 

 

where the first and the second phase of the collision are specified by “prime” and by 
“second”, respectively, the corresponding Lagrange multipliers being given by 

′
′ = ∫

0 ( )d
t

l lt
t tλ λ ,   

′′
′′ = ∫

0
( )d

t
l lt

t tλ λ , 

′
′ = ∫

0 ( )d
t

t
t tλ λ ,   

′′
′′ = ∫

0
( )d

t

t
t tλ λ , 

′ ′′= +l l lλ λ λ ,   ′ ′′= +λ λ λ . 

 

Lagrange’s equations (13.1.33) lead thus to (we take into consideration the hypothesis 
ii) 

′ ′= ==

∂ ∂′ ′ ′− = +
∂ ∂∑0

1

p
l

k k l
k kt t t tl

f f
ξ ξ λ λ

ξ ξ
, 
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′ ′= ==

∂ ∂′′ ′′ ′′− = +
∂ ∂∑0

1

p
l

k k l
k kt t t tl

f f
ξ ξ λ λ

ξ ξ
, 

 
(13.1.36') 

′ ′= ==

∂ ∂′′ ′− = +
∂ ∂∑

1

p
l

k k l
k kt t t tl

f f
ξ ξ λ λ

ξ ξ
, 

 
(13.1.36'') 

for k = 1,2,…,3n. Assuming that the collision is plastic, from the 3n + 1 equations 

(13.1.35'), (13.1.36), to which we associate the p equations 

′=
= ′==

∂
= + =

∂∑
0

3
0

1

d
0

d

n
l l

k l t t
kt t t tk

f f
f

t
ξ

ξ
,   = 1,2,...,l p , 

 
(13.1.37) 

corresponding to hypothesis iv), we obtain the 3n + p + 1 unknowns 0
kξ , lλ  and λ. To 

this goal, we multiply the equation (13.1.36) by ′=∂ ∂/ k t tf ξ  and by ′=∂ ∂/l k t tf ξ , 

respectively, and sum with respect to k; taking into account (13.1.34), (13.1.35') and 
(13.1.37), we obtain 

[ ] [ ]
′==

′ ′+ = −∑
1

d, ,
d

p

l l
t tl

ff f f f
t

λ λ , 

[ ] [ ]
=

′ ′+ =∑
1

, , 0
p

q ql l
l

f f f fλ λ ,   = 1,2,...,q p , 

 
 

(13.1.38) 

with the notation 

[ ] [ ]
′ ′= ==

∂ ∂= =
∂ ∂∑

3

1
, ,

n

k kt t t tk

ϕ ψ
ϕ ψ ψ ϕ

ξ ξ
. 

 

(13.1.38') 

It results 

′=
′ = − 00 d

d t t

f
t

Δ
λ

Δ
,   

′=
′ = − 0 d

d
l

l
t t

f
t

Δ
λ

Δ
,   = 1,2,...,l p , 

 

(13.1.39) 

where Δ is the determinant of the system (13.1.38), (13.1.38') of p + 1 equations, while 

00Δ  and 0lΔ  are the normalized minors of the elements [ ],f f  and [ ],lf f  of the first 
line, respectively; replacing in the system (13.1.36), we find the unknown velocities 0

kξ . 
In the general case in which takes place the second phase of the collision 

phenomenon, we use the equations (13.1.36), (13.1.36') or the equations (13.1.36''), 
which represent, in fact, a consequence of the first system of equations; in this last case, 
we dispose of 3n equations, to which we associate p equations 

′=
′′= ′==

∂ ′′= + =
∂∑

3

1

d
0

d

n
l l

k l t t
kt t t tk

f f
f

t
ξ

ξ
,   = 1,2,...,l p , 

 

(13.1.40) 
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corresponding to the hypothesis iv), for the 3n + p + 1 unknowns ′′kξ , k = 1,2,…,3n, 

lλ , l = 1,2,…,p, and λ. Using the method of calculation presented above, we obtain, 
analogously, 

′′ ′= =

⎛ ⎞= −⎜ ⎟
⎝ ⎠

00 d d
d dt t t t

f f
t t

Δ
λ

Δ
,   

′′ ′= =

⎛ ⎞= −⎜ ⎟
⎝ ⎠

0 d d
d d

l
l

t t t t

f f
t t

Δ
λ

Δ
,   = 1,2,...,l p ; 

 (13.1.41) 

we notice that we do not know the total derivative ′′=d /d t tf t , which contains the 

unknown velocities ′′kξ , missing thus a last necessary equation to solve the problem. As 
well, from (13.1.39), (13.1.41) it results 

′′=
′′ = 00 d

d t t

f
t

Δ
λ

Δ
,   

′′=
′′ = 0 d

d
l

l
t t

f
t

Δ
λ

Δ
,   = 1,2,...,l p . 

 

(13.1.41') 

To solve the problem in the frame of the mathematical model considered above, we 
assume that Lagrange’s multipliers corresponding to the unilateral constraint verify the 
condition 

′′ ′= kλ λ , (13.1.42) 

where k is the coefficient of restitution introduced in Sect. 1.1.1. The first relations 
(13.1.39) and (13.1.41') lead to 

′′ ′= =
+ =d d

0
d dt t t t

f f
k

t t
; 

 

(13.1.42') 

it results 

′′ ′=l lkλ λ ,   = 1,2,...,l p , (13.1.42'') 

too for the bilateral constraints. We obtain, finally, 

′ ′= ==

∂ ∂⎛ ⎞′′ ′− = + +⎜ ⎟∂ ∂⎝ ⎠
∑

1
(1 )

p
l

k k l
k kt t t tl

f fkξ ξ λ λ
ξ ξ

, 
 

(13.1.43) 

the problem being solved as in the preceding case. 

13.1.1.5  Carnot and Kelvin Theorems. Principle of Virtual Work. Conservation 
Theorems 

In what follows, we make a study of the variation of the kinetic energy 

=
= ∑

3
2

1

1
2

n

k
k

T ξ , 
 

(13.1.44) 
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corresponding to the notations (13.1.31). Multiplying the equations (13.1.36) by 0
kξ  and 

′kξ , respectively, and summing, we obtain 

( ح(
0 0

0

1
2

p

l l t t t t
l

T f fλ λ= =
=

′ ′− = − −′ ∑ ,   

( ح(
1

d2
d

p

l l t t t t
t tl

fT f f
t

λ λ λ′ ′= = ′==
′ ′ ′ ′− = − − +′ ∑ , 

 

with 

ح
3

0

1

1
2

n

k k
k

ξ ξ
=

′=′ ∑ , 
 

(13.1.45) 

where we used the notations in Sect. 13.1.1.2, introducing the kinetic energy at the 
beginning of the collision phenomenon and at the end of it and where we took into 
account (13.1.34), (13.1.35') and (13.1.37). We assume that we have to do with 
scleronomic constraints (in case of rheonomous constraints, the variation of the kinetic 
energy depends explicitly on the variation  of  the  constraints), so  that  = 0f , = 0lf , 

l = 1,2,…,p; it results 

0Tح = ′ ح   , 2

00

d1 1
2 d 2t t

fT
t

Δ
λ λ

Δ′=
′ ′ ′− = = −′ , 

 

corresponding to the relations (13.1.39). From the above relations and by means of the 
notations which have been introduced, we obtain, analogously, 

0ح
02T T T′ ′+ − =′ ,  

where we have introduced also the kinetic energy of the lost velocities in the first phase 
of the collision phenomenon 

( )
=

′ ′ ′= − =∑
3 20 2 2

0
1

1 1
2 2

n

k k
k

T Kξ ξ λ ,   =2

00
K Δ

Δ
; 

 
(13.1.46) 

it is thus shown that the ratio 00/Δ Δ  is positive. Eliminating ح′ , it results 

′ ′Δ + =0 0( ) 0T T ,   ′ ′Δ = −0
0( )T T T  (13.1.47) 

and we can state 
Theorem 13.1.5 (Carnot, I). In the motion of a discrete mechanical system subjected to 
holonomic and scleronomic constraints, the sum of the variation of the kinetic energy in 
the first phase of the collision phenomenon, due to a sudden unilateral constraint, and 
the kinetic energy of the lost velocities in the same interval of time, vanishes. 
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One can see that, in the first phase of the collision phenomenon, the variation of the 
kinetic energy is negative, corresponding thus to a loss of kinetic energy 

′ ′Δ = − Δ0
0( ) ( )T T . 

Starting from the equations (13.1.36'), multiplying by ′′kξ  and 0
kξ , respectively, 

summing and taking into account (13.1.35'), (13.1.37) and (13.1.40), we can write, 
analogously, 

( ح(
0 0

0

1
2

p

l l t t t t
l

T f fλ λ= =
=

′′ ′′− = − −′′ ∑ ,   

( ح(
1

d2
d

p

l l t t t t
t tl

fT f f
t

λ λ λ′′ ′′= = ′′==
′′ ′′ ′′ ′′− = − − +′′ ∑ , 

 

with 

ح
3

0

1

1
2

n

k k
k

ξ ξ
=

′′=′′ ∑ , 
 

(13.1.45') 

where, using the notation in Sect. 13.1.1.2, we have introduced the kinetic energy at the 
end of the second phase of the collision phenomenon. Assuming, further, that we 
remain in the case of the scleronomic constraints, it results, taking into account the 
relation (13.1.41'), 

ح 0T=′′ ح   , 2 2d1 1
2 d 2t t

f
T K

t
λ λ

′′=
′′ ′′ ′′− = =′′ . 

 

We see thus that, in the frame of the hypotheses made above, we have 

ح ′=ح ′′ , (13.1.45'') 

so that we may write the relation 

( )
=

′′ ′− =∑
3

0

1
0

n

k k k
k

ξ ξ ξ  
 

(13.1.45''') 

too. Analogously, we have 

0ح
02T T T′′ ′′+ − =′′ ,  

where we have introduced the kinetic energy of the lost velocities in the second phase of 
the collision phenomenon 

( )
=

′′ ′′ ′′= − =∑
3 20 2 2

0
1

1 1
2 2

n

k k
k

T Kξ ξ λ ; 
 

(13.1.48) 
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eliminating ح′′ , it results 

′′ ′′Δ =0 0( )T T ,   ′′ ′′Δ = −0 0( )T T T , (13.1.49) 

and we can state 
Theorem 13.1.6 (Carnot, II). In the motion of a discrete mechanical system subjected 
to holonomic and scleronomic constraints, due to a sudden unilateral constraint, the 
variation of the kinetic energy in the second phase of the collision phenomenon is equal 
to the kinetic energy of the lost velocities in the same interval of time. 

Hence, in the second phase of the collision phenomenon, the variation of the kinetic 
energy is positive, corresponding thus to an increase of kinetic energy ′′Δ 0( )T . 

From (13.1.46 to 13.1.49) it results 

( )′′ ′ ′′ ′− = −2 2 21
2

T T K λ λ   

too; taking into account (13.1.42), we can write 

( ) ( )′ ′′Δ = − − = − −2 2 2 2 2
0 2

1 1 1( ) 1 1
2 2

T k K K
k

λ λ ,  

wherefrom 

( ) ′Δ + − =2
0 0( ) 1 0T k T  

 

(13.1.50) 

or 

( ) ′′Δ + − =0 02
1( ) 1 0T T
k

, 
 

(13.1.50') 

with ′′ ′Δ = −0( )T T T . We thus state: 
Theorem 13.1.7 (Carnot, III). In the motion of a discrete mechanical system subjected 
to holonomic and scleronomic constraints, the sum of the variation of the kinetic energy 
in the collision interval, due to a sudden unilateral constraint, and the kinetic energy of 
the lost velocities in the first phase of the collision phenomenon, multiplied by the 
number − 21 k , where k is the coefficient of restitution by collision, vanishes. 
Theorem 13.1.7' (Carnot, III'). In the motion of a discrete mechanical system subjected 
to holonomic and scleronomic constraints, the sum of the variation of the kinetic energy 
in the collision interval, due to a sudden unilateral constraint, and the kinetic energy of 
the lost velocities in the second phase of the collision phenomenon, multiplied by the 
number −2(1/ ) 1k , where k is the coefficient of restitution by collision, vanishes. 

We can state thus that, in the collision interval, the variation of the kinetic energy is 
negative, being put in evidence a loss of kinetic energy Δ = − Δ0

0( ) ( )T T . 
Adding the relations (13.1.47) and (13.1.49) and observing that ′ ′′Δ + Δ =

− Δ
0 0

0

( ) ( )
( )

T T
T , we can write 
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′′ ′Δ = −0 0 0( )T T T ,   ′ ′′Δ = −0
0 0( )T T T , (13.1.51) 

hence ′ ′′>0 0T T ; from (13.1.36 to 13.1.36'') it results, easily, 

( ) ( ) ( )′′ ′ ′ ′′− = + − = + −0 01(1 ) 1r r r r r rk
k

ξ ξ ξ ξ ξ ξ ,   = 1,2,..., 3r n , 
 

(13.1.52) 

so that the relations (13.1.51) lead to the same formula (13.1.23) as in the case of a 
single particle; thus, the generalized Theorem 13.1.1 of Carnot is stated analogously for 
a discrete mechanical system subjected to holonomic and scleronomic constraints. All 
the considerations made in Sect. 13.1.1.2 hold further. 

We notice that the relations (13.1.52) justify the relations (13.1.45''), (13.1.45''') too. 
As in Sect. 1.1.3, we consider the relations (11.1.24), (11.1.25'), written for the time 

interval [ ]′ ′′,t t , ′′ ′− <t t ε , > 0ε  arbitrary, which contains only one moment of 
discontinuity 0t ; passing to limit in the sense of the theory of distributions, we can 
write (the sign “prime” at the sum indicates ≠k i ) 

[ ]
′′
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n nt
i i i ik iktt ti k
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n nt
i i i ik iktt ti k

T T t t t t t , 
 

where, for the sake of generality, we have introduced also the influence of the 
constraint forces. We obtain thus 

( )
= =

⎡ ⎤′′Δ + = ⋅ + + +⎢ ⎥⎣ ⎦
∑ ∑v P P P P0 0

1 1
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n n

i i Ri ik Rik
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(13.1.53) 

( )
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∑ ∑v P P P P0 0

1 1
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n n

i i Ri ik Rik
i k

T T , 
 

(13.1.53') 

so that we can state: 
Theorem 13.1.8 (theorem of kinetic energy). The sum of the variation of the kinetic 
energy of a discrete mechanical system subjected to constraints, at a moment of 
discontinuity, and the kinetic energy of the lost velocities at the same moment is equal 
to the sum of the scalar products of the percussions which act upon the particles by 
their velocities after that moment of discontinuity. 
Theorem 13.1.8' (analogue of the theorem of kinetic energy). The difference between 
the variation of the kinetic energy of a discrete mechanical system subjected to 
constraints, at a moment of discontinuity, and the kinetic energy of the lost velocities at 
the same moment is equal to the sum of the scalar products of the percussions which act 
upon the particles by their velocities before that moment of discontinuity. 

If 

( )
= =

⎡ ⎤′′ ⋅ + + + =⎢ ⎥⎣ ⎦
∑ ∑v P P P P 0

1 1
'

n n

i i Ri ik Rik
i k

, 
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then we find again Carnot’s generalized theorem, written in the form (10.1.47), 
analogue to that in case of plastic collisions; as well, if 

( )
= =

⎡ ⎤′ ⋅ + + + =⎢ ⎥⎣ ⎦
∑ ∑v P P P P 0

1 1
'

n n

i i Ri ik Rik
i k

, 
 

(13.1.54') 

then we can write an analogue of the generalized theorem of Carnot, in the form 
(10.1.47'). 

Summing the relations (13.1.53) and (13.1.53'), it results 

( ) ( )
= =

⎡ ⎤′ ′′Δ = + ⋅ + + +⎢ ⎥⎣ ⎦
∑ ∑v v P P P P0

1 1

1( ) '
2

n n

i i i Ri ik Rik
i k

T , 
 

(13.1.55) 

so that we can state 
Theorem 13.1.9 (Kelvin). The variation of the kinetic energy of a discrete mechanical 
system subjected to constraints, at a moment of discontinuity, is equal to the sum of the 
scalar products of the percussions which act upon the particles by the semisum of their 
velocities before and after the phenomenon of discontinuity. 

If we subtract the relation (13.1.53') from the relation (13.1.53), then we obtain 

( )
= =

⎡ ⎤= ⋅ + + +⎢ ⎥⎣ ⎦
∑ ∑v P P P P( )

0 0
1 1

1 '
2

n n
i

i Ri ik Rik
i k

T  
 

(13.1.55') 

and we are led to 
Theorem 13.1.9' (analogue of Kelvin’s theorem). The kinetic energy of the lost 
velocities of a discrete mechanical system subjected to constraints, at a moment of 
discontinuity, is equal to the semisum of the scalar products of the percussions which 
act upon the particles by the jumps of their velocities at that moment of discontinuity. 

Starting from the formula (13.1.8), we can write the relation 

+ − Δ =P P v 0i i iRi m ,   = 1,2,...,i n , (13.1.56) 

for a particle iP ; effecting a scalar product by the virtual displacements δri  at the 
beginning of the interval of percussion and summing for all the particles of the 
mechanical system S, one obtains a necessary condition to describe the phenomenon of 
collision 

( )
=

− Δ ⋅ δ =∑ P v r
1

0
n

i i i i
i

m , 
 

(13.1.57) 

where we have considered that for the ideal constraints we have 

=
⋅ δ =∑P r

1
0

n

iRi
i

, 
 

(13.1.58) 

corresponding to their relation of definition (3.2.36). Assuming that the condition 
(13.1.57) is fulfilled and that p holonomic constraints of the form (3.2.21'') and 
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m non-holonomic constraints of the form (3.2.15) take place, we use the method of 
Lagrange’s multipliers; we can thus write 

= = =′ ′= =

⎛ ⎞− Δ + ∇ + ⋅ δ =⎜ ⎟
⎝ ⎠

∑ ∑ ∑P v r
1 1 1

0
pn m

i i i i il l k ki
i l kt t t t

m fλ μ α ,  

where the Lagrange’s multipliers lλ , l = 1,2,…,p, and 

′ ′′= +k k kμ μ μ ,   
′

′ = ∫
0 ( )d

t
k kt

t tμ μ ,   
′′

′′ = ∫
0

( )d
t

k kt
t tμ μ ,   = 1,2,...,k m ,  

are non-determinate scalars and where we took into account that in a finite double sum 
one can invert the order of summation. As in Sect. 11.1.2.10, we find again the relations 
(13.1.56), the constraint percussions being given by 

= =′ ′= =
= ∇ +∑ ∑P

1 1

p m

iRi l l k ki
l kt t t t

fλ μ α ,   = 1,2,...,i n . 
 

(13.1.59) 

The relation (13.1.57) becomes a sufficient condition too, and we can state 
Theorem 13.1.10 (theorem of virtual work). The motion of a discrete mechanical 
system subjected to ideal constraints, in the collision interval, takes place so that the 
virtual work of the lost percussions which act upon that system vanishes for any system 
of virtual displacements of the respective system. 

We have used, in this theorem, the denomination of lost percussion for the difference 
− ΔP vi i im  which equilibrates the constraint percussion PRi  (by analogy to the 

denomination of lost force of d’Alembert). As in the case of continuous mechanical 
phenomena, this theorem can be considered as a principle (the principle of virtual work 
or the principle of virtual displacements), because, starting from it, one can solve the 
basic problems of the phenomenon of collision. 

The equation (13.1.56) with (13.1.59) are Lagrange’s equations of the first kind for 
the collision phenomenon. 

Introducing the virtual velocities (3.2.1'), we can write the condition (13.1.57) in the 
form 

( ) ∗

=
− Δ ⋅ =∑ P v v

1
0

n

i i i i
i

m , 
 

(13.1.57') 

the considered principle being thus called the principle of virtual velocities too. 
In case of a discrete mechanical system subjected to unilateral constraints, we can 

express the principle of virtual work in the form 

( )
=

− Δ ⋅ δ ≤∑ P v r
1

0
n

i i i i
i

m . 
 

(13.1.57'') 

It is interesting to notice that the relation (13.1.57) allows to find again the theorems 
of Carnot and Kelvin. 
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Starting from the form taken by the general theorems of mechanics in case of the 
collision phenomenon, we can state some conservation theorems, particularly useful. 
Thus, if + = 0R R , then it results Δ =H 00( ) , obtaining 
Theorem 13.1.11 (conservation theorem of momentum). The momentum of a discrete 
mechanical system subjected to constraints is conserved in a collision interval if and 
only if the resultant of the given and constraint external percussions which act upon the 
system vanishes in that interval. 

Analogously, if + = 0O OM M , then it results Δ =K 00( )O , and we can state 
Theorem 13.1.12 (conservation theorem of moment of momentum). The moment of 
momentum of a discrete mechanical system subjected to constraints, with respect to a 
given pole, is conserved in a collision interval if and only if the resultant moment of the 
given and constraint external percussions which act upon the system, with respect to 
the same pole, vanishes in that interval. 

Hence, if the given and constraint percussions which act upon a discrete mechanical 
system subjected to constraints are equilibrated in their totality in the collision interval 
(the mechanical system is considered as non-deformable), then the kinetic torsor of the 
system is conserved in that interval. 

Assuming that the relation 

( ) ( )
= =

⎡ ⎤′ ′′+ ⋅ + + + =⎢ ⎥⎣ ⎦
∑ ∑v v P P P P

1 1
' 0

n n

i i i Ri ik Rik
i k

 
 

(13.1.60) 

takes place, the theorem of Kelvin allows to state 
Theorem 13.1.13 (conservation theorem of kinetic energy). The kinetic energy of a 
discrete mechanical system subjected to constraints is conserved in a collision interval 
if and only if the sum of the scalar products of the given and constraint, external and 
internal percussions which act upon the particles by the sum of their velocities before 
and after a moment of discontinuity vanishes. 

From (13.1.23), it results that the relation Δ =0( ) 0T  takes place in case of an 

elastic collision (k = 1). As well, from (13.1.60) we can state that the conservation 

Theorem 13.1.13 can be obtained if ′′ ′= −v vi i , i = 1,2,…,n, or if the given and 
constraint, external and internal percussions are equilibrated for each particle of the 
mechanical system (considered as non-deformable). 

13.1.2 Elastic and Plastic Collisions of Discrete Mechanical Systems 

In the following, we consider the general case of elastic and plastic collisions of the 
particles, including the problems at the atomic level. The case of plastic collisions is 
studied by introducing the space of plastic collisions. 

13.1.2.1  Elastic Collisions of Particles. Disintegration and Diffusion of Particles. 
Rutherford’s Formula 

Let be two particles 1P  and 2P  of masses 1m  and 2m , respectively, having the 
velocities ′v1 , ′v2  and ′′v1 , ′′v2  before and after the interaction, respectively (it is 
assumed that the particles come from infinite and tend to infinite). In the absence of 
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percussions, we can write a conservation theorem of momentum (corresponding to the 
formulae (1.1.26)) and a conservation theorem of kinetic energy in the form 

′ ′ ′′ ′′+ = +v v v v1 1 2 2 1 1 2 2m m m m ,   ′ ′ ′′ ′′+ = +2 2 2 2
1 1 2 2 1 1 2 2m v m v m v m v . (13.1.61) 

We notice that these relations can be written also in the form 

( ) ( )′′ ′ ′′ ′− + − =v v v v 01 1 1 2 2 2m m ,   
( ) ( ) ( ) ( )′′ ′ ′′ ′ ′′ ′ ′′ ′− ⋅ + + − ⋅ + =v v v v v v v v1 1 1 1 1 2 2 2 2 2 0m m . 

 

Denoting ( ) ( )′′ ′ ′′ ′= − = − −u v v v v1 1 1 2 2 2m mλ , =u 1 , λ scalar, and introducing the 
relative velocities 

′ ′ ′= −v v v2 1 ,   ′′ ′′ ′′= −v v v2 1 , (13.1.62) 

we find ′ ′′⋅ ⋅ =u v + u v 0 and ′′ ′= −v v u( / )mλ , where we introduce the reduced 

mass m given by (8.1.14); a scalar product of the latter relation by u leads to 
2mλ ′= ⋅u v  and ′′ ′ ′= − ⋅v v u v u2( ) . The velocities after interaction can be thus 

expressed as functions of the velocities before interaction in the form 

′′ ′ ′= + ⋅v v u v u1 1
1

2 ( )m
m

,   ′′ ′ ′= − ⋅v v u v u2 2
2

2 ( )m
m

; 
 

(13.1.63) 

as well, we can write 

′ ′′ ′′= + ⋅v v u v u1 1
1

2 ( )m
m

,   ′ ′′ ′′= − ⋅v v u v u2 2
2

2 ( )m
m

. 
 

(13.1.63') 

In case of the phenomenon of diffraction considered in Chap. 8, Sect. 1.2.1, 
= ±u versOQ ; assuming that ′⋅ >u v 0 , we have ′ ′⋅ =u v sin( /2)v , where  is 

the diffraction angle. 
The problem considered above is also called the problem of biparticle collision. One 

assumes that the two particles are, at the initial moment, at a great distance one of the 
other, so that each one of these particles can be considered as being free; if during the 
motion the particles become nearer, then interaction forces arise, becoming in real 
(collision or capture) or fictitious (diffusion or diffraction) contact. Using the velocity 
vC  of the mass centre (invariant in the collision interval, in conformity to the 
conservation theorem of momentum – first relation (13.1.61)) 

′ ′ ′ ′= + = +v v v H H1 1 2 2 1 2
1 1( ) ( )C m m
M M

,   = +1 2M m m , 
 

(13.1.64) 

and taking into account (13.1.62), we find 

′ ′= −v v v2
1 C

m
M

,   ′ ′= +v v v1
2 C

m
M

, 
 

(13.1.65) 
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′′ ′′= −v v v2
1 C

m
M

,   ′′ ′′= +v v v1
2 C

m
M

. 
 

(13.1.65') 

The collision being elastic, the interaction forces are conservative, the potential energy 
tending to zero if the distance between the particles tends to infinite (practically, it is 
very great), and we can write a conservation theorem of kinetic energy; taking into 
account (13.1.65), (13.1.65'), the second relation (13.1.61) takes the form 

′ ′′+ = +2 2 2 2
C CMv mv Mv mv , where m is given by (8.1.14). Hence, the relative 

velocity is constant in modulus ( ′ ′′=v v ). 
Observing that the considered mechanical system is closed, the centre of mass C has 

a rectilinear and uniform motion with the velocity vC  given by (13.1.64) with respect 
to an inertial frame of reference; we refer now the motion to an inertial frame 

 CR with 

respect to which the centre C is at rest (the frame 
 CR  of the mass centre), using the 

index C (the origin of the frame can be taken even at C ). Because ′ ′= +v v v1 1C C , 
′ ′= +v v v2 2C C , we can write ′ ′= −H v1C m , ′ ′=H v2C m , where we took into 

account (13.1.65'); hence, ′ ′= −H H1 2C C  and, analogously, ′′ ′′= −H H1 2C C . Finally, 
′ ′′ ′ ′′= = =1 1 2 2C C C CH H H H  (we have ′ ′′=v v ), the four momenta having the same 

modulus; moreover, we have ′ ′′=1 1C Cv v , ′ ′′=2 2C Cv v . The angle Cθ  between the 
momenta ′H1C , ′′H1C  of the particle 1P  before and after collision, respectively (the 
angle between the directions of motion in 

 CR ) is called diffusion angle (Fig. 13.4). 

 
Fig. 13.4  Diffusion angle 

In various experiments, one of the particles (e.g., the particle 2P ) represents the 
“target”, being at rest with respect to the measuring devices (with respect to the 
laboratory); the frame in which we have ′ =v 02L  will be called the laboratory frame 

(denoted by 
 LR ), and the quantities in this frame will be indexed by L. In this case, 

from (13.1.64) it results ′=v v1 1( / ) LC m M ; observing that ′ ′= − = −v v v v22 LC C C , 
we have ′ ′ ′= − = − =v v H H2 22 2 1/ /C C C Cm m , so that 

⎛ ⎞′ ′ ′= = +⎜ ⎟
⎝ ⎠

H H H1
1 1 1

2 2
1L C C

mM
m m

. 
 

(13.1.66) 
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After collision, we obtain 

′′ ′′ ′′ ′= + = +H v v H H1
11 1 1 1

2
( )L C C C C

m
m

m
, 

 

(13.1.66') 

the recoil momentum of the target being (the conservation theorem of momentum in the 
frame 

 LR ) 

′′ ′ ′′ ′ ′′= − = −H H H H H2 1 1 1 1L L L C C , (13.1.66'') 

 
Fig. 13.5  Diffusion angles for: >1 2m m  (a), =1 2m m  (b), <1 2m m  (c) 

The relations (13.1.66–13.1.66'') will be geometrically represented in Fig. 13.5a,b,c for 
>1 2/ 1m m , =1 2m m  and <1 2/ 1m m , respectively. We denote ′= H1COB , 

′′= H1COC , ′= H1 2 1( / ) CAO m m  and obtain ′= H1LAB , ′′= H1LAC , ′′= H2LCB ; 
the diffusion angles are Cθ  and Lθ  in 

 CR  and 
 LR , respectively, while the diffusion 

angle of the particle “target” is given by = −2 ( )/2L Cθ π θ . Because we can write the 

relation ( )= +tan sin / cosL C COC AO OCθ θ θ , we obtain 

= =
+ +

2

1 2 1 2

sin tan
tan

cos 1 ( / )sec
C C

L
C C

m
m m m m

θ θ
θ

θ θ
. 

 

(13.1.67) 

We notice that [ ]∈ 0,Cθ π . If >1 2m m , then the point A is outside the circle C  so 

that [ ]∈ max0,L Lθ θ , where ′= = 2 1maxsin / /L OC AO m mθ , <max /2Lθ π  

(Fig. 13.5a), while if <1 2m m  (Fig. 13.5c), then the point A is inside the circle C, the 
angle of diffusion Lθ  having the same interval of variation as Cθ ; if the particles have 

equal masses ( =1 2m m ), then the point A will be on the circle C, resulting 
= /2L Cθ θ  (Fig. 13.5b), hence =max /2Lθ π , [ ]∈ 0, /2Lθ π  and + =2 /2L Lθ θ π . 

In the latter case, we can write the remarkable relations ( ′ ′ ′= =1 12L Cv v v ) 

′′ ′=1 cos
2
C

Lv v
θ ,   ′′ ′=2 sin

2
C

Lv v
θ , 

 

(13.1.68) 

and after collision the particles move away under a right angle. 
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To can determine the diffusion angles Cθ  and Lθ  one must know the law of motion 
during the collision of the particles as well as their reciprocal position. We have seen 
that the angle Lθ  has an upper limit if >1 2m m , while if 1 2m m  we obtain 

≅max 0Lθ , hence ≅ 0Lθ ; in this case, after collision with the target, the incidental 
particle is practically moving along the same initial direction. If <1 2m m , then the 
angle Lθ  can be anyone, depending essentially on the interaction law and on the initial 
conditions, while if 1 2m m  we have ≅L Cθ θ , the “target” particle remaining 
practically at rest in 

 LR . In case of a back diffusion ( = −L Cθ θ π ), it results 
′′ ′= −H H1 1C C , while the relations (13.1.66') and (13.1.66'') lead us to the momenta 

( )1 21 1/ 1L Cm m′′ ′= −H H , ′′ ′=H H2 12L C . 
After collision, the kinetic energy of the “target” particle, in the frame 

 LR , will be 
(Fig. 13.5) 

′′ ′′ ′= =H H 22 2
2 2 1

2 2

1 2 sin
2 2

C
L L CT

m m
θ , 

 

(13.1.69) 

while if =Cθ π  we may write (we use the formula (13.1.66)) 

′′ ′ ′ ′= = =H H2 22
2 max 1 11 2

2

22 4
L L LC

m mT T
m MM

; 
 

(13.1.69') 

hence, in case of a back diffusion, the recoil energy (the energy of the “target” particle 
after collision) is smaller than (or at the most equal to) the initial kinetic energy of the 
incidental particle (which coincides with the initial mechanical energy); indeed, 

[ ]= + ≤1 2 1 24 / / ( )/2 1m M m m m m . As a matter of fact, this is the maximal 
kinetic energy of the “target” particle after collision. 

We emphasize that the above results have a general character, non-depending on the 
specific interaction law of the two particles. We can thus include in this study also the 
case of the “spontaneous” disintegration of a particle in two “fragments” (two particles 
which, after disintegration, move independently one of the other). If ′vL  is the velocity 
of the particle before disintegration and ′′vL  and ′′vC  are the velocities of one of the 
particles resulting from this phenomenon, respectively, then we will have 

′′ ′ ′′= +v v vL L C , so that ′′ ′ ′ ′′ ′′+ − =2 2 22 cosL L L L L Cv v v v vθ , where Lθ  is the angle under 
which the particle is deviated from the direction of the velocity ′vL . If ′ ′′>L Cv v , then 

[ ]∈ max0,L Lθ θ , with ′′ ′=maxsin /L LCv vθ . In general, 

′′
= ′′ ′+

sin
tan

cos
C C

L
LC C

v
v v

θ
θ

θ
, 

 

(13.1.70) 

wherefrom 

′ ′
= − ± −′′ ′′

2
2 2

2cos sin cos 1 sinL L
L L LC

C C

v v
v v

θ θ θ θ ; 
 

(13.1.70') 
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if ′′ ′> LCv v  (Fig. 13.6a), then one takes the sign + before the radical (the relation is 
univocal), if ′′ ′< LCv v  (Fig. 13.6b), then one can take both signs, two solutions being 
possible, while in the limit case ′′ ′= LCv v  it results ′′ = 2 LCθ θ . 

 
Fig. 13.6  Diffraction angle 

In Chap. 8, Sect. 1.2.1, we have considered the problem of deviation of a particle of 
mass m in a field U ( r ) by a fixed centre of force (in the case considered above, it is 

situated at the mass centre C ); the trajectory of the particle is contained between two 
asymptotes the angle of which is the diffraction angle ( )= − 2π θ∓  (Fig. 8.6), given 
by (8.1.17). The parameters which intervene are the velocity ∞=v v  of the incidental 
particle at infinity and the collision parameter b (the distance from the centre of force to 
the incidental asymptote of the particle trajectory), the formula (8.1.15) specifying the 
constants to be determined. These results complete the problems considered above, by 
introducing an interaction law of the two particles (the field ( )U r ). 

 
Fig. 13.7  Phenomenon of diffusion 

In general, besides the problem of diffraction (deviation) of a single particle by the 
“target”, the problem of diffusion of a great number of particles (flux of particles) by a 
centre of force (a field of central forces) is put (Fig. 13.7). Obviously, if the mechanical 
phenomenon takes place at an atomic level, then the results which can be obtained in 
the frame of a classical model may represent only an approximation (not always the 
best one), the quantum effects having an essential importance in this case. Nevertheless, 
some results are true, with a good approximation; moreover, the methods used to 
describe the diffusion phenomenon are the same in classical as in quantum mechanics. 
We will consider an incidental flux of particles which move independently on parallel 
rectilinear trajectories, having the same mass m and the same velocity ∞v  (a 
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homogeneous incidental beam of particles, which can be electrons, particles or celestial 
bodies). Passing in the vicinity of the centre of force O, the particles are influenced by 
that one; being diffused with velocities in various directions, but of the same magnitude 
(elastic diffusion) and becoming again independent. To this goal, the centre of force 
must have a finite radius of action; hence, one must have ≠( ) 0U r  for < 0r r  and 

=( ) 0U r  for > 0r r . Practically, it is sufficient to have 
→∞

=lim ( ) 0
r

U r ; in this case, 

= − > 0E T U  because = > 0E T  at infinity. The trajectories of the particles are 
curves symmetric with respect to the straight line which passes through O and through 

the pericentre P (see Fig. 8.6). The diffusion angle  is the angle made by the two 
asymptotes of the trajectory and is the same for all the particles which have the same 
collision parameter b. To can evaluate the way in which the particles having a collision 
parameter contained in a certain interval are deviated in directions contained, as well, in 
a given interval, one defines the efficacious (differential) section of diffusion dσ in the 
form 

= dd N
n

σ , 
 

(13.1.71) 

 
Fig. 13.8  Efficacious section of diffusion 

where dN is the number of particles diffused in the solid angle dω in a unity of time, 

while n is the number of incident particles which cross the unit area in the same time; 
this ratio constitutes the most important characteristic of the process of diffusion. 
Assuming that between  and b there exists a one-to-one correspondence, hence that 
the function = ( )b  is a monotone decreasing function, the only particles diffused 
in the interval [ ]+, d  are those the collision parameter of which is contained 
between ( )b  and +( ) d ( )b b ; the number of these particles will be, obviously, 

=d 2 dN b bnπ , resulting the efficacious section (an annular section, the phenomenon 
being with axial symmetry with respect to the Ox-axis (Fig. 13.8) 

=d 2 db bσ π . (13.1.71') 

The relation between the efficacious section of diffusion and the diffusion angle (plane 
angle) will result in the form 
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=
d ( )

d 2 ( ) d
d
b

bσ π , 
 

(13.1.71'') 

where the derivative is taken in absolute value because, in general, it is negative. With 
reference to the element of solid angle =d 2 sin dω π , we obtain 

= = =
2 2( ) d ( ) d ( ) d ( )1 1d d d d

sin d 2sin d 2 d(cos )
b b b b

σ ω ω ω . 
 

(13.1.71''') 

If the diffusion of the beam of particles is not due to a fixed centre of force and to other 
particles which are initially at rest, then it results that the formulae (13.1.71''), 
(13.1.71''') take place in the frame 

 CR . Passing to the frame 
 LR , the efficacious 

section dσ is not modified (it is defined as a ratio of numbers of particles, being 
independent of frame), but the element of solid angle is modified, so that 

( ) ( )= =d dd d d
d d LC

C L

σ σ
σ ω ω

ω ω
; 

 

(13.1.72) 

we notice that 

= =
d(cos ) d(cos )

d 2 sin d d
d(cos ) d(cos )

L L
L C C C

C C
ω π ω , 

 

(13.1.72') 

so that, taking into account (13.1.67) too, we can make a calculus in the frame 
 LR . 

In the case of a diffusion on the “spherical potential hollow”, for which 

≤⎧⎪= ⎨ >⎪⎩   

0  for  ,
( )

0   for  ,

U r R
U r

r R
 

 
(13.1.73) 

where 0U  is a positive constant, we get = 2Rσ π , hence the area of the central section 
of the sphere. 

In particular, we consider the diffusion of a beam of particles of charge 1q  on the 
“target” formed by the particles of charge 2q , in a potential field (9.2.4), with 

1 2

04
q q

k
πε

= , 
 

(13.1.74) 

0ε  being the permittivity of vacuum in a rationalized system. The diffusion angle is 
given by sin( /2) 1/e= , where 1e >  is the eccentricity of the trajectory of a 
particle of charge 1q  (the trajectories are hyperbolae, as in case of the deviation of the 

luminous radius, so that we can use the formula (9.2.27'')). Replacing the constants C 

and k given by (8.1.15) and (9.2.5), we obtain (v v∞= ) 

22
2 1 mv be

k
∞⎛ ⎞= + ⎜ ⎟

⎝ ⎠
, 
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so that 
2

2 2
2 4 cot

2
kb

m v∞
= ; 

 

the relation (13.1.71''') leads thus to Rutherford’s formula 
2

4
2

d cosec
d 22

k
mv

σ
ω ∞

⎛ ⎞= ⎜ ⎟
⎝ ⎠

, 
 

(13.1.75) 

which gives the efficacious diffusion section in the frame 
 CR . Using this formula and 

measuring experimentally, by recording on negatives in the Wilson room, the initial and 
final directions of the particles, hence the angles of diffraction , E. Rutherford has put 
in evidence the existence of the atomic nucleus (charged by a positive electric charge 
equal to the number order – after Mendeleev’s table – of the chemical element  which is 
in Wilson’s room and produces this effect). These theoretical results have been verified 
by numerous experimental researches due to H. Geiger, E. Marsden, van der Boek 
(1913), J. Chadwick (1920) etc. 

It is interesting to see that the above results hold, with a good approximation, in the 
frame of the model of quantum mechanics too, so far as one can write a conservation 
theorem of momentum, the diffusion being an elastic one. 

13.1.2.2 Plastic Collision of Discrete Mechanical Systems. Space of Plastic 
Collisions 

Let us firstly consider the case of two particles (e.g., two small spheres of masses 1m  
and 2m ), which are in collision with the velocities 1v  and 2v , respectively, remaining 
then glued together and continuing their motion as a single particle of mass 

1 2M m m= + , with the common velocity 

1 1 2 2
1 ( )m m
M

= +v v v ,   1 2M m m= + , 
 

(13.1.76) 

obtained from the conservation theorem of momentum (assuming the absence of 
external percussions). The loss of kinetic energy is 

( )0 2 2 2
1 1 2 2 1 2

1 1( ) ( )
2 2

T T T m v m v m m v′ ′′Δ = − = + − + ,  

and the kinetic energy of lost velocities is given by 

[ ]2 2
0 1 1 2 2

1 ( ) ( )
2

T m m= − + −v v v v ;  

in this case, we can write the generalized theorem of Carnot in the form (13.1.23'') (the 
restitution coefficient k is equal to zero), so that 

0 2
0 1 2

1( ) ( )
2

T T mΔ = = −v v ,   
1 2

1 1 1
m m m

= + , 
 

(13.1.77) 
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having T T′ ′′≥ . 
The phenomenon of plastic collision of two particles leads thus, from a mathematical 

point of view, to a law of composition of masses and velocities. Following this order of 
ideas, let be P a particle of mass m and velocity v; we denote the element mass-velocity 
which characterizes the particle in motion by ( , )S m≡ v . We assume that the mass 

and the velocity are functions of time of class 1C , the mass m (t ) being a positive 

function ( ( ) 0m t > ). In the set { }S=M  of elements S we introduce a relation of 

equivalence denoted by K; we say thus that two elements 1 2,S S ∈ M  are equivalent 
(we denote 1 2S S∼ ) if they have the same momentum ( 1 1 2 2m m=v v ). This is written 
in the form 

( ) ( )1 2K S K S= . (13.1.78) 

One can easily prove that the relation K defined on M  is an equivalence relation, 

because it is reflexive, symmetrical and transitive. The equivalence relation K 
introduced in the set M  realizes a partition of M  into classes of equivalence. Let be 

/KM  this set of classes of equivalence; it represents the quotient set of M  by K. 

Thus, corresponding to the relation K, to each element S ∈ M  will correspond the 

class of equivalence S , hence 

/
K

S S K→ ∈ M . 
 

(13.1.79) 

In the set /KM  of classes of equivalence, we define a law of internal composition, 

denoted additively in the form ( 1 1 1( , )S m≡ v , 2 2 2( , )S m≡ v , 1 2, /S S K∈ M ) 

( ) 1 1 2 2
1 2 1 2 1 2

1 2
, , ( , )

m m
S S S S m m M

m m
+⎛ ⎞→ + = + ≡⎜ ⎟+⎝ ⎠

v v v . 
 

(13.1.80) 

One can verify the property of commutativity ( 1 2 2 1S S S S+ = + ) and the property of 
associativity ( ( ) ( )1 2 3 1 2 3S S S S S S+ + = + + ). The neutral element /O K∈ M  

is given by the relation ( , )O m= 0 , hence by ( )K O = 0 . From the definition of that 

element, it results 

1 1
1 11 1 1

1
( , ) ( , ) ,

m
S O m m m m S

m m
⎛ ⎞+ = + = + =⎜ ⎟+⎝ ⎠

vv 0 , 
 

because ( ) ( )1 11 1K S O m K S+ = =v , and the property of null effect of the neutral 

element is put in evidence. The law of internal composition defines thus an Abelian 
group on /KM . 
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We define a law of external composition in a multiplicative notation ( ( , )S m≡ v ,                       
α ∈ ) 

( ) ( ),S S mα α α→ = v . 
 

(13.1.80') 

The element S ′ , opposite to the element S  is specified by 
( , ) ( , )S m m S′ = − = − = −v v ; obviously, we have ( , ) ( , )S S m m′+ = + −v v  

(2 , )m O= =0 , so that ( )K S S ′+ = 0  and we can write S S′ = − . We notice the 

property 1 ( , )S m S= =v  for a real number 1; as well, one has the property of 

associativity ( ( ) ( ) ( ) ( , )S S S mα β β α αβ αβ= = = v , ,α β ∈ ). Analogously, we 
can put in evidence a property of distributivity with respect to addition of real numbers 
(( )S S Sα β α β+ = + , ,α β ∈ ) and a property of distributivity with respect to the 

law of internal composition ( ( )1 2 1 2S S S Sα α α+ = + , α ∈ ). We have shown 

thus that the quotient set /KM , in which we have defined internal and external laws 

of composition, constitutes a vector space on the field R of real numbers. 

It is important to observe that the internal composition law introduced above 
corresponds to the plastic collision, since the mass of the sum element is equal to the 
sum of the masses of the component elements, while the velocity after collision 
corresponds to that given by (13.1.76). Also, the quotient set /KM  obtained with the 
aid of the equivalence law ( )K S m= v  corresponds to the mechanical meaning of the 
collision phenomenon; indeed, if the elements 1S  and 2S  are equivalent, then they 
have the same momentum too. This justifies the denomination of space of plastic 
collisions given to the vector space thus introduced by W. Kecs and P.P. Teodorescu. 

Applying the second principle of mechanics to two equivalent elements 1S  and 2S , 
we may write 

1 1 2 2 1 2
d d( ) ( )
d d

m m
t t

= = =v v F F ;  

hence, the differential equation of motion of two elements of the same class of 
equivalence is the same, and this illustrates the mechanical sense of the equivalence K. 

We can write 

1 1 1 2 2 2 3 3 3
1 2 31 2 3 1 2 3

1 2 3
,

m m m
S S S m m m

m m m
α α α

α α α
+ +⎛ ⎞+ + = + +⎜ ⎟+ +⎝ ⎠

v v v
; 

 

if we take into account the definition of the neutral element, it follows that the relation 

( ) ( )1 2 31 2 3K S S S K Oα α α+ + = = 0   

holds if and only if 
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1 1 1 2 2 2 3 3 3( ) ( ) ( )m m mα α α+ + =v v v 0 .  

In this way, the relation 

1 2 31 2 3S S S Oα α α+ + = ,   1 2 3, ,α α α ∈ ,  

cannot occur for arbitrary  1 2 3, ,S S S , unless 1 2 3 0α α α= = = . 
On the other hand, we may have a relation of the form 

1

n
ii

i
S Oα

=
=∑ ,   iα ∈ ,   1,2,...,i n= ,   3n > ,  

even if not all iα  are zero; it results that the space of plastic collisions is three-
dimensional. 

Let be now a mapping of /KM  onto the real positive half-straight line + , 
defined in the form 

21
2

S S mv→ = ; 
 

(13.1.81) 

we remark that we have thus introduced the kinetic energy of the element. It may be 
shown that the mapping defined by the relation (13.1.81) satisfies the following 
properties: 

0S ≥ , 
 

(13.1.82) 

1 2 1 2S S S S+ ≤ + ,   1 2, /S S K∈ M , 
 

(13.1.82') 
2S Sα α= ,   α ∈ , 

 

(13.1.82'') 

the equality in relation (13.1.82) involving /S O K= ∈ M . Indeed, the first and the 
third property follow immediately from the relation of definition (13.1.81); observing 
that 1 2S S T ′+ =  and 1 2S S T ′′+ =  and taking into account Carnot’s 

generalized theorem, one obtains the second property too. 
We remark that the space of plastic collisions may be normed by introducing a norm 

defined by the relation S m= v ; in this case, the distance in the respective space is 

given by ( )1 2 1 1 2 2d ,S S m m= −v v . Although the mapping (13.1.81) does not 

constitute a norm in the space of plastic collisions, it allows the introduction of the 
notion of distance in the set /KM , and thus the space of plastic collisions becomes a 
metric space. Therefore, we shall call distance in the set /KM  the number 

( )
2

1 1 2 2
1 2 1 2

1 2

( )1d ,
2

m m
S S S S

m m
−

= − =
+

v v
; 

 
(13.1.83) 
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Taking into account the mapping (13.1.81), it may be easily seen that the distance, as 
defined above, satisfies the following conditions: 

( )d , 0S S = ,  

( ) ( )1 2 2 1d , d ,S S S S= ,   1 2, /S S K∀ ∈ M ,  

 ( ) ( ) ( )1 3 1 2 2 3d , d , d ,S S S S S S≤ + ,   1 2 3, , /S S S K∀ ∈ M ,  

that is the conditions of reflexivity, symmetry and triangle relation, respectively. 
Let ( ( ), ( ))S m t t= v  be an element of /KM ; we assume that ( )m t  and ( )tv  are 

functions of class 1C  with respect to the time t. If t ′  is a value belonging to the domain 
of definition, then there follows 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ),

( ) ( )
m t t m t t

S t S t m t m t
m t m t
′ ′ −⎛ ⎞′ ′− = +⎜ ⎟′ +⎝ ⎠

v v
. 

 

Multiplying by 1/( )t t′ − , we obtain 

( ) ( ) ( )1( ) ( ),
( ) ( )

S t S t m
m t m t

t t tm t m t
′ − Δ⎛ ⎞′= +⎜ ⎟′ ′− Δ+⎝ ⎠

v
, 

 

where ( ) ( ) ( ) ( ) ( )m m t t m t t′ ′Δ = −v v v  and t t t′Δ = − ; passing to the limit, we 
have 

( ) ( )d 1 d2 , ( ) 2 ,
d 2 d 2
S m m m
t m t m

= = Fv , 
 

(13.1.84) 

where we took into account the second principle of Newton. The corresponding 
equivalence relation will be 

d 2
d 2
SK m
t m

⎛ ⎞
= =⎜ ⎟

⎝ ⎠

F F , 
 

(13.1.84') 

being thus led to the force acting upon the particle. 
Introducing the mapping (13.1.81) for the derived element (13.1.84), it results 

( ) ( )2 2d 1 12 2 (2 )
d 2 2 2
S m m
t m m

= =F F , 
 

(13.1.85) 

where the acceleration energy (corresponding to the case m = const) has been marked 
out. 

We notice that the derivative is a linear operator in the space of plastic collisions and 
verifies the relations 
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( )d d
d d

SS
t t

α α= ,   constα = ,    

( ) 1 2
1 2

d d d
d d d

S SS S
t t t

+ = + . 

 

If two elements 1S  and 2S  are acted upon by the forces 1F  and 2F , respectively, 
then the acceleration energy before collision will be 

ح
2 2

1 2
1 2

1 2

1 1
2 2
m m

m m
⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

′ F F
; 

 
(13.1.86) 

the acceleration energy after the plastic collision is given by 

ح

2
1 2

21 2
1 2 1 2

1 2 1 2
1 2 1 2

1 1( ) ( )
2 2

m m
m m

m m m m
m m m m

⎛ ⎞+⎜ ⎟ +⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟+ +⎝ ⎠⎜ ⎟⎜ ⎟
⎝ ⎠

′′

F F
F F

. 

 
 

(13.1.86') 

The loss of acceleration energy is, in this case, ح ح )0ح )Δ = −′ ′′ . The acceleration 
energy of the lost accelerations will be, analogously, given by 

ح
2 2

1 2 1 1 2 2
0 1 2

1 2 1 1 2 2

1
2

m m
m m m m m m

+ +⎡ ⎤⎛ ⎞ ⎛ ⎞= − + −⎜ ⎟ ⎜ ⎟⎢ ⎥+ +⎝ ⎠ ⎝ ⎠⎣ ⎦

F F F F F F
. 

 
(13.1.86'') 

It results 

ح ح
 

2
1 20

0
1 2

1
2

( ) m
m m

⎛ ⎞Δ = = −⎜ ⎟
⎝ ⎠

F F
,   

1 2

1 1 1
m m m

= + , 
 

(13.1.87) 

hence ح ′≤ح ′′ , so that the acceleration energy after the plastic collision of two 
particles is smaller or at most equal to the acceleration energy before collision (an 
analogue of the generalized theorem of Carnot). This relation can be written also in the 
form 

2 2 2
1 2 1 2

1 2 1 2

( )1 1 1
2 2 2m m m m

+
≤ +

+
F F F F

. 
 

(13.1.87') 

We have introduced the notion of derivative in the quotient set /KM , but we 
cannot introduce, analogously, the notion of Riemann integral; instead, we can 
introduce the concept of primitive. Thus, /S K

∗
∈ M  is a primitive for 

( , ) /S m K= ∈v M  if the relation 

d
d
S S
t

∗

= ,   dS S t
∗

= ∫  
 

(13.1.88) 
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takes place. In the same order of ideas, we say that the element S  is constant if its 
momentum is constant ( ( ) constK S m= = =v c ); hence, the element  

0 ( , / )S m m= c  is constant in /KM . Corresponding to the relation (13.1.84), we 

deduce that ( )0d /d d /dK S t t= =c 0 , so that for a constant element 0S  we may 

write 0d /dS t O= . We notice that 

( ) 0
0

d d d
d d d

S SS S S O S
t t t

∗
∗

+ = + = + = ; 
 

hence, if S
∗

 is a primitive of S , then 0S S
∗

+  is a primitive for S  too. Let be 
( ( ), ( ))S m t t= v , ( ( ), ( ))S m t t

∗
= v , where ( )m t  and ( )tv  are functions of class 

1C ; from the first relation (13.1.88) we obtain (2 ,(1/2 )d( )/d ) ( , )m m m t m=v v , so 
that, by the equality of momenta, we can write d( )/dm t m=v v . Integrating, we get 

dm m t= ∫v v , so that the general form of the primitive S
∗
 is expressed by 

1d ( ), ( ) ( )d
( )

S S t m t m t t t
m t

∗ ⎛ ⎞= = ⎜ ⎟
⎝ ⎠∫ ∫ v , 

 
(13.1.89) 

where ( )m t  is an arbitrary positive function. 

13.2 Dynamics of Mechanical Systems of Variable Mass 

The results obtained in Chap. 10, Sect. 3 for the dynamics of the particle of variable 
mass will be extended, in what follows, to the case of a discrete mechanical system of 
variable mass; thus, the general theorems of dynamics and some interesting particular 
problems will be presented. Some cases of continuous mechanical systems will be dealt 
with too. 

13.2.1 Discrete Mechanical Systems 

The problem of a particle of variable mass (studied in Chap. 10, Sect. 3.1.1) is 
considered again in the space of plastic collisions, introduced by W. Kecs and P.P. 
Teodorescu, modelling the discontinuity of mass in the frame of the theory of 
distributions; the general problem of a discrete mechanical system is then presented, 
deducing the corresponding universal theorems. 

13.2.1.1 Particle of Variable Mass 

Let be an element ( ) ( ( ), ( )) /S t m t t K= ∈v M , where the momentum corresponds 

to a particle P; we assume that the functions ( )m t  and ( )tv  are of class 1C . If the 

mass of the particle P increases, due to a phenomenon of capture at the moment t of an 

13 Other Considerations on Dynamics of Mechanical Systems 169



www.manaraa.com

 MECHANICAL SYSTEMS, CLASSICAL MODELS 

element ( ) ( , )S t m′ ≡ Δ u , 0mΔ > , of absolute velocity ( )tu  and momentum 

( )K S m′ = Δ u , then the external composition law at that moment leads to 

( )( ) ( ) ,m mS t S t m m
m m

+ Δ′+ = + Δ
+ Δ

v u ,  

of momentum ( )K S S m m′+ = + Δv u ; at the moment t t+ Δ  will exist only one 

element 0 ( , )S m m ′≡ + Δ + Δv v , where ′Δ v  represents the variation of the velocity 

of the particle P in the time interval Δt, its momentum, after neglecting the terms of 
higher order, being 

( )0 ( )( )K S m m m m m′ ′= + Δ + Δ = + Δ + Δv v v v v .  

The equivalence 0S S S′+ ∼  leads to ( ) ( )0K S S K S′+ = , so that m m+ Δv u  
m m m ′= + Δ + Δv v v ; introducing also the influence of the forces F, given in the 

form m t′′Δ = Δv F , where ′′Δ v  is the corresponding variation of the velocity of the 
particle P in the same time interval Δt, and using the principle of the parallelogram, we 
get the resultant variation of the velocity v in the form ′ ′′Δ = Δ + Δv v v . Passing to 
limit for 0tΔ → , we find again Meshcherskiĭ’s equation (10.3.3'), where = −w u v  
is the relative velocity of the element with respect to a non-inertial frame of reference 
attached to the particle P. 

If an element ( ) ( , )S t m′′ ≡ −Δ u , 0mΔ > , of momentum ( )K S m′′ = −Δ u  is 

detached from the particle P at the moment t, then we can write 

( )
,
m m

S S m m
m m

− −Δ⎛ ⎞′′− = − Δ⎜ ⎟− Δ⎝ ⎠

v u
, 

 

the momentum being ( )K S S m m′′− = + Δv u ; at the moment t t+ Δ , after 

emission, one obtains the element 0 ( ( ), )S m m ′≡ − −Δ + Δv v  of momentum 

( )0K S m m m ′= + Δ + Δv v v , neglecting the terms of higher order. Proceeding as 

before and passing to limit for 0tΔ → , we find again Meshcherskiĭ’s equation 
(10.3.1). 

Analogously, one can obtain the generalized equation (10.3.8) of Meshcherskiĭ; 
taking into account (10.3.11), one can write this equation also in the form 
(m m m+ −= + ) 

d ( )
d

m m m
t

− +
− += = +v F u u ,   0m− < ,   0m+ > . 

 

(13.2.1) 
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We assume, in what follows, that the equation (13.2.1) maintains its form in 
distributions; for distributions of function type, the derivative in the sense of the theory 
of distributions will be given by (see the formula (1.1.51) 

1

d d( ) ( ) ( ) ( )
d d

n

i i
i

m m t t
t t

δ
=

= + Δ −∑v v H , 
 

(13.2.2) 

where the sign “tilde” corresponds to the derivative in the usual sense; the momentum 
H = mv has only discontinuities of the first kind, with the jumps 

( ) ( 0) ( 0) ( 0) ( 0)i i i i im t t m t tΔ = + + − − −H v v , (13.2.2') 

the moments of discontinuity being it , i = 1,2,…,n. If the first n ′  moments of 
discontinuity correspond to the mass discontinuities ( )m t− , while the other n n ′−  
moments of discontinuities correspond to the mass discontinuities ( )m t+ , we can write 

1

d ( ) d ( )
( ) ( )

d d

n

j j
j

m t m t
m t t

t t
δ

− − ′
−

=
= + Δ −∑ , 

1

d ( ) d ( )
( ) ( )

d d

n

k k
k n

m t m t
m t t

t t
δ

+ +
+

′= +
= + Δ −∑ , 

 
 

(13.2.2'') 

where we have introduced the jumps 

( ) ( 0) ( 0)j j jm m t m t− − −Δ = + − − ,   1,2,...,j n ′= , 
( ) ( 0) ( 0)k k km m t m t+ + +Δ = + − − ,   1, 2,...,k n n n′ ′= + + . 

 
(13.2.2''') 

The equation (13.2.1) becomes 

1

d d d( ) ( ) ( )
d d d

n

i i
i

m mm t t
t t t

δ
− +

− +
=

+ Δ − = + +∑v H F u u  

1 1
( ) ( ) ( ) ( )

n n

j j k k
j k n

m t t m t tδ δ
′

− − + +

′= = +
+ Δ − + Δ −∑ ∑u u ; 

 

finally, this equation may be replaced by the equation 

d d d( )
d d d

m mm
t t t

− +
− += + +v F u u , 

 
(13.2.3) 

corresponding to the moments of continuity, the derivatives being calculated in the 
usual sense and by the jump relations 

( ) ( )j jm−
−Δ = ΔH u ,   1,2,...,j n ′= , 

( ) ( )k km+
+Δ = ΔH u ,   1, 2,...,k n n n′ ′= + + , 

 
(13.2.3') 
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corresponding to the discontinuities of the mass. One obtains thus the generalized 
equation of Meshcherskiĭ for a particle of discontinuous variable mass. 

13.2.1.2 Theorems of Momentum and Moment of Momentum 

In the case of a discrete mechanical system S  of variable mass it is convenient to use 
the universal theorems of mechanics. We assume, in this case, that the constraint 
percussive forces appear only in case of detachment or capture of some elements, by 
their contact with the system S  (in fact, by the contact with a subsystem of that one); as 
well, the elements which have not a relative velocity with respect to this system are 
attached to it. We suppose that, at a given moment, the particles of the system S  have 
not a relative velocity with respect to a given frame R, so that the latter one is rigidly 
linked to the system at the respective moment; thus, we take not in consideration the 
state previous to that at the moment t. The origin of the movable frame R  will not be 

taken, in general, at the centre of mass C, because the masses of the particles are 
variable, so that the position of this centre varies with respect to their positions. Using 
the notations in Sect. 11.2.2.1, we can express the velocity i′v  of a particle of position 

vector i iO′ ′= +r r r , i = 1,2,…,n, with respect to the inertial (fixed) frame ′R  in the 
form (see the formula (11.2.10')) 

i iO′ ′= + ×v v rω ,   1,2,...,i n= , (13.2.4) 

the relative velocity vanishing ( i =v 0  at the moment t); the corresponding 
acceleration is given by 

( )i i iO′ ′= + × + × ×a a r rω ω ω ,   1,2,...,i n= . (13.2.4') 

The absolute velocity of the point which coincides with the centre of mass C at the 

moment t is given by 

C O′ ′= + ×v v ω ρ , (13.2.5) 

corresponding to the formula (11.2.14) in which we make C =v 0 . The momentum of 
the mechanical system S  will be given, in this case, by ( im  is the mass of the particle 

iP  at the moment t, considered not to have a relative velocity with respect to  the  
system  S ) 

1

n

i i C
i

m M
=

′ ′ ′= =∑H v v , 
 

(13.2.6) 

where we took into account the formula (3.1.2), which gives the mass centre; hence, the 
momentum of the discrete mechanical system S  of variable mass, at a given moment, is 
equal to the momentum of the point which coincides with the mass centre at the 
respective moment and at which the whole mass of the system would be concentrated. 
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If the relative velocity of the centre of mass C (with respect to the frame R ) is non-
zero ( C ≠v 0 ), then the absolute velocity (with respect to the frame ′R ) of this centre 
is given by 

C C C′ ′= +v v v  (13.2.5') 

so that 

( )C CM′ ′= −H v v ; (13.2.6') 

it results that the absolute velocity of the centre of mass C is equal to its relative 
velocity if the momentum of the mechanical system S  with respect to the fixed frame 
vanishes ( ′ =H 0 ). 

We assume, to fix the ideas, that the emission phenomenon of some elements of the 
particles jP , 1,2,...,j n= , of relative velocities (with respect to these particles) 

j j j′= −w u v ,   1,2,...,j n= , 
 

(13.2.7) 

where ju  are the velocities of these elements with respect to the frame ′R . In this 
case, the equation (10.3.1') allows to write 

( )
1

d '
d

n

i i i i iik
k

m m
t =

′ = + +∑v F F u ,   0im < ,  

where iF  is the resultant of the given external forces which are applied upon the 
particle iP , while ikF  are the internal forces due to the action of the particles kP ; 
summing for all the particles of the discrete mechanical system S  and observing that 
the resultant of the internal forces vanishes, we obtain 

1

n

j j
j

m
=

′ = + ∑H R u ,   0jm < , 
 

(13.2.8) 

stating 
Theorem 3.2.1 (theorem of momentum). The derivative with respect to time of the 
momentum of a free discrete mechanical system of variable mass (which emits mass), 
with respect to an inertial frame of reference, at a given moment, is equal to the sum of 
the resultant of the given external forces which act upon that system and the momentum 
of the emitted masses in a unity of time, at that moment. 

Taking into account (13.2.7), we can write the relation (13.2.8) in the form 

1

n

j j
j

m
=

′ ′= + + ∑H R vR ,   0jm < , 
 

(13.2.8') 
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too, where 

1 1
( )

n n

j j j j j
j j

m m
= =

′= − =∑ ∑u v wR ,   0jm < , 
 

(13.2.9) 

is the resultant of the reactive forces; we mention, as well (for the particles which do 
not emit mass we have 0im = ), a theorem of the dynamic resultant in the form 

1 1

n n

i i i i
i i

m m
= =

′ ′ ′= = = +∑ ∑A a v R R , 
 

(13.2.8'') 

where ′A  is the dynamic resultant of the discrete mechanical system S. 
If the absolute velocities of the emitted elements vanish ( j =u 0 , 1,2,...,j n= ), 

then the relation (13.2.8) is written in the form 

′ =H R , (13.2.8''') 

hence in the same form as in case of a discrete mechanical system of constant mass; as 
well, if the relative velocities of the emitted elements are zero ( j =w 0 , 

1,2,...,j n= ), then R = 0, while the relation (13.2.8'') takes the classical form 

′ =A R . (13.2.8iv) 

These cases have been considered by T. Levi-Civita. 
Taking into account (13.2.4'), we notice that 

[ ]
1

( )
n

i i O C
i

m M M
=

′ ′ ′= + × + × × =∑ v a aω ρ ω ω ρ ,  

so that 

CM ′ = +a R R ; (13.2.10) 

we thus state 
Theorem 13.2.2 (theorem of motion of the centre of mass). The point which coincides 
with the centre of mass of a free discrete mechanical system of variable mass (which 
emits mass) moves, at a given moment, with respect to an inertial frame of reference, as 
a particle of constant mass, at which would be concentrated the whole mass of the 
system at that moment and which would be acted upon by the sum of the resultant of the 
given external forces and the resultant of the reactive forces. 

This equation takes into account that the centre of mass C changes the position with 
respect to the frame R, due to the variation of the mass of the mechanical system S. As 
a matter of fact, the acceleration C′a  is the transportation acceleration; taking into 
account the relative motion, we have 
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2C C C C′ ′= + + ×a a a vω , (13.2.11) 

where Ca  and 2 C× vω  are the relative acceleration and the Coriolis acceleration, 

respectively, corresponding to the mass centre C. We obtain thus the equation 

2C C CM M M′ = + + + ×a R a vωR , (13.2.10') 

which governs the motion of the mass centre of the discrete mechanical system S  with 
respect to an inertial frame of reference. 

In case of a discrete mechanical system of variable mass, which captures mass, we 
obtain – analogously – a relation of the form (13.2.8), but for which 0jm > , and we 
can state a theorem of momentum and a theorem of motion of the mass centre in the 
same form. We may develop a unitary theory too, starting from Meshcherskiĭ’s 
generalized equation, in the form (10.3.8) or in the form (13.2.1). We find thus the 
theorem of momentum 

1 1

n n

j j j j
j j

m m− − + +

= =
′ = + +∑ ∑H R u u , 

 
(13.2.12) 

as well as the theorem of the dynamic resultant 

1

n

i i
i

m − +
=

′ ′= = + +∑A v R R R , 
 

(13.2.12') 

where we have introduced the reactive force 

1 1
( )

n n

j j j j j
j j

m m− − − −
−

= =
′= − =∑ ∑u v wR  

 
(13.2.13) 

and the braking force 

1 1
( )

n n

j j j j j
j j

m m+ + + +
+

= =
′= − =∑ ∑u v wR ; 

 

(13.2.13') 

the used notations correspond to the previous ones; we suppose that there are n n≤  
particles which emit and capture mass (eventually, some of those particles can only emit 
or only capture mass, having 0

j j j jm m m m− += + + , 0jm− < , 0jm+ > , correspond- 
ing to the notation (10.3.11)). The theorem of motion  of the mass centre becomes

CM − +′ = + +a R R R , (13.2.12'') 

where M is the mass of the discrete mechanical system S  at a given moment. 
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The moment of momentum of the discrete mechanical system S  of variable mass 
will be defined in the form 

1 1
( ) ( ) ( )

n n

i i i i i iO OO
i i

m m′
= =

′ ′ ′ ′ ′= × = + × + ×∑ ∑K r v r r v rω ,  

so that, corresponding to the formula (11.2.16), we obtain 

( ) ( )O
O C OO M M′′ ′ ′ ′= + × + ×K K r v vρ , (13.2.14) 

where the pseudomoment of momentum OK  is given by 

1
( )

n
O

i i i O
i

m
=

= × × =∑K r r Iω ω .  

If O C≡ , hence if ρ = 0, then we obtain a formula of Koenig type of the form 
(11.2.21). Introducing the frame R  with the axes parallel to those of the frame ′R , 
we have O

O=K K  too. 
We can write 

1

d ( ) ' ( )
d

n

i i i i i i i i iik
k

m m
t =

′ ′ ′ ′ ′× = × + × + ×∑r v r F r F r u ,   0im < ,  

for a particle iP , assuming – to fix the ideas – that only a phenomenon of emission 
takes place. Summing for all the particles of the discrete mechanical system S  and 
observing that the resultant moment of the inertial forces is equal to zero, it results 

1
( )

n

j j jO O
j

m′ ′
=

′ ′= + ×∑K M r u ,   0jm < , 
 

(13.2.15) 

and we can state 
Theorem 13.2.3 (theorem of moment of momentum). The derivative with respect to time 
of the moment of momentum of a free discrete mechanical system of variable mass 
(which emits mass), with respect to a fixed pole, in an inertial frame of reference, at a 
given moment, is equal to the sum of the resultant moment of the given external forces 
which act upon that system, with respect to the same pole, and the moment of 
momentum of the emitted masses in a unity of time at that moment, with respect to the 
mentioned pole. 

Taking into account (13.2.7), we can also write 

1
( )

n

j j jO O O
j

m′ ′ ′
=

′ ′ ′= + + ×∑K M r vM ,   0jm < , 
 

(13.2.15') 

where 
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1
( )

n

j j jO
j

m′
=

′= ×∑ r wM ,   0jm < , 
 

(13.2.16) 

is the resultant moment of the reactive forces with respect to the fixed pole O ′ . If the 
absolute velocities of the emitted masses vanish ( j =u 0 , j = 1,2,…,n), the relation 
(13.2.15) is written in the form 

O O′ ′′ =K M ; (13.2.15'') 

hence, in the case considered by Levi-Civita, one obtains the same form as in the case 
of a discrete mechanical system of constant mass. 

Proceeding as in Sect. 11.2.2.1, we can find for the theorem of moment of momentum 
an analogue of the formula (11.2.18), in the form (given by C. Agostinelli) 

1

d( ) ( ) ( )
d

n

j j jO O O O
j

M m
t =

′ ′ ′× + = + + ×∑a I M r vρ ω M ,   0jm < . 
 

(13.2.15''') 

In case of capture of mass, we obtain the same formulae (13.2.15−13.2.16), where 
0jm > . Analogously, we obtain results corresponding to the generalized equation 

(10.3.8) of Meshcherskiĭ. 
We notice that we can group the theorem of momentum and the theorem of moment 

of momentum, hence the formulae (13.2.8), (13.2.15) in the form of a theorem of 
kinetic torsor; thus, it results 

{ } { } { } { }d
di i i j jO O O O m
t′ ′ ′ ′τ = τ = τ + τH H F u . 

 

(13.2.17) 

13.2.1.3 Theorem of Kinetic Energy 

The kinetic energy of the discrete mechanical system S  of variable mass is defined in 
the form 

2 2

1 1

1 1 ( )
2 2

n n

i i iO
i i

T v m
= =

′ ′ ′= = + ×∑ ∑ v rω ;  

corresponding to the formula (11.2.28), we get 

21 ( , , )
2

O
O OT T Mv M′ ′ ′= + + v ω ρ , 

 

(13.2.18) 

where the pseudokinetic energy OT  is given by 

2

1

1 1( ) ( )
2 2

n
O

i i O
i

T m
=

= × = ⋅∑ r Iω ω ω . 
 

(13.2.18') 

13 Other Considerations on Dynamics of Mechanical Systems 177



www.manaraa.com

 MECHANICAL SYSTEMS, CLASSICAL MODELS 

If O C≡ , hence if ρ = 0, then we obtain a formula of Koenig type of the form 
(11.2.37). By introducing the frame R , we may write OT T=  too. 

Starting from the equation of motion of a single particle and effecting a scalar 
product by d di it′ ′=v r , we can write 

1
d( ) d ' d d

n

i i i i i i i i iik
k

m m
=

′ ′ ′ ′ ′⋅ = ⋅ + ⋅ + ⋅∑v v F r F r u v ,   0im < ,  

where – to fix the ideas – we have admitted that a phenomenon of emission takes place. 
We notice that 

( )2 21 1d( ) d d
2 2i i i i i i im m m′ ′ ′ ′⋅ = +v v v v   

and 

2 2d d ( ) d d d di i i i i i i i i i i i i i i i im m m v m m v m′ ′ ′ ′ ′ ′ ′⋅ = + ⋅ = + ⋅ = + ⋅u v w v v w v w r . 

Summing for all the particles of the discrete mechanical system S, it results 

2
int

1

1d d d d d
2

n

j j
j

T W W W m v
=

′ ′= + + + ∑R ,   0jm < , 
 

(13.2.19) 

where we have introduced the elementary work of the reactive forces in the form 

1
d ( ) d

n

j j j
j

W m
=

′= ⋅∑ w rR ,   0jm < ; 
 

(13.2.20) 

we state thus 
Theorem 13.2.4 (theorem of kinetic energy). The differential of the kinetic energy of a 
free discrete mechanical system of variable mass (which emits mass), in an inertial 
frame of reference, at a given moment t, is equal to the sum of the elementary work of 
the given external and internal forces which act upon that system, the work of the 
reactive forces at the same moment and the kinetic energy of the masses emitted in the 
interval of time dt. 

The formulae (13.2.19), (13.2.20) hold also in case of capture of mass (we have 
0jm > ); as well, starting from Meshcherskiĭ’s generalized equation (10.3.8), we 

obtain analogous results. 
In the particular case considered by Levi-Civita, in which the absolute velocities of 

the emitted (or captured) masses vanish ( j =u 0 , 1,2,...,j n= ), we can write 

2
int int

1

1 1d d d d d d d
2 2

n

j j
j

T W W W W W m
=

′ ′= + + = + − ∑ vR ; 
 

(13.2.19') 
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but if the relative velocities of the emitted masses are null (case considered by Levi-
Civita), then we obtain (we have d 0W =R ) 

2
int

1

1d d d d
2

n

j j
j

T W W m
=

′ ′= + + ∑ v . 
 

(13.2.19'') 

13.2.2 Applications 

In what follows, we deal firstly with the problem of the rocket; we consider then the 
problem of n particles and, in particular, the cases 2n = , and 3n = , including the 
problem of motion of an artificial celestial body. 

13.2.2.1 The Rocket Problem 

In case of a rocket, elements of mass of its body are emitted, hence 0jm < , 
1,2,...,j n= ; we assume that the relative velocity jw  is the same (equal to w) for all 

the emitted masses. Among the external forces which act upon the rocket we will render 
evident the pressures p, of resultant pR  and resultant moment p

OM , exerted on the 
walls by the surrounding air. The theorem of motion of the mass centre and the theorem 
of moment of momentum are written in the form 

[ ]( ) p
OM M′ + × + × × = + +a R R wω ρ ω ω ρ ,   0M < , 

 

(13.2.21) 

( )d( ) ( )
d

p
O O O O CM M

t
′× + = + + ×a I M M wρ ω ρ  

( )( )

1 1
( )

n n
C

j j j jj
j j

m m
= =

′ ′+ × + ×∑ ∑r w r v ,   0jm < , 

 
 
 

(13.2.21') 

where we took into account that ( )C
j j= +r rρ . The moment of the reactive force with 

respect to the mass centre C  of the emitted masses can be neglected, assuming that (the 
emitted mass is much smaller than the mass of the rocket) 

( ) ( )

1

n
C C

j jj C
j

m M
=

= =∑ r 0ρ ; 
 

as well, on the basis of the same considerations, we have 

( ) ( )
1

n

j j j C
j

m M
=

′ ′ ′ ′× = ×∑ r v vρ , 
 

where ′v  is the absolute velocity of the rocket. The equation (13.2.21') becomes thus 

( ) ( )d( ) ( )
d

p
O O O O C CM M M

t
′ ′ ′× + = + + × + ×a I M M w vρ ω ρ ρ . 

 

(13.2.21'') 
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Hence, in the equations of motion of the rocket (the mechanical system S ) one introduces 
the influence of the air pressure and of the reactive force, considered as applied at the mass 
centre C  of the emitted masses (Fig. 13.9); in the corresponding equation of the moment 
of momentum appears also the moment of the force M ′v , with respect to the pole O ′  of 
an inertial frame of reference (with respect to which one calculates the acceleration O′a  
too and in which the differentiation with respect to time is performed). 

 
Fig. 13.9  Rocket problem 

In this problem, the acceleration ( )O O t′ ′=a a  and the angular velocity ( )t=ω ω  
must be determined, supposing that the law of variation of mass ( )M M t= , deduced 
from the law of combustion of fuel, is known. Due to the emission of mass, the position 
vectors ρ and Cρ , as well as the moment of inertia tensor OI , are functions of time; 
their variation depends on the mass and on the position of the eliminated elements. 
Hence, one must assume that the laws of variation of those quantities are given too. In a 
first approximation, we can consider that ρ, Cρ  and OI  are constant quantities, at least 

for a short time interval. We mention that the torsor { }, pp
OR M  of the hydrodynamic 

forces corresponds to the pressure of the air, exerted on the external walls of the rocket 
(a mechanical system S  of variable mass immersed in a fluid), as well as to the 
pressure of the gases resulting from explosions (on the internal surface of the rocket); 
thus, there intervene also problems of dynamics of gases, of thermodynamics and even 
of interactions between the rocket and gases. All these aspects complicate much the 
problem of the rocket from the mathematical point of view; we assume thus that the 
action of the pressure is known in time. In this order of ideas, we consider that the 
rocket can be modelled mathematically as a particle of variable mass. 

Let be thus a rocket launched at the Earth surface, at the initial moment, the motion 
taking place along the local vertical (the Ox-axis is along the ascendent vertical; see 
Fig. 10.22 too). In the active phase (the rocket moves due to the action of the fuel), the 
equation (13.2.21) allows to write (the relative velocity w is directed opposite to the 
velocity v, hence its component along the Ox-axis is −w; the reactive force R has the 
same direction as the velocity v, because 0M < ) 

0 ( )Mv Mw M g vϕ= − − , 
 

(13.2.22) 

where 0 ( )M g vϕ  is the resistance of the air (corresponding to the pressure) and where 
we consider a linear law of variation of mass ( 0 (1 )M M tα= − , constα = ). 
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We assume that 2( ) ( / )v k g vϕ = , with 0/ak CA Mμ= , where  A is the area of the 
maximal cross section of the rocket, 0e x

a a
βμ μ −= , 0 constaμ = , constβ = , is the 

unit mass of the air, while C is a non-dimensional coefficient of resistance. We notice 
that ( )w u v− = − − , where constu− =  is the absolute velocity of gases’ elimination; 
the equation (13.2.22) becomes 

2(1 ) e xt x x k x uβα α α−− − + = , (13.2.22') 

having a quite complicated non-linear form. 
An essential simplification of the problem is obtained by neglecting the resistance of 

the air; we find thus again Tsiolkovskiĭ’s first problem (see Chap. 10, Sect. 3.1.4 too), 
with the hypothesis constw u v= − ≠ . The equation of motion takes the form 

(1 ) ( )t v v uα α− = + , (13.2.23) 

wherefrom we get 

0( )
1

utv t v
t

α
α

= +
−

, 
 

(13.2.23') 

where 0 (0)v v=  is the initial velocity. By a new integration, we can write 
( 0 (0)x x= ) 

0 0( ) ( ) ln(1 )ux t x u v t tα
α

= − − − − . 
 

(13.2.23'') 

Another simplification of the problem can be obtained by adjustment of the law of 
combustion, so that the rocket have a uniform accelerated motion along the ascendent 
vertical; the velocity v of the mass centre of the rocket will be thus given by 

2
02v a x= , with the acceleration 0 constv a= = . In its motion, the rocket must 

overcome the resistance of the air 0 ( )M g vϕ  and the force of attraction of the Earth 
2/EfMm r , r R x= + , where Em  is the Earth’s mass and we have 2

Efm gR= , R 

being the radius of the Earth, considered to be spherical, while g is the gravity 
acceleration. In this case, the elementary work corresponding to the displacement along 
the ascendent vertical is given by 

( )2d e dxRW Mg Kx x
R x

β−⎡ ⎤= +⎢ ⎥+⎣ ⎦
, 

 

where 0
02 aK a A Cμ=  is a constant. Integrating between the limits 0 and H, we obtain 

the work effected by rising the rocket at the height H in the form 

2 1 (1 )e HMgRH KW H
R H

ββ
β

−= + − −⎡ ⎤⎣ ⎦+
; 

 

(13.2.24) 
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because we do not know the law of motion ( )x x t=  (we cannot express the mass as a 

function of x), we will introduce a mean mass 0 0M M M M− Δ < < , where 0MΔ >  
is the lost mass of the rocket at the height H. If 6 110 cmβ − −= , for 

7350km 3.5 10 cmH = = ⋅ , then we have 35(1 )e 36eHH ββ − −+ = 142.270 10−≅ ⋅  
1 . Assuming that 3 2

0 10 9.81 10 cm/sa g= ≅ ⋅ , 2 4 21 m 10 cmA = = , 
0 3 310 g/cmaμ −= , 6C = , it results 6 21.177 10 g/sK ≅ ⋅ , while 

2 18 2 2/ 1.177 10 g cm /sK β ≅ ⋅ ⋅ ; with 2 29.81 10 cm/sg = ⋅ , 86.38 10 cmR = ⋅  and 
supposing that 65 10 gM = ⋅ , we have 17 2 2/( ) 1.627 10 g cm /sMgRH R H+ ≅ ⋅ ⋅ . 
Finally, we obtain 18 2 2 18 111.340 10 g cm /s 1.340 10 erg 1.340 10 JW = ⋅ ⋅ = ⋅ = ⋅ , 
hence the approximate value of the mechanical energy necessary for the rocket to come 
out from the terrestrial atmosphere (these data are important to design the motor of the 
rocket); we notice also that 2/W K β≅  (with an error of 12% in the preceding case). 

The velocity 5
02 8.287 10 cm/s 8.287 km/sV a H= ≅ ⋅ =  at the height H, is 

reached after an interval of time 0/ 84.48 sT V a= = ; the velocity V is thus greater 

than the first cosmic velocity at the height H (smaller than at the Earth surface, as it was 

shown in Chap. 9, Sect. 2.2.2). The duration T is, in fact, greater, the trajectory of the 
rocket being – in reality – curvilinear; in practice, the active phase is of several minutes. 

13.2.2.2 Problem of n Particles 

We shall study the problem of n particles in the case of the capture phenomenon; we 
assume thus, for instance, that one has to do with celestial bodies acted upon by internal 
forces of Newtonian attraction, which are capturing meteorites. We consider to be in the 
Levi-Civita case (the absolute velocity of the captured masses vanishes), the equation of 
motion of a particle being of the form (10.3.4). 

 
Fig. 13.10  Problem of two particles 

In the case n  = 2 (the problem of two particles), studied in 1928, in the frame of the 
mentioned mathematical model, by Gh. Vrănceanu, let 1P  and 2P  be two particles of 
position vectors 1r  and 2r , with respect to an inertial frame of reference, and of 
variable masses 1m  and 2m , respectively; we denote 12 2 1= −r r r  (Fig. 13.10), the 
force of universal attraction (conservative force, which derives from the potential 
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1 2 /U fm m r= − ) being, in this case, given by 3
1 2 12 /fm m r=F r , 12r = r , where f 

is the constant of universal attraction. The equations of motion are 

1 2
1 1 123

d ( )
d

m m
m f

t r
=v r ,   1 2

2 2 123
d ( )
d

m m
m f

t r
= −v r . 

 

(13.2.25) 

Using the theorems of momentum and moment of momentum in the form (13.2.8''') and 
in the form (13.2.15''), respectively, and observing that the external forces vanish 
( =R 0 , O ′ =M 0 ), we can state conservation theorems of momentum and of moment 
of momentum, respectively; there result the first integrals 

1 1 2 2 1m m+ =v v C , (13.2.26) 

1 1 1 2 2 2 2( ) ( )m m× + × =r v r v C , (13.2.26') 

where 1 2, const=C C . We can write the identity 

1 2 2 1 1 2 2 2 2 1 1 2 2( ) ( ) ( )m m m m m m m m− = + − +v v v v v .  

Observing that 2 1 12− =v v r , taking into account (13.2.26) and eliminating the 
momentum 2 2m v  between this relation and the second equation (13.2.25), we obtain 
the vector equation 

1 2
12 12 13

1

d d( )
d d

m m mm f
t t mr

⎛ ⎞+ + =⎜ ⎟
⎝ ⎠

r r C 0 , 
 

(13.2.27) 

where 1 2 1 2/( )m m m m m= +  is the reduced mass; this equation characterizes the 
motion of the particle 2P  with respect to the particle 1P . Analogously, we can write 

1 2
21 21 13

2

d d( )
d d

m m mm f
t t mr

⎛ ⎞+ + =⎜ ⎟
⎝ ⎠

r r C 0  
 

(13.2.27') 

too, this last equation characterizing the motion of the particle 1P  with respect to the 
particle 2P . In particular, if the masses 1m  and 2m  are constant in time, we find again 
the classical equations (8.1.14). 

The case n  = 3 (the problem of three particles) has been considered in 1932 in the 
same conditions, using the above ideas, due to I.I. Plăcinţeanu. Let thus be the particles 

iP  of position vectors ir , with respect to an inertial frame of reference, and variable 
masses im , 1,2, 3i = ; the equations of motion are 

3 3
d

( )
d

i j i k
i i ij ik

ij ik

m m m m
m f f

t r r
= +v r r ,   ij j ir = −r r , 

i j k i≠ ≠ ≠ ,   , , 1,2, 3i j k = . 

 
 
 

(13.2.28) 
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As in the preceding case, we obtain the first integrals 

1 1 2 2 3 3 1m m m+ + =v v v C , (13.2.29) 

1 1 1 2 2 2 3 3 3 2( ) ( ) ( )m m m× + × + × =r v r v r v C , (13.2.29') 

where 1 2, const=C C . We can write the identities 

1 2 2 1 1 2 2 2 2 1 1 2 2( ) ( ) ( )m m m m m m m m− = + − +v v v v v ,  

1 3 3 1 1 3 3 3 3 1 1 3 3( ) ( ) ( )m m m m m m m m− = + − +v v v v v ;  

taking into account (13.2.28), (13.2.29), introducing the mass 1 2 3M m m m= + +  of 
the discrete mechanical system and eliminating the momenta 2 2m v  and 3 3m v , we 
find, as in the case 2n = , the equations of motion of the particles 2P  and 3P  with 
respect to the particle 1P  in the form 

( ) ( )2 2 3 1 2
2 12 13 123

12

d d1
d d

m m m m m
m f

t M t M r
⎡ ⎤− − +
⎣ ⎦

r r r  

( )2 3 2
32 13

23

d
d

m m m
f

t Mr
+ + =r C 0 , 

( ) ( )3 2 3 1 3
3 13 12 133

13

d d1
d d

m m m m m
m f

t M t M r
⎡ ⎤− − +
⎣ ⎦

r r r  

( )2 3 3
23 13

23

d
d

m m m
f

t Mr
+ + =r C 0 . 

 
 
 
 

(13.2.30) 

Summing these two equations, we find (we have 23 32+ =r r 0 ) 

( ) ( )1 1 2 1 3 1
2 12 3 13 12 13 13 3

12 13

d d
d d

m m m m m m
m m f f

t M t Mr r
⎡ ⎤+ + + − =
⎣ ⎦

r r r r C 0 ; 
 

(13.2.30') 

this equation, together with one of the equations (13.2.30), constitute a system of two 
differential equations for the problem of three particles of variable mass. Unlike the 
equations (13.2.30), the equation (13.2.30') contains only two unknown vector 
functions ( 12 12 ( )t=r r  and 13 13 ( )t=r r ); we notice that we can write the latter 
equation in the form of two equations 

( ) ( )1 2 1 2 2
12 12 13

12

d d ( )
d d

m m m m m
f t

t M t Mr
+ + =r r C C , 

( ) ( )1 3 1 3 3
13 13 13

13

d d ( )
d d

m m m m m
f t

t M t Mr
+ + = −r r C C , 

 
(13.2.31) 

of the form (13.2.27), where the function ( )tC  remains to be determined. Subtracting 
one equation (13.2.30) from the other and taking into account (13.2.31), we get (we 
notice that 13 12 23− =r r r ) 
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( )2 3 2 3
23 233

23

d ( )
d

m m m m
f t

t M r
+ =r r C . 

 

(13.2.31') 

Thus, the differential equations of the problem will be (13.2.31), (13.2.31'), having a 
more symmetrical form, by separation of variables. 

In the case of an arbitrary number n of particles, we use the equations of motion 
( ij ij j jr = = −r r r ) 

3
1

d ( )
d

n j
i i i ij

j ij

m
m fm

t r=
= ∑v r ,   j i≠ ,   1,2,...,i n= ; 

 

(13.2.32) 

we obtain the first integrals 

1
1

n

i i
i

m
=

=∑ v C , 
 

(13.2.33) 

2
1

( )
n

i i i
i

m
=

× =∑ r v C . 
 

(13.2.33') 

Let us make a change of function and of variable ( ) ( ) ( )i it ϕ τ τ=r ρ , d ( )dt tτ ψ=  
and introduce the notations d /dϕ ϕ τ′ = , d /di i τ′ =ρ ρ , 1,2,...,i n= ; we can 
calculate 

( )i i iψ ϕ ϕ′ ′= +v ρ ρ ,    

( ) ( )2 2 22i i i iψ ϕ ψϕ ψ ϕ ψϕ ψ ϕ′′ ′ ′ ′ ′′= + + + +v ρ ρ ρ . 

 

The equations of motion (13.2.32) become ( ij j i= −ρ ρ ρ ) 

( )[ ] ( )[ ]2 2 22i i i i i i i im m m m mψ ϕ ψϕ ψ ϕ ψϕ ψ ϕ ψϕ ψϕ′′ ′ ′ ′′ ′ ′+ + + + + +ρ ρ ρ ,    

2 3
1

1 n i j
ij

j ij

m m

ρ ρ=
= ∑ ρ ,   i j≠ ,   1,2,...,i n= ; 

 

we impose the conditions 

2d ( ) 2 0
d i im m
t

ψ ϕ ϕ ϕ ′+ = ,   2d ( ) 0
d i im m
t

ψ ϕ ϕ ϕ′ ′′+ = ,  

which can be written also in the form 

1 d
ln( ) 2 0

d im
t

ϕ
ψ

ϕ ϕ
′

+ = ,   1 d
ln( ) 0

d im
t

ϕ
ψ

ψ ϕ
′′

+ =′ . 
 

We notice that we must have 2 / / constϕ ϕ ϕ ϕ′ ′′ ′= = , which can take place only if 
kϕ = , constk = , 0ϕ ϕ′ ′′= = ; in this case, it results i imψ μ= , constiμ = , and 

we assume that 

13 Other Considerations on Dynamics of Mechanical Systems 185



www.manaraa.com

 MECHANICAL SYSTEMS, CLASSICAL MODELS 

0( ) ( )i im t m f t= ,   1( )
( )

f t
tψ

= ,   0 constim = ,   1,2,...,i n= . 
 

(13.2.34) 

The equations of motion (13.2.32) become ( ( )i i τ=ρ ρ , ( )ij ij τ=ρ ρ ) 

0 03
0

3 3
1

( ) n i j
i i ij

j ij

m mf t
m

k ρ=
′′ = ∑ρ ρ ,   j i≠ ,   1,2,...,i n= , 

 
(13.2.32') 

obtaining the form of classical equations, corresponding to constant masses. It results 

0

1

n

i i
i

m
=

′′ =∑ 0ρ ,  

wherefrom 

10

1 1

1 1 ( )
( ) ( )

n n

i i i i
i i

m m M t
kf t kf t k

τ
= =

= = = +∑ ∑ C
r Cρ ρ ,  

so that (ρ is the position vector of the centre C) 

1

0

k
M
τ +

=
C C

ρ ,   0
0

1

1
( )

n

i
i

M M m
f t =

= = ∑ , 
 

(13.2.35) 

the centre of mass having a rectilinear trajectory; we have 

1
1 1

0 0

1 1 d 1
( ) d ( ) ( )C f t M t M f t M t

τ′= = = =
C

v C Cρ , 
 

(13.2.35') 

the velocity ( )C C t=v v  being constant only if ( ) constf t = , and 1C  being the 
constant of the first integral of the momentum (13.2.33). Hence, we can state that, in 
case of a discrete mechanical system S  of masses having the same variation in time 
( 0( ) ( )i im t m f t= , 0 constim = , 1,2,...,i n= ), the centre of mass C has a rectilinear 

and non-uniform motion; the motion of the centre C is uniform only in case of constant 
masses. 

13.3.2.3 Motion of an Artificial Celestial Body 

Let be, for instance, an artificial celestial body B, which is launched from the Earth E 
and which moves away from our planet; this body can enter in the zone of attraction of 
another body of the solar system, e.g., in the attraction zone of the Sun S. We have thus 

a problem of three particles (Earth E, Sun S and artificial celestial body B); if the mass 

m of the body B can be neglected with respect to the mass Em  of the Earth 
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( Em m ) and to the mass Sm  of the Sun ( Sm m ), then we can assume some 
approximations of computation. 

To fix the ideas, we will consider the motion of the body B on the straight line which 

joins the centre of mass E of the Earth to the centre of mass S of the Sun, assuming that 
the two celestial bodies are fixed (Fig. 13.11); the equation of motion is of the form 

2 2
d
d ( )

E S
BE BS

mm mmvm F F f f
t x s x

= + = − +
−

, 
 

(13.2.36) 

where s is the distance from the Earth to the Sun, while x is the abscissa of the centre of 

mass of the body B with respect to the Earth E, chosen as origin. Observing that 
d /d d /dv t v v x=  and integrating, we obtain the first integral of the mechanical 
energy 

 
Fig. 13.11  Motion of an artificial celestial body 

( )2 2 E Sm m
v f h

x s x
= + +

−
,   2

0 0
2 E Sm m

h v f
x s x

⎛ ⎞= − +⎜ ⎟−⎝ ⎠
, 

 

(13.2.36') 

where 0 (0)x x= , 0 (0)v v= , corresponding to the initial moment 0t = . From 

(13.2.36) one observes that for x sufficiently small we have 0v < , hence the velocity 

decreases till the body B reaches a point Q, the abscissa of which is given by 
2/( ) /Q Q E Sx s x m m− =⎡ ⎤⎣ ⎦ , hence by 

11
Q

S

E

s sx sm
m

= = ≅
++

,   2 E

S

m
m

= , 
 

(13.2.37) 

taking into account that 2 63 10−≅ ⋅ , hence 31.732 10−≅ ⋅ ; because 
42.348 10s R= ⋅ , where 86.38 10 cmR = ⋅  is the radius of the Earth, we obtain 

3 10 51.729 10 s 40.579 2.590 10 cm 2.59 10 kmQx R−≅ ⋅ ≅ ≅ ⋅ = ⋅ . 
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If the initial velocity 0v  is too small, the velocity of the body B can vanish before 

reaching the point Q; in this case, the velocity changes of sign, so that the body returns 
on the Earth. Observing that the second cosmic velocity is given by 

2 8 2 2
02 / 1.249700 10 m / sII Ev fm x= ≅ ⋅ , we can write the relation (13.2.36') also in 

the form 

2 2 2
0 0 2

0 0

1 1 1 1 1
IIv v x v

x x s x s x
⎡ ⎛ ⎞ ⎤= + − + −⎜ ⎟⎢ ⎥− −⎣ ⎝ ⎠ ⎦

; 
 

(13.2.36'') 

for numerical data, it results the approximate formula 

2 2 2 2 2
0 00.951Q IIv v v v V= − = − , 

 

(13.2.38) 

where 2 20.951 IIV v= , hence 0.975 10.902km/sIIV v≅ ≅ . If 0v V< , then the body 

B does not reach Q, returning on the Earth, while if 0v V> , then the body B reaches 

Q with a non-zero velocity 0Qv >  and passes through this position, continuing its way 
towards the Sun with a monotone increasing velocity. 

If, in particular, 0v V= , then the body B reaches Q with a null velocity ( 0Qv = ); 

the point Q represents thus a position of equilibrium, namely a labile position of 

equilibrium, because an arbitrary perturbation of the position of equilibrium (towards E 

or towards S ), moves away the body B from this position. The moment at which the 

body B reaches Q is given by 

0

d
( )

Qx
Q x

xt
v x

= ∫ ; 
 

(13.2.39) 

observing that 0x x=  is a double root of ( ) 0v x = , we can write 

0
2

( )
d

( )
Qx

Q x
Q

f x
t x

x x
=

−∫  
 

(13.2.39') 

too, where f (x ) is a regular function in the neighbourhood of the point 0x x= . The 

integral (13.2.39') is improper, so that the time Qt  is infinite; the body B comes near to 

the position Q, but never reaches it. 
Obviously, in the above modelling, the hypothesis of rectilinearity represents an 

approximation; as well, we have assumed that the masses are constant. However, the 
results thus obtained are useful from a qualitative point of view. 
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13.2.3 Continuous Mechanical Systems 

One meets, frequently, interesting problems where one deals with continuous 
mechanical systems of variable mass, e.g.: the problem of a captive balloon, the 
problem of a glacier or of an iceberg the mass of which diminishes by melting, the 
problem of an airplane which flies during snowfall (the mass of the snow-flakes is 
added to the mass of the airplane) etc.; more difficult are the problems in which one 
must take into account the deformability of the mechanical system. In what follows, we 
consider two such problems: Cayley’s problem, which has merely a historical interest, 
and the problem of the winch, which has a particular practical interest, using various 
approximations of calculation. 

13.2.3.1 Cayley’s Problem 

In 1857, Cayley considered the problem of a heavy homogeneous chain, wrapped up on 
the cylinder C, at rest on a horizontal table; we assume that the chain falls along the 

vertical, due to its own weight. Let be x the abscissa of the movable end P of the chain, 

the origin being taken at the level of the table, while the Ox-axis is directed towards the 
descendent vertical (Fig. 13.12); the equation of motion of this point is ( )x x t=  and, 
approximating the whole chain by a particle of variable mass, we can use the theorem 
of momentum in the form (13.2.8''') (the Levi-Civita case). We write thus 

d
d

x x x
t g

γ
γ⎡⎛ ⎞ ⎤ =⎜ ⎟⎢ ⎥⎣⎝ ⎠ ⎦

, 
 

(13.2.40) 

 
Fig. 13.12  Cayley’s problem 

where γ is the unit weight, while ( )x x t=  is the velocity of the chain (the same for all 
its elements). Observing that  d /d d/dt x x= , we can write 2d( )/dxx xx x gx= , 
wherefrom, by integration, 

2 31 ( )
2 3

gxx x= ,  

the integration constant vanishing (we assume that the chain begins to wrap up from the 
state of rest, so that (0) 0x = , (0) 0x = ). 

We deduce ( 0x ≠ ) 
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d 2 d
3

x g t
x

= , 
 

so that  2 / 3 /2x g t= ; hence, 

2( )
6
gx t t= ,   ( )

3
gv t t= ,   ( )

3
ga t = , 

 

(13.2.40') 

the motion of the elements of the chain being uniformly accelerated. 

13.2.3.2 The Winch 

The winch is a simple machine formed by a homogeneous cylinder of radius R, on 
which is wrapped up an inextensible and non-torsionable homogeneous cable, of own 
weight γ; we assume that the winch rotates with an angular velocity ω around a 

horizontal axle passing through O, at the end of the cable being tied a weight m=G g , 

modelled as a particle, the equation of motion of which is ( )x x t=  (the Ox-axis is 
along the descendent vertical; Fig. 13.13). The moment of momentum with respect to 
the fixed pole O is given at the moment t by (the phenomenon being unidimensional, 
we consider only the non-zero component of the moment of momentum) 

O OK I mRv Kω ′= + + ,  

 
Fig. 13.13  Winch 

where ( )O OI I t=  is the moment of inertia of the cylinder with respect to its axis at the 

moment t, ( )R mv  is the moment of momentum of the weight G, while K ′  is the 
moment of momentum of the unwrapped cable (the cable P P′ ), given by 

0
d

x
K R v Rvx

g g
γ γ

ξ′ = =∫ .  

We notice that 
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0 2( ) ( )O OI t I t x R
g
γ⎛ ⎞= − ⎜ ⎟

⎝ ⎠
, 

 

where 0
OI  is the moment of inertia of the cylinder on which is wrapped the cable (at the 

initial moment 0t = ), while 2( / )x g Rγ  is the moment of inertia of the cable which 
was unwrapped; assuming that the unwrapping of the cable is without sliding friction, 
we have v Rω= , so that it results 

( )0 2
O OK I mR ω= + , 

 

(13.2.41) 

as the whole cable would be wrapped on the cylinder. 
Applying the theorem of moment of momentum in the form (13.2.15'') (case 

considered by Levi-Civita), we can write 

( )0 2 ( ) ( )OI mR x R mg R M Mω γ+ = + + + , 
 

(13.2.42) 

where M is the moment of the driving couple, while M  is the moment of the friction 
couple of the winch with the axle about which it rotates. Supposing that 

sign 2M α ω βω= − − ,   , 0α β > , (13.2.43) 

we put into evidence the Coulombian friction (case 0β = ), as well as the 
hydrodynamic friction (case 0α = , where a lubricant is used). The differential 
equation of the motion (13.2.42) takes the form ( / /v R x Rω = = , 

/ /v R x Rω = = ) 

2x ax bx c+ − = ,   , , consta b c = ,   , 0a b > , (13.2.44) 

with the notations 

0 2
O

a
I mR

β=
+

,   
2

0 2
O

R
b

I mR
γ=
+

,   0 2
( sign )

O

R mgR M
c

I mR
α ω+ −

=
+

. 
 

(13.2.44') 

We obtain thus (the winch begins to move at the initial moment with the weight G in 
the upper position, hence with (0) 0x = , (0) 0x = ) 

1( ) e ( cosh sinh ) 1atcx t a a t a a t
b a

−⎡ ⎤′ ′ ′= + −⎢ ⎥′⎣ ⎦
,   2a a b′ = + , 

 

(13.2.45) 

as well as 

( ) e sinhatcx t a t
a

− ′= ′ , 
 

(13.2.45') 
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( ) e ( cosh sinh )atcx t a a t a a t
a

− ′ ′ ′= −′ , 
 

(13.2.45'') 

all these quantities being positive for t > 0. The motion of the winch is thus completely 
determined. 
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Chapter 14 

Dynamics of the Rigid Solid

If for any input (for any system of external forces) or for any interactions (system of
internal forces) all the pairs of points (particles) of a mechanical system remain at a 
mutual invariant distance in time, then we have to do with a non-deformable 
mechanical system; in case of a continuous non-deformable medium we use the 
denomination of rigid solid. This notion represents an idealization of physical reality, 
because any body subjected to the action of forces is deformed; but often these 
deformations are very small with respect to the dimensions of the body. Thus, the rigid 
solid (body) represents a mathematical model of the bodies the deformation of which 
can be neglected in a first approximation. Sometimes, in case of special problems 
concerning the rigid solids, there can appear contradictions and it is necessary to 
complete the mathematical model, assuming that the mechanical system is no more 
rigid (partially or in its totality); this happens, for instance, in the calculation of the 
constraint forces which appear in case of hyperstatic mechanical systems, in some cases 
of friction or in other problems concerning the collision of bodies. The problems put in 
mechanics of rigid solids form what is called stereomechanics. 

We present firstly the problems concerning the free or constrained rigid solid; 
starting from these results, we consider then the motion of the rigid solid about a fixed 
axis, as well as the plane-parallel motion of it. 

14.1 Motion of a Free or Constrained Rigid Solid 

In what follows, we will give results and will establish general theorems for the motion 
of the free or constrained rigid solid; the results thus obtained will be applied to various 
particular cases. 

14.1.1 Motion of the Free Rigid Solid 

After some preliminary considerations concerning the representation of the rigid 
displacement  of a solid, the geometric and mechanical quantities which appear in case 
of a free rigid solid are specified; the corresponding general theorems are then stated, in 
these conditions. 

14.1.1.1 Finite Rototranslations 

We have seen that a rigid solid S  is characterized by the relation 

P.P. Teodorescu, Mechanical Systems, Classical Models,  
© Springer Science+Business Media B.V. 2009 
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consti j j iP P ′ ′= − =r r , 
 

(14.1.1) 

where i′r  and j′r  are the position vectors of two arbitrary points, iP  and jP , 
respectively, with respect to the inertial frame ′R . We have shown in Chap. 3, 
Sect. 2.2.3 that a free rigid solid has six degrees of freedom, so that its position with 
respect to a fixed frame of reference can be represented by six parameters, which can 
be, e.g.: the co-ordinates 1Ox ′ , 2Ox ′ , 3Ox ′  of a point O  of the rigid solid and Euler’s 

angles (the angle of precession ψ, 0 2ψ π≤ < , the angle of nutation θ, 0 θ π≤ ≤  

and the angle of proper rotation ϕ, 0 2ϕ π≤ < ), which specify the rotation of the 

rigid body with respect to the point O  (the orientation of a non-inertial frame R  rigidly 

linked to the solid and with the pole at O , with respect to a non-inertial frame R , with 

the pole at O  and with the axes parallel to the axes of an inertial frame ′R ) (Fig. 14.1). 

 

Let be a square matrix M with complex elements. The matrix T+ =M M , where 
TM  is the transpose of the matrix M (obtained by replacing the lines by the columns), 

while M  is the conjugate matrix of the matrix M (obtained by replacing its elements 
by the corresponding complex conjugate elements), is called the adjoint matrix of the 
matrix M. If =M M , then the matrix M is real (all its elements are real), while if 

= −M M , then the matrix M is purely imaginary. A square matrix S is called 

Fig. 14.1  The rigid solid in an inertial frame of reference R
and in non-inertial ones R  and R  

′
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symmetric or antisymmetric (skew-symmetric) as we have T=S S  or T= −S S , 
respectively. A square matrix H is called Hermitian (self-adjoint) or antiHermitian if 

+=H H  or += −H H , respectively; we notice that a real and symmetric matrix is 
Hermitian. If a square matrix O satisfies the relation T 1−=O O , where 1−O  is the 
inverse of the matrix O ( 1 1− −= =OO O O E , E being the unit matrix), that is 

T T= =OO O O E , then O is called orthogonal complex matrix, while if a square 
matrix U satisfies the relation 1+ −=U U  ( + += =UU U U E ), then it is called unitary 
matrix. If 1+ −=R R  and =R R  (the square matrix R is unitary and real), then 

TT + −= = =R R R R , that is T 1−=R R ; in this case, the matrix R is called 
orthogonal real matrix (or only orthogonal). The sum of the elements of the principal 
diagonal of a square matrix M represents the trace of the matrix (denoted by tr M), 
being an invariant to a linear transformation of the matrix elements. 

The matrix    specified by (3.2.11''') allows to pass from the frame R  (or 
from the frame ′R ) to the frame R  by the transformation relation (3.2.11'') of the 
form ′=i iα ; in other words, the transformation matrix  may be conceived as an 
operator which, acting on the frame R , transforms that one in the frame R. If the 
matrix  operates on the components of a vector r  in the frame R , then we obtain 
the components of the vector =r r  in the frame R  (the vector does not change); we 
can, as well, consider the relation ∗ =r rα , which transforms a vector r in a vector ∗r  
in the same frame R. In the first case, the matrix  corresponds to a counterclockwise 
rotation, while in the second case it corresponds to a clockwise one. The matrix  is an 
orthogonal one, the trace of which does not vanish, in general. 

Because we can determine, at any moment, the position of the rigid solid by the 
position of the frame R  with respect to the frame R , hence by the parameters which 
specify this position, the transformation matrix will be of the form  (t ); if at the 

initial moment 0t t=  we have ≡R R , then it results 0( )t = Eα , coinciding with 

the unit matrix. The motion being continuous, the matrix  (t ) must be a continuous 
function of time and we can state that it is obtained by continuity from the identical 
transformation. Taking into account the rigidity condition (14.1.1), it results that the 
matrix  is orthogonal. 

We will assume now that the pole O , common to the frames R  and R  is fixed. If 

the motion of the frame R  about O  is a motion of rotation, then there exists a direction 
which corresponds to the axis of rotation and which is not affected by the operator , a 
vector along this direction having the same components in the two frames. To put in 
evidence the existence of such a direction we will show that there exists a vector r 
which has the property r = r. On the other hand, the equation =r rλα , λ scalar, has 

a solution for the eigenvalues λ of the matrix ; we will try to show that between these 
eigenvalues is also the eigenvalue = 1λ . The equation ( )λ− =E 0

α

 leads to the 
characteristic equation [ ]det 0λ− =Eα , which gives the eigenvalues 1 2 3, ,λ λ λ  (see 

α = ΦΘΨ

α = α
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Chap. 3, Sect. 1.2.3 too). Due to the orthogonality of the matrix , the modulus of a 
vector r remains invariant by the mentioned transformation. The characteristic equation 
(an algebraic equation of third degree with real coefficients) has at least a real root and 
can have also complex solutions, the corresponding eigenvectors being, in this case, 
complex (they do not exist in the real physical space). The modulus of such a vector is, 
in the general case, 2 = ⋅r r r , where we have put in evidence the conjugate 
eigenvector r ; by transformation, one obtains ( ) ( )λ λ⋅r r , so that we must have 

1λλ =  (if λ is an eigenvalue, then λ  is an eigenvalue too). The real root can be only 

λ = ±1. We notice that 1 2 3det λ λ λ=α  and can be equal to ±1. Because one cannot 
pass by a jump (the motion is continuous) from 0det ( ) det 1t = =Eα  (corresponding 
to a proper rotation) to det 1= −α  (corresponding to an improper rotation), it results 
that one can have only det ( ) 1t =α . A transformation matrix of the form 

1 0 0

0 1 0

0 0 1

⎡ ⎤−
⎢ ⎥

≡ − = −⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

Eα ,   det 1= −α , 

 

would correspond to an inversion (reflection) of the axes of the frame R , but there 
does not exist any rigid motion which could transform a right-handed frame of 
reference into a left-handed one or conversely (to do this, one must pass by a four-
dimensional space) (Fig. 14.2); hence, an inversion can never correspond to a real 
displacement of a rigid solid. We obtain the same conclusion for any transformation 
matrix for which det 1= −α , including thus the inversion operation, because such a 
matrix can be written in the form 1=α αα , 1det 1=α . Obviously, on this way we 
obtain the same conclusion as above. The three eigenvalues of the matrix cannot be 
distinct, if they are real, because 1jλ = ± , j = 1,2,3. If two of the eigenvalues are 
equal, then they cannot be real and equal to −1 (the third of the eigenvalues must be 
equal to 1, to can have 1 2 3 1λ λ λ = ); one obtains the same conclusion if two of the 
eigenvalues are complex conjugate, because 1λλ = . The trivial case in which all three 
roots are real ( 1 2 3 1λ λ λ= = = ) corresponds to the identical transformation. Hence, 
one can state that, excluding the above mentioned trivial case, to any rigid motion 

α

Fig. 14.2  Impossibility to transform a right-handed frame of reference in a left-handed one 
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corresponds only a single eigenvalue equal to 1. For the general displacement of the 
rigid solid by which that one passes from a position to another one, with respect to a 
given frame of reference, we can state 
Theorem 14.1.1 (L. Euler)  The general displacement of a rigid solid with a fixed point 
is a finite rotation about an axis which passes through this point and is uniquely 
determined. 

We can always transform the matrix  so as to obtain a new matrix ∗α  leading to a 
frame R  ( ∗ ′=i iα ), with the axis 3Ox  along the rotation axis; in this case 

cos sin 0

sin cos 0

0 0 1

χ χ

χ χ∗

⎡ ⎤
⎢ ⎥

= −⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

α , 

 
 

(14.1.2) 

where χ is the rotation angle. We notice that tr 1 2 cos χ∗ = +α ; knowing that the 
trace of the matrix is invariant with respect to the transformation thus effected, we have 
also tr 1 2cosχ= +α . In case of the matrix  of the form (3.2.11'''), we can express 

the angle χ as a function of the Euler angles by the relation 

( )2 2cos cos cos sin
2 2
θ θ

χ ψ ϕ= + − . (14.1.3) 

If we suppress the link imposed to the rigid solid (the fixed point) and if we 
introduce the three degrees of freedom corresponding to the translation of the origin O  

of the frames R  and R, then we can state 
Theorem 14.1.2 (Chasles)  The general displacement of a free rigid solid is a finite 
rototranslation. 

ernions. Stereographic Parameters 

Besides the representation of the rotation of the rigid solid by means of Euler’s 
angles, one can imagine other representations too, useful in various cases. Thus, the 
finite rotation of angle χ about an axis of unit vector u, which passes through the pole 

O, can be characterized by the set { } { }, 2 , 2n nχ π χ π+ = − − +u u , n ∈ Z; but this 

representation is multiform. We can reduce this multiplicity by introducing a vector V, 
of components λ, μ, ν, and a scalar ρ in the form 

=V u sin
2
χ ,   = cos

2
χ

ρ ,   2 2 2 2 1λ μ ν ρ+ + + = . 
 

(14.1.4) 

We see easily that the parameters λ, μ, ν, ρ which satisfy this relation determine a 

unique rotation; but to a given rotation correspond the parameters −λ, −μ, −ν, −ρ too, 

14.1.1.2 Eulerian Parameters. Quat
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hence two sets of parameters. Hence, the parameters λ, μ, ν, ρ, called Eulerian 
parameters, can describe – analogously – the rotation of the rigid solid; if we consider 
these parameters as Cartesian co-ordinates of a point in the 4E -space, then we can 
state: (i) any point of the hypersphere (14.1.4) can specify the actual (final) 
configuration (position) of the rigid solid; (ii) any actual configuration of the rigid solid 
determines two diametrical opposite points on the hypersphere; (iii) there exists a 

straight lines passing through the origin of the space 4E . 

 

Let be P  (r ) and ( )P∗ r  the initial and the actual positions of a point of the rigid 

solid, respectively, which are rotated by an angle χ about an axis which passes through 

the pole O  and is specified by the unit vector u (or by the vector V) and let be Q  their 

common projection on this axis; at the point Q  we consider a right-handed orthogonal 

frame, determined by the vectors QP = p , q, 1=q , and V (Fig. 14.3). We can write 

cos sinOQ QP OQ χ χ∗ ∗= + = + +r p q ;  

but 

OQ= −p r ,   × ×= =
V p V rq
Vp Vp

, 
 

so that 

( ) ( )2 2 2sin
cos 1 cos 2 2OQ V V OQ

V
χ

χ χ ρ ρ∗ = + − + × = − + + ×r r V r r V r . 

Because 2 ( )V OQ = ⋅V r V , we have, finally, 

one-to-one correspondence between the actual configuration of the rigid solid and the 

Fig. 14.3  Eulerian parameters
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( ) ( )2 2 2 2Vρ ρ∗ = − + ⋅ + ×r r V r V V r ; 
 

(14.1.5) 

projecting on the axes of the frame R, we obtain 

j ij jx xα∗ = ,   ( )2 2 2ij ij i jk k ijk kV V VV Vα ρ δ ρ= − + − ∈ , 
 

(14.1.5') 

so that the transformation matrix is 

( ) ( )

( ) ( )

( ) ( )

2 2 2 2

2 2 2 2

2 2 2 2

2 2

2 2

2 2

ρ λ μ ν λμ νρ νλ μρ

λμ νρ ρ μ ν λ μν λρ

νλ μρ μν λρ ρ ν λ μ

⎡ ⎤+ − − − +
⎢ ⎥
⎢ ⎥= + + − − −
⎢ ⎥

− + + − −⎢ ⎥⎣ ⎦

α , 

 
 

(14.1.6) 

+ + =2 2 2 2sin
2
χ

λ μ ν ,   2 2 2 2 1λ μ ν ρ+ + + = , 
 

(14.1.6') 

corresponding to Olinde Rodrigues’s formulae. 
Obviously, this matrix remains invariant if one changes the signs of Euler’s 

parameters. By comparison with the matrix (3.2.11''') which depends on Euler’s angles, 
we find easily (we consider one of the two determinations) 

−= sin cos
2 2

ψ ϕθ
λ ,   −= sin sin

2 2
ψ ϕθ

μ , 
+= cos sin

2 2
ψ ϕθ

ν ,   += − cos cos
2 2

ψ ϕθ
ρ . 

 
 

(14.1.6'') 

A quaternion q is defined in the form q i j ka b c d= + + + , a,b,c,d ∈ R, where 

i,j,k are quaternion units, which satisfy the relations 2 2 2i j k 1= = = − , 
jk kj i= − = , ki ik j= − = , ij ji k= − = . The vector part Vq, the scalar part Sq, the 

conjugate quaternion Kq, the norm Nq and the reciprocal quaternion 1q−  are defined 
by the relations 

q i j ka b c= + +V ,   qS d= ,   q q qS= +V ,   q q qK S= − +V ,  
2 2 2 2q q qN K a b c d= = + + + ,   

( )
− = =1

2
q q

q
q qq

K K
KN

. 

 

The vector part Vq can be considered as a usual vector; thus, if q 0S = , then the 
quaternion q degenerates, becoming a vector. A quaternion q determines a  number  

0h > ,  a  unit  vector  p  and   an   angle   χ,   0 2χ π≤ < ,   by   the  relation 
( ) ( )[ ]q cos /2 p sin /2h χ χ= + ; in this case, qN h= , while 

( ) ( )[ ]1 1q cos /2 p sin /2h χ χ− −= − . 
Let be the quaternion q i j kλ μ ν ρ= + + + , 2 2 2 2 1λ μ ν ρ+ + + = , hence with 
q 1N = ; we have 1q i j kλ μ ν ρ− = − − − + . We introduce also the degenerate 
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quaternions 1 2 3r i j kx x x= + + , 1 2 3r i j kx x x∗ ∗ ∗ ∗= + +  with r r 0S S ∗= = . The 

relation 1r qrq∗ −=  defines a transformation which represents a rotation of angle χ 

about the axis p. Passing to a matric notation, we find again the matrix (14.1.6), λ, μ, ν 

and ρ being thus Eulerian parameters; we obtain, in a quaternion notation, a new form 
of the respective representation. Observing that 1h = , it results 

q p sin
2
χ=V ,   ( ) = + + =V 2 2 2 2 2q sin

2
N

χ
λ μ ν ,   = =q cos

2
S

χ
ρ ; 

 

(14.1.7) 

hence, the vector Vq is the vector V (along the rotation axis), the angle χ of the 
quaternion being the rotation angle. 

 

Projecting the unit sphere 2 2 2
1 2 3 1x x x+ + =  from the point (0,0,1)  on the plane 

3 0x = , one obtains a stereographic projection. Let ( )1 2,X X  be thus the projection 
of the point 1 2 3( , , )x x x  (Fig. 14.4); we will have 

=
−

1
1

31
x

X
x

,   =
−

2
2

31
x

X
x

,   =
+ +

1
1 2 2

1 2

2
1

X
x

X X
, 

=
+ +

2
2 2 2

1 2

2
1

X
x

X X
,   

+ −
=

+ +

2 2
1 2

3 2 2
1 2

1
1

X X
x

X X
, 

 

as well as 

( ) ( )
+

+ + = =
++ +

2 2
1 22 2 2

1 2 3 2 22 2
1 2

d d d d
d d d 4 4

11

X X Z Zx x x
ZZX X

, 

Fig. 14.4  Stereographic projection 
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where we have denoted 1 2iZ X X= + , Z  being the complex conjugate. Any 
transformation Z Z ∗→  induces a transformation ( )1 2 3 1 2 3( , , ) , ,x x x x x x∗ ∗ ∗→  of the 
unit sphere in itself, which will be rigid if the sum d dj jx x  is conserved, hence if 

( ) ( )

∗∗

∗∗
=

++
2 2

d d d d

11

Z Z Z Z
ZZZ Z

. 
 

One can show that this condition is satisfied by the transformations 

∗ +=
− +
pZ qZ
qZ p

,   1pp qq+ = , 
 

(14.1.8) 

where the stereographic parameters p  and q are complex numbers to which correspond 
three degrees of freedom. Observing that 

( ) ( )
∗

∗ ∗
∗∗

+ = = + − + −
+

2 2
1 2 1 2 1 2 3

2
i i i 2

1
Zx x p x x q x x pqx

Z Z
, 

( ) ( )2 2
1 2 1 2 1 2 3i i i 2x x p x x q x x pqx∗ ∗− = − − + − , 

( ) ( ) ( )
∗∗

∗
∗∗

−= = + + − + −
+3 1 2 1 2 3

1
i i

1
Z Zx pq x x pq x x pp qq x
Z Z

, 

 

we find the transformation matrix 

( ) ( ) ( )

( ) ( ) ( )

( )

⎡ ⎤+ − − − + − − +⎢ ⎥
⎢ ⎥

= − + − + + + −⎢ ⎥
⎢ ⎥

+ − −⎢ ⎥
⎢ ⎥⎣ ⎦

2 2 2 22 2 2 2

2 2 2 22 2 2 2

1 i
2 2
i 1

i
2 2

i

p p q q p p q q pq pq

p p q q p p q q pq pq

pq pq pq pq pp qq

α , 

 
 
 

(14.1.9) 

hence a new representation of the motion of rotation (not only of the rigid motion of the 
unit sphere about its centre) by means of the stereographic parameters. 

Comparing the expressions (14.1.6) and (14.1.9) of the matrix , taking into account 
(14.1.6'') and by a choice of sign, we find the connection between the stereographic 
parameters, the Eulerian parameters and Euler’s angles in the form 

( )− += + = − i /2i cos e
2

p ψ ϕθ
ρ ν , 

( )−= − + = i /2i i sin e
2

q ψ ϕθ
μ λ . 

 

 

(14.1.10) 
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Starting from the above results, we define the complex numbers 

( )+= − = − + = i /2i cos e
2

p ψ ϕθ
α ρ ν , 

( )− −= − = + = i /2i i sin e
2

q ψ ϕθ
β μ λ , 

 
 

(14.1.11) 

( )−= = − + = i /2i i sin e
2

q ψ ϕθ
γ μ λ , 

( )− += − = − − = i /2i cos e
2

p ψ ϕθ
δ ρ ν , 

 
 

(14.1.11') 

which satisfy the condition of unimodularity, being connected by the relations 

γ β= − ,   δ α= ,   1
α β

αδ βγ αα β β
γ δ

= − = + = , 
 

(14.1.11'') 

corresponding to the relation (14.1.8) between the stereographic parameters. These 
numbers are the Cayley-Klein parameters of the motion of rotation and constitute a new 
representation of it. The corresponding transformation matrix will be 

( ) ( )

( ) ( ) ( )

( )

⎡ ⎤− − + + − − −⎢ ⎥
⎢ ⎥

= − + − + + + − +⎢ ⎥
⎢ ⎥

− + +⎢ ⎥
⎢ ⎥⎣ ⎦

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

1 i
2 2
i 1

i
2 2

i

α β γ δ γ δ α β γδ αβ

α β γ δ α β γ δ αβ γδ

βδ αγ αγ βδ αδ βγ

α . 

 
 
(14.1.12) 

The above given parametric representations correspond to the group of proper 
rotations (3)O + ; but they can be put in connection with the two-dimensional special 
unitary group (2)SU , homomorphic with the group (3)O +  too. Thus, the Cayley-
Klein representation is characterized by the matrix 

α βα β

γ δ β α

⎡ ⎤⎡ ⎤
≡ = ⎢ ⎥⎢ ⎥ −⎢ ⎥⎣ ⎦ ⎣ ⎦

Q ,   22 1α β+ = , 
 

(14.1.13) 

where α and β are the complex Cayley-Klein parameters, while λ, μ, ν, ρ, 
2 2 2 2 1λ μ ν ρ+ + + = , specified by the relations (14.1.11), (14.1.11'), are the real 

Cayley-Klein parameters of the (2)SU  group (they coincide with Euler’s parameters). 

We can choose as independent parameters the real numbers λ, μ, ν and sgn /ρ ρ ρ= , 

the magnitude of ρ being given by the last relation (14.1.6'). The elements of the matrix 
Q being defined by (14.1.11), (14.1.11'), it results 1α ≤ , 1β ≤ , so that we can 

14.1.1.3 The Cayley-Klein Parameters. Pauli’s Matrices
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choose ( )cos /2α θ=  and ( )sin /2β θ= , where θ, 0 θ π≤ ≤  is uniquely 

determined by α and β; the angles ϕ and ψ are introduced as functions of the arguments 

of the complex numbers α and β in the form ( )arg /2α ψ ϕ= + , 
( )arg /2β ψ ϕ π= − − − , wherefrom we obtain arg arg /2ϕ α β π= + − , 

arg arg /2ψ α β π= − + . Because 0 arg 2α π≤ <  and 0 arg 2β π≤ < , the 

domain of variation of the parameters ϕ and ψ is specified by /2 7 /2π ϕ π− ≤ < , 

3 /2 5 /2π ψ π− < < , ϕ and ψ being defined till a multiple of 4π. In this case, the 
matrix Q is of the form 

i i 1 0 i
i

0 1i i i

ρ ν μ λ ν λ μ
ρ

μ λ ρ ν λ μ ν

− + + −⎡ ⎤ ⎡ ⎤⎡ ⎤
= = − +⎢ ⎥ ⎢ ⎥⎢ ⎥− + − − + −⎣ ⎦⎣ ⎦ ⎣ ⎦

Q  

( ) ( )

( ) ( )

+ − −

− − +

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

i /2 i /2

i /2 i /2

cos e i sin e
2 2

i sin e cos e
2 2

ψ ϕ ψ ϕ

ψ ϕ ψ ϕ

θ θ

θ θ
. 

 
 
 
 
 

(14.1.13') 

If the parameters α and β are given, then one can find an infinity of systems 
( , , )ψ θ ϕ ; but taking into account the intervals of definition of these angles, the solution 

is unique. Conversely, a given system ( , , )ψ θ ϕ  determines uniquely the parameters α 

and β, because between these angles and the Cayley-Klein parameters there exists a 
one-to-one correspondence; hence, the latter parameters determine, also, univocally, the 
rotation of the rigid solid with respect to a point of it. 

We notice that a matrix Q with α, β, γ, δ arbitrary complex numbers can be 
univocally represented in the form 

( ) ( ) ( ) ( )= + + + + − + −Q E 1 2 3
1 1 i 1
2 2 2 2

α δ β γ β γ α δσ σ σ , 
 

(14.1.14) 
1 0

0 1
⎡ ⎤

≡ ⎢ ⎥
⎣ ⎦

E ,   1

0 1

1 0
⎡ ⎤

≡ ⎢ ⎥
⎣ ⎦

σ ,   2

0 i

i 0

−⎡ ⎤
≡ ⎢ ⎥

⎣ ⎦
σ ,   3

1 0

0 1
⎡ ⎤

≡ ⎢ ⎥−⎣ ⎦
σ . 

 
(14.1.14') 

The matrix E is the unit matrix, while jσ , 1,2, 3j = , are the Pauli spin matrices 
(Hermitian and unitary matrices, the traces of which vanish). If the trace of the matrix Q 
vanishes ( 0α δ+ = ), then the first term of the sum (14.1.14) disappears, while if the 
matrix Q is Hermitian (α, δ real numbers, γ β= ), then the coefficients of Pauli’s 
matrices are real. We notice that Pauli’s matrices verify the relations 

2 2 2
1 2 3= = =σ σ σ E , ij k jkl l= ∈σ σ σ , j k≠ , , 1,2, 3j k = . Analogously, the 

matrices ij j= −τ σ , 1,2, 3j = , verify the multiplication rules of the quaternion units. 
The matrix (14.1.13') will be thus represented in the form 
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iρ= − +Q E P ,   1 2 3λ μ ν= + +σ σ σP . (14.1.13'') 

We notice that, through the relation ( )1 2 3, , j jx x x x= σP , each point ( )1 2 3, ,x x x  
defines a matrix P and, reciprocally, each Hermitian matrix of zero trace defines a point 
( )1 2 3, ,x x x . Let be a unitary matrix U, non-Hermitian ( + ≠U U ), in general, by 
means of which we define the matrix +=P UPU , which is Hermitian and of null trace; 
we obtain thus a transformation ( ) ( )1 2 3 1 2 3, , , ,x x x x x x∗ ∗ ∗→  of the space 3E  in itself. 
Because + =UU E , we have det det 1+ =U U , so that det det∗ =P P  and we may 
write j j j jx x x x∗ ∗ = ; as well, the relation d d∗ +=P U PU  leads to d d d dj j j jx x x x∗ ∗ = , 
the transformation being thus a rigid rotation about the origin. 

Let be the unitary matrices ( ) ( ) ( )cos /2 i sin /2j jχ χ χ= + σU E , 1,2, 3j = , χ 
real. 

The transformation 

∗ ∗ ∗ ∗ + ⎡ ⎤= + + = = +⎣ ⎦P U PU E1 1 2 2 3 3 3 3 3cos i sin
2 2

x x x
χ χσ σ σ σ  

( ) ⎡ ⎤× + + −⎣ ⎦E1 1 2 2 3 3 3cos i sin
2 2

x x x
χ χσ σ σ σ  

 

leads to 

∗ = +1 1 2cos sinx x xχ χ ,   ∗ = − +2 1 2sin cosx x xχ χ ,   ∗ =3 3x x , 
 

(14.1.2') 

where we took into account the relations verified by Pauli’s matrices; this 
transformation (relative to a fixed frame of reference) corresponds to a rotation of angle 
χ about the axis 3Ox  and is characterized by the matrix ∗α  given by (14.1.2). Because 
of symmetry reasons, the matrices U1 ( )χ  and U2 ( )χ  lead, analogously, to rotations 
about the axes 1Ox  and 2Ox , respectively; each Pauli’s spin matrix is thus associated to 
a rotation about a co-ordinate axis. 

Let us consider the matrices 

i /2

3i /2

e 0
cos i sin

2 20 e

ψ

ψ ψ

ψ ψ
−

⎡ ⎤
⎢ ⎥≡ = +
⎢ ⎥⎣ ⎦

Q E σ , 

⎡ ⎤
⎢ ⎥≡ = +⎢ ⎥
⎢ ⎥⎣ ⎦

Q E 1

cos i sin
2 2 cos i sin

2 2
i sin cos

2 2

θ

θ θ
θ θ

θ θ
σ , 

−

⎡ ⎤
⎢ ⎥≡ = +
⎢ ⎥⎣ ⎦

Q E
i /2

3i /2

e 0
cos i sin

2 20 e

ϕ

ϕ ϕ

ϕ ϕ
σ , 

 
 
 
 
 

(14.1.13''') 
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corresponding to rotations by Euler’s angles ψ, θ, ϕ about the axes ′3Ox , ON  and 3Ox , 
respectively (Fig. 14.1); the motion of rotation of the rigid solid will be thus 
characterized by the matrix 

=Q Q Q Qϕ ψθ , (14.1.13iv) 

corresponding to the formulae (14.1.13') and (14.1.13''). 
One observes that the Cayley-Klein parameters (the matrices Q too) are 

characterized by the semi-angles of rotation, unlike the matrices  where appear just 
these angles. Thus, for = 0χ  or for = 2χ π , the matrix ∗α  specified by (14.1.2) is 
reduced to the unit matrix; in exchange, for = 0χ , e.g., the matrix Qψ  is reduced to 
the unit matrix E, while for = 2χ π  it becomes the matrix −E. In general, to a matrix  
corresponds a couple of matrices { }−Q Q, , the matrix Q being thus a bivalent function 
of the matrix ; as a matter of fact, we have made an arbitrary choice of sign in the 
relations established between various representations. We mention that the relations 
between the matrices  and Q correspond to the relations which are established 
between the real space 3E  and a two-dimensional space corresponding to a matrix of Q 
type; a two-dimensional complex vector will be called spinor, the corresponding space 
being a spinor space. This space is more adequate to the physical reality in the quantum 
model of mechanics, the wave function of a part of it having a spinorial character; 
indeed, the semi-angles and the property of bivalence are closely connected to the fact 
that the electron spin is a semi-integer. 

 

If α and β are the matrices corresponding to two finite rotations, then we notice that 
≠αβ βα , because the product of matrices is not commutative; hence, the sum of two 

finite rotations depends on the order in which they are effected. In case of infinitesimal 
rotations, there correspond infinitesimal orthogonal transformations of matrix 

= +Eα ε , where the product of two infinitesimal matrices of   type is neglected with 
respect to such a matrix; in this case, 

( )( )+ + = + + + = + +E E E E E E2
1 2 1 2 1 2 1 2ε ε ε ε ε ε ε ε ,  

so that the product of two such matrices is commutative. Hence, in case of infinitesimal 
rotations the order of their application is immaterial. We notice also that to a rotation of 
angle dχ about an axis of rotation there corresponds the matrix 

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

= + = − = + −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

E E

1 d 0 0 1 0

d 1 0 d 1 0 0

0 0 1 0 0 0

χ

χ χα ε . 

 
 

(14.1.2'') 

14.1.1.4 Kinematic Considerations
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Starting from these considerations, we can find again the results obtained in Chap. 5, §2 
concerning the kinematics of the rigid solid. We mention, especially, the Theorem 5.2.4 
which characterizes the general motion of the rigid solid with the aid of the fixed and 
movable axoids. 

The rotation velocity of the movable frame of reference R, rigidly linked to the rigid 
solid and with the pole at O , with respect to the movable frame R  and to the fixed 
frame ′R , is characterized by the angular velocity vector , which is expressed as 
function of Euler’s angles in the matric form (5.2.34) and, in components, with respect 
to the frame R  or to the frame ′R , by means of the kinematic relations of Euler 
(5.2.35) or (5.2.35'), respectively. Starting from the latter relations, we may express the 
angular velocities corresponding to Euler’s angles ψ, θ, ϕ in the form (see Chap. 3, 
Sect. 2.2.3 too) (Fig. 14.1) 

( )= +1 2sin cos cosecψ ω ϕ ω ϕ θ , 
= −1 2cos sinθ ω ϕ ω ϕ , 

( )3 1 2sin cos cotϕ ω ω ϕ ω ϕ θ= − +  

 
 

(14.1.15) 

or in the form 

( )3 1 2sin cos cotψ ω ω ψ ω ψ θ′ ′ ′= − − , 
′ ′= +1 2cos sinθ ω ψ ω ψ , 

( )′ ′= −1 2sin cos cosecϕ ω ψ ω ψ θ , 

 
 

(14.1.15') 

respectively. We remark also some interesting differential relations, e.g., 

=1
2

d
d

ω
ω

ϕ
,   = −2

1
d
d
ω

ω
ϕ

,   + =
2

2
d

0
d

k
k

ω
ω

ϕ
,   = 1,2k . 

 
(14.1.15'') 

Analogously, Euler’s angles which specify the position of the frame R  or of the 
frame ′R  with respect to the frame R  are ′ = −ψ ϕ , ′ = −θ θ , ′ = −ϕ ψ ; as well, 

′ = −ω ω  is the rotation angular velocity vector of the inertial frame with respect to the 
non-inertial one. We can thus pass from the relations (5.2.35) to the relations (5.2.35') 
or from the relations (14.1.15) to the relations (14.1.15'). 

To pass from ( )i tω , = 1,2,3i , to Euler’s angles ( )tψ , ( )tθ  and ( )tϕ , hence to 
integrate the system (14.1.15) with respect to the latter unknown functions, one can 
introduce the intermediate unknown functions ( )j tα , = 1,2,3j , which are the 
direction cosines of the ′3Ox -axis with respect to the movable frame R; one obtains 
thus the relations (5.2.36) which lead to 

= 3cosθ α ,   = 1

2
tan

α
ϕ

α
, 

 

(14.1.16) 
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the angle ψ resulting by a quadrature from the first relation (14.1.15). The functions 

jα , = 1,2,3j , are connected by the differential relations (5.2.37'). 
The velocities distribution is given by Euler’s formula (5.2.3), written in the form 

′ ′= + ×v v rO ω , 
 

(14.1.17) 

and the accelerations distribution by the formula (5.2.6), i.e. 

′ ′= + × + × ×a a r r( )O ω ω ω , 
 

(14.1.17') 

where we have put in evidence the quantities related to the frames ′R  and R, 
respectively. Differentiating the rigidity condition (14.1.1) with respect to time, we get 

( ) ( ) ( ) ( )⎡ ⎤′ ′ ′ ′ ′ ′ ′ ′− = − ⋅ − = ⋅ − =⎣ ⎦r r r r v v v v2d
2 2 0

d j i j i j i i j j iP P
t

; 
 

(14.1.18) 

noting that the relation (14.1.17) can be written in the form ′ ′− = ×v vj i i jP Pω , it 
results that Euler’s formula verifies this condition. The compatibility condition of 
velocities may be thus written in the form 

′ ′⋅ = ⋅v vj i j i i jP P P P  
 

(14.1.18') 

too, corresponding to the relation (5.2.4). Starting from the relation (14.1.18'), written 
successively for the couples of points ( )2 3,P P , ( )3 1,P P  and ( )1 2,P P , as well as for 

( )1,P P , ( )2,P P  and ( )3,P P  (the point P  non-coplanar with the points 1 2 3, ,P P P ), 
R. Voinaroski and L. Livovschi have found again the relation (14.1.17). Because it can 
be stated from hypotheses of rigidity, it results that the respective relation has an 
intrinsic character; on the other hand, the angular velocity vector  can be obtained as 
an axial vector associated to an antisymmetric tensor of second order, defined by means 
of the velocities of three non-collinear points of the rigid solid (hence, independent on 
the movable frame R ). The condition of compatibility of the accelerations is of the 
form 

( ) ( ) ( )′ ′ ′ ′− ⋅ = − = ×a a v v
22

i j i j i j i jP P P Pω , 
 

(14.1.18'') 

corresponding to the relation (5.2.10). As a matter of fact, one can use all the results 
contained in Chap. 5, §2. 

With the aid of the results obtained in Chap. 5, Sec. 3.2 concerning the relative 
motion of the rigid solid, one can state the group character of the rigid motions. 
Corresponding to the Theorem 5.3.3, we can thus state that the set of translations of a 
free rigid solid forms an Abelian group, while from the Theorem 5.3.4 it results that the 
set of rotations of a free rigid solid about concurrent axes of rotation form an Abelian 
group too; as well, the Theorem 5.3.5 allows to state that the set of rotations of a free 
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rigid solid about parallel axes of rotation, so that the resultant angular velocity vector is 
non-zero, constitutes also an Abelian group.  

Applying the divergence and curl operators to the velocities (14.1.17), taking into 
account the formulae (A.2.31'), (A.2.31'') and observing that the vectors ′vO  and  are 
constant with respect to the vector r and that =rdiv 3 , curl =r 0 , ⋅ =r( )ω ∇ ω , we 
may write 

′ =vdiv 0 ,   ′ =vcurl 2ω , (14.1.19) 

in the frame R ; replacing ′ ′= −r r rO , we can make the same affirmation for the 
frame ′R  too. We state thus 
Theorem 14.1.3  The velocities’ field of a free rigid solid with respect to an inertial 
frame of reference is a solenoidal one (a field of curls), its curl being equal to the 
double of the rotation angular velocity vector with respect to this frame. 

In the case in which the non-inertial frame of reference R  is not rigidly linked to the 
rigid solid, intervenes a supplementary rotation vector , which characterizes the 
motion of this frame with respect to the rigid solid; obviously, the results which are 
obtained are more complicated, intervening the difference −ω Ω , but they are not of a 
particular practical interest. 

mentum in Case of a Rigid Solid 

Various mechanical quantities which appear in the study of continuous mechanical 
systems get particular forms in case of a rigid solid; we will express these quantities 
with respect to an inertial frame of reference ′R  with the pole at a point ′O  and with 
respect to a non-inertial frame R  with the pole at a point O , rigidly linked to the 
considered rigid solid, the connection between the two frames being specified by 

′ ′= +r r rO  
 

(14.1.20) 

for a particle P  of the rigid solid. We introduce, as well, the frame R  too, with the 

pole at the same point O  and with the axes parallel to the axes of the frame ′R ; the 

connection between the frames ′R  and R  is of the same form (14.1.20). Defining 
the momentum of the rigid solid in the form 

′ ′= ∫∫∫H r v( ) d
V

Vμ , 
 

(14.1.21) 

where V  is the volume, and taking into account the expression (14.1.17) of the velocity 
and the relations 

= ∫∫∫M r( )d
V

Vμ ,   = ∫∫∫ r r( ) d
V

M Vμρ , 
 

(14.1.22) 

where  is the position vector of the mass centre in the frame R, we obtain the formula 

14.1.1.5 Momentum and Moment of Mo
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′ ′= + ×H v( )OM ω ρ , 
 

(14.1.21') 

which is a particular case of the formula (11.2.11) (for =H 0 ); observing that the 
velocity of the mass centre is given by 

′ ′= + ×v vC O ω ρ , 
 

(14.1.17'') 

we can write 

′ ′=H vCM  (14.1.21'') 

too, and we state 
Theorem 14.1.4  The momentum of a rigid solid with respect to a given frame of 
reference is equal to the momentum of its mass centre with respect to the same frame, 
assuming that the whole mass of it is concentrated at this centre. 

The moment of momentum of the rigid solid is defined in the form 

[ ]′′ ′ ′= ×∫∫∫K r r v( ) dO V
Vμ . 

 

(14.1.23) 

Taking into account (14.1.20), (14.1.17), we may assume 

( ) ( )′′ ′ ′ ′ ′= + × + × = ×∫∫∫ ∫∫∫K r r r v r r v r( ) d ( )dO O O OO V V
V Vμ μω  

⎡ ⎤′ ′+ × × − × + × ×⎣ ⎦∫∫∫ ∫∫∫ ∫∫∫r r r v r r r r r( ) d ( ) d ( ) ( )dO OV V V
V V Vμ μ μω ω , 

 

the relations (14.1.22) leading thus to 

( )′′ ′ ′ ′= + × − ×K K r v vO
O C OO M ρ , 

 

(14.1.23') 

where the pseudomoment of momentum is given by 

= × × = ×∫∫∫ ∫∫∫
rK r r r r r d

( ) ( )d ( ) d
d

O
V V

V V
t

μ μω . 
 

(14.1.24) 

We find thus again the formulae (11.2.16), (11.2.16'), where =v 0i . To λ , λ scalar, 
corresponds the homologous vector KOλ , while if 1ω  and 2ω  have as homologous 
vectors 1

OK  and 2
OK , respectively, then to the vector +1 2ω ω  corresponds the vector 

1 2
O O+K K , due to the distributivity of the vector product with respect to the addition of 

vectors; hence, the linear transformation (14.1.24) is a vector homographic 
transformation, called inertial homography. Noting that 

[ ]2( ) ( ) dO
V

r Vμ= − ⋅∫∫∫K r r rω ω , 
 

 

introducing the moment of inertia tensor IO  of components (3.1.81) and taking into 
account the relation (3.1.83), we obtain the remarkable relation 

209 14 Dynamics of the Rigid Solid 

ω



www.manaraa.com

= =K K IO
O O ω , 

 

(14.1.24') 

which corresponds to the relations (11.2.17), (11.2.17') where we make =K 0O ; KO  

represents the moment of momentum with respect to the pole O  in the non-inertial 
frame and – in case of the rigid solid – is reduced to the pseudomoment of momentum 
considered above. We state thus 
Theorem 14.1.5  The moment of momentum of a rigid solid with respect to a pole ′O  
of a given inertial frame of reference ′R , in this frame, is equal to the sum of the 
pseudomoment of momentum of the rigid solid with respect to an arbitrary pole O , 
rigidly linked to the rigid solid (the contracted product of the moment of inertia tensor 
with respect to the same pole by the rotation angular velocity vector of a non-inertial 
frame R  with the pole at O , rigidly linked to the rigid solid, with respect to the inertial 

frame), the moment of momentum of the centre of mass, translated at the pole O , where 
the whole mass of the rigid solid is considered to be concentrated, taken with respect to 
the pole ′O , in the frame ′R , and the moment of momentum of the pole O , translated 
at the centre of mass, where it is assumed that the whole mass of the rigid solid is 
concentrated, calculated with respect to the pole O , in the inertial frame ′R  too. 

In the particular case in which the frame of reference R  is of Koenig type ( = 0ω , 
hence =K 0O ), there results the formula 

( ) ( )′′ ′ ′ ′= × + ×K r v vO C OO M Mρ . 
 

(14.1.25) 

Taking into account that this frame is rigidly linked to the rigid solid, it results that the 
latter one will have a motion of translation (we are in a particular case of motion). 

If the pole of the non-inertial frame coincides with the centre of mass of the rigid 
solid ( ≡O C , = 0ρ ), then we obtain a formula of Koenig type (in which, instead of 
the moment of momentum with respect to the centre of mass, in the frame R, which is 
equal to zero, appears the corresponding pseudomoment of momentum) 

( )′′ ′ ′= + ×K I vC CO Mω ρ , 
 

(14.1.25') 

where IC  is the central moment of inertia tensor; thus, the motion is not particularized 
and has – further – a general character. If we have also = 0ω , then the non-inertial 
frame R  is a Koenig frame and we get 

( )′′ ′ ′= ×K vCO Mρ . (14.1.25'') 

Hence, the moment of momentum of a rigid solid in motion of translation, with respect 
to a given frame of reference, is equal to the moment of momentum of its centre of mass 
with respect to this frame, assuming that its whole mass is concentrated at this centre. 

( )′′ ′ ′ ′= − ×K K r vO O CO M ,
 we obtain 

( )′ ′= + ×K I vO O OMω ρ , (14.1.26) 

As in Sect. 11.2.2.1, starting from (14.1.23') and noting that 
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a formula analogue to (11.2.23), the moment of momentum ′KO  being calculated with 
respect to the inertial frame ′R ; in particular, if ≡O C , then we can write 

′ =K I ( )C C ωS , 
 

(14.1.26') 

corresponding to the relation (11.2.23'), where we make =K 0C . We state thus 
Theorem 14.1.6  The moment of momentum of a rigid solid with respect to the centre of 
mass, in an inertial frame of reference, is equal to the contracted product of the central 
moment of inertia tensor by the rotation angular velocity vector of a non-inertial frame 
rigidly linked to the rigid solid, with the pole at the centre of mass too, with respect to 
the inertial frame. 

This result has a general character and takes place for any motion of the rigid solid; it 
represents the most simple formula of kinetic nature corresponding to such a motion. It 
can be obtained also directly, starting from the formula (14.1.24) and making ≡O C ; it 
results 

′ ′ ′ ′= × = − × −∫∫∫ ∫∫∫I r r r v vd
( ) d ( )( ) ( )d

dC CV V

CPCP V V
t

μ μω ρ  

[ ] ′′ ′ ′ ′ ′ ′ ′= − × + × − =∫∫∫ ∫∫∫r r v v r K( ) ( ) d ( )dC CV V
V Vμρ ρ , 

 

because the last integral represents the statical moment of the rigid solid with respect to 
the mass centre, so that it vanishes. 

It is thus put in evidence the necessity to introduce the moment of inertia tensor, 
studied thoroughly in Chap. 3, Sec. 1.2. 

We can define the dynamic resultant of the rigid solid in the form 

′′ = ∫∫∫
vA r d

( ) d
dV

V
t

μ . 
 

(14.1.27) 

Taking into account (14.1.17') and (14.1.22), we obtain 

′ ′= + × + × ×A a ( )OM M Mω ρ ω ω ρ , 
 

(14.1.27') 

corresponding to the relation (11.2.11') for =H 0  and ∂ =r 0/ t∂ . As well, the 
dynamic moment of the rigid solid, defined in the form 

′
′⎡ ⎤′ ′= × ⎢ ⎥⎣ ⎦∫∫∫

vD r r d
( ) d

dO V
V

t
μ , 

 

(14.1.28) 

leads to 

( )′′ ′= + ×D I ad
( )

d O OO M
t

ω ρ , 
 

(14.1.28') 

corresponding to the relation (11.2.25), where we take into account (14.1.26) and 
(14.1.17'). 
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The kinetic energy of the rigid solid is defined in the form 

′ ′= ∫∫∫ r 21
( ) d

2 V
T v Vμ . 

 

(14.1.29) 

With the aid of the relation (14.1.17), we can write 

′ ′ ⎡ ⎤′ ′= + ⋅ × + ×⎣ ⎦∫∫∫ ∫∫∫ ∫∫∫r v r r r r2 21 1
( )d ( ) d ( )( ) d

2 2O OV V V
T v V V Vμ μ μω ω ,  

wherefrom, using the relations (14.1.22), we obtain 

( )′ ′ ′ ′ ′ ′= + + = − + ⋅v v v2 21 1
, ,

2 2
O O

O O O O CT T Mv M T Mv Mω ρ , 
 

(14.1.29') 

corresponding to the relations (11.2.28), where we make =v 0C . We have introduced 
the pseudokinetic energy of the rigid solid 

( )= × =∫∫∫ ∫∫∫
rr r r

2
21 1 d

( )( ) d ( ) d
2 2 d

O
V V

T V V
t

μ μω  

= ⋅ × × = ⋅ ×∫∫∫ ∫∫∫
rr r r r r1 1 d

( ) ( )d ( ) d
2 2 dV V

V V
t

μ μω ω ω . 

 
 
 

(14.1.30) 

Taking into account (14.1.24) and (14.1.24'), we can also write 

( )= = ⋅ = ⋅K I1 1
2 2

O O
OT T ω ω ω , 

 

(14.1.30') 

corresponding to the relations (11.2.28''), (11.2.29), where we make =K 0O  and 
= 0T ; T  represents the kinetic energy with respect to the non-inertial frame R , 

which – in case of the rigid solid – is reduced to the pseudokinetic energy considered 
above. We may thus state 
Theorem 14.1.7  The kinetic energy of a rigid solid with respect to a given inertial 
frame of reference ′R  is equal to the sum of the pseudokinetic energy of this solid 
with respect to an arbitrary non-inertial frame R  with the pole at O , rigidly linked to 
the rigid solid (the semi-scalar product of the rotation angular velocity vector by the 
contracted product of the moment of inertia tensor with respect to the pole O  by the 
rotation angular velocity vector of the frame R  with respect to the frame ′R ) and the 
scalar product of the velocity of the pole O  with respect to the frame ′R  by the 
momentum of the rigid solid with respect to the same frame R, from which is 
subtracted the kinetic energy of the pole O  at which is considered to be concentrated 
the whole mass of the rigid solid, in the frame ′R . 

14.1.1.6 Kinetic energy and work in case of a rigid solid

212  MECHANICAL SYSTEMS, CLASSICAL MODELS 



www.manaraa.com

We can write the relations (11.2.29), (11.2.29') too, introducing the axial moment of 
inertia with respect to the instantaneous axis of rotation Δ; thus, the axial moment of 
inertia plays the rôle of a mass in the instantaneous motion of rotation. Noting that 

Kd O  is the vector homologous to d , we may write 

[ ]⋅ = ⋅ × × = × ⋅ ×∫∫∫ ∫∫∫K r r r r r rd ( )d ( ) d ( )( ) (d )dO
V V

V Vμ μω ω ω ω ω  

[ ]= ⋅ × ×∫∫∫ r r r( ) (d ) d
V

Vμ ω ω , 

 

whence the remarkable relation 

⋅ = ⋅K Kd dO Oω ω . (14.1.31) 

Taking into account (11.2.29') and (14.1.31), we have 

( ) ( ) ( ) ( )221 1 1
d d d d d d

2 2 2
O O OT I I I IΔ Δ Δ Δω ω ω ω⋅ = ⋅ = = = =K Kω ω . 

= = vers
K KOP
I IΔ Δω

ω ω . 
 

(14.1.32) 

In this case 

( )
= − 2

dd
d

IKOP K
I I

Δ

Δ Δ

ω
ω ω
ω ω , 

so that, using the above results, 

( )⋅⎛ ⎞⋅ = ⋅ − =⎜ ⎟⎝ ⎠
KK K 2

d
d d 0

O
O OOP K K I

I I Δ
Δ Δ

ω
ω ω

ω ω . 

Hence, the pseudomoment of momentum KO  is along the normal OQ  at O  to the plane 

Π, tangent at P  to the ellipsoid of inertia (see Fig. 3.9) too). 
We define a vector 

= = = =
IK KJ I1

vers
22

O O
OO

OO I ITT Δ Δω
ω

ω , 
 

(14.1.33) 

which is situated along the same normal and is associated to the moment of inertia 
tensor IO . Taking into account (3.1.100), we can write, in components, 

In Chap. 3, Sect. 1.2.6 we have introduced the ellipsoid of inertia as locus of the points 
P for which 
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= 1O
i ij jJ I x

K
,   = 1,2,3i , 

 

(14.1.33') 

where ix  are the co-ordinates of the point P  of the ellipsoid of inertia; we have, with 
respect to the principal axes of inertia, 

= = =1 2 3

1 1 2 2 3 3

1O O OJ J J
I x I x I x K

. 
 

(14.1.33'') 

Using the relation (3.1.82'), we get 

⋅ =J versO IΔω . 
 

(14.1.34) 

We notice that ( ∈Q Π ) 

⋅⋅ = = =KJ 2

O
O OOP J OQ K K

IΔω
ω . 

 
(14.1.34') 

If we take = 2K R M  
J /O M  applied at O  is the point ′P  (the inverse of the point Q  with respect to a 

sphere of centre O  and radius R ), the locus of which is the gyration ellipsoid; we obtain 
this result also by comparing the relations (3.1.104') and (14.1.33''). It results thus a 
graphic method to determine the pseudomoment of momentum KO . 

The relation (14.1.26') shows that the central moment of inertia tensor IC  plays an 

important rôle. In this order of ideas, let be an axis which passes through the pole O  

and let be O  another pole on , of position vector =rO αω , α scalar, with respect to 

the pole O . The relation = +r rαω  between the position vectors of a point P  of the 

rigid solid with respect to the poles O  and O , respectively, allows to write 

[ ]( )( ) ( ) d ( ) dO O
V V

V Vμ α α α μ= + × × + = + × ×⎡ ⎤⎣ ⎦∫∫∫ ∫∫∫K r r r K r rω ω ω ω ω  
[ ]( ) d ( ) ( )O O O

V
V M K Mα μ α α ω= + × × = + × × = + ⋅⎡ ⎤⎣ ⎦∫∫∫K r r K 2ω ω ω ω ρ ω ρ ω − ρ . 

If the axis  is the principal axis of inertia with respect to the pole O , then JO  must be 

collinear with , hence we must have =KO λω , λ scalar; if we wish that  be a 

principal axis of inertia with respect to the pole O  too, analogously we must have 

=KO λω , λ  scalar. In this case, 

= + ⋅ − 2( )M Mλ λ α α ωω ω ω ρ ω ρ ,  

(see Chap. 3, Sect. 1.2.6), then the extremity of the vector 
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wherefrom it results = βρ ω , β scalar. We can thus state that a principal axis of inertia 
with respect to a given pole is a principal axis of inertia with respect to any point of it if 
and only if it is a central axis of inertia. Analogously, let be a central principal plane of 
inertia determined by the axes  and ′ω  through O  and a point O  in this plane, 

specified by the position vector ′ ′+α αω ω , α, ′α  scalars; a point P  of the rigid solid 

will be specified by the position vectors r and r  with respect to the poles O  and O , 
respectively, so that ′ ′= + +r rα αω ω . Putting the condition that the axes which pass 
through O  and are parallel to the axes  and ′ω  be principal axes of inertia if the axes 

 and ′ω  have this property, then we find – as above – that ′ ′= +β βρ ω ω , β, ′β  
scalars; hence, a principal plane of inertia with respect to a given pole is a principal 
plane of inertia with respect to any point of it if and only if it is a central principal 
plane of inertia. 

If ≡O C , then the relation (14.1.29') takes the form (11.2.37), where the 
pseudokinetic energy is given by 

( )′= ⋅ = ⋅ = ⋅K K I1 1 1
2 2 2

C C
C CT ω ω ω ω . 

 

(14.1.35) 

If we eliminate the pseudomoment of momentum KO  and the pseudokinetic energy 
OT  between the relations (14.1.23'), (14.1.29') and (14.1.30') and take into account 

(14.1.17'), then we find the remarkable relation 

( ) ( )1 1 1 1
2 2 2 2O C O O O C CT M M′ ′ ′ ′ ′ ′ ′ ′ ′= ⋅ + ⋅ − × = ⋅ + ⋅ − ×K v v r K v vω ω ω ω ρ  

 (14.1.36) 

analogous to the relation (14.1.17'). 
Introducing the transportation kinetic energy of the rigid solid S, in the non-inertial 

frame of reference R, with respect to the inertial frame ′R , given by (11.2.41), we 
notice that 

′ ′= (tr )T T O , 
 

(14.1.29'') 

corresponding to the formula (14.1.29'). In the case of the rigid solid we have = 0T , 
the comoment given by the kinematic torsor with the torsor of momenta vanishing too 
( =( , ) 0τT ); in this case, the formula (11.2.43) leads to 

( )′ ′= ′1
,

2
T τT . 

 

(14.1.29''') 

In case of the free rigid solid S, the elementary work of the given internal forces 
vanishes. The elementary work of the given external forces is expressed in the form (we 
assume that a system of n  given forces is acting) 
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( )
1 1 1

d d d d
n n n

i i i i iO
i i i

W t
= = =

⎛ ⎞′ ′ ′= ⋅ = ⋅ + × ⋅⎜ ⎟⎝ ⎠
∑ ∑ ∑F r F r r Fω , 

 

where we have used the formula (11.2.10') and we have made =r 0d i  and =v 0i . 
Introducing the torsor of the given external forces ( { } { }τ =F R M,iO O ) and taking 
into account the properties of the triple scalar product, we can write 

d d dO OW t′ ′= ⋅ + ⋅R r M ω , 
 

(14.1.37) 

obtaining thus the expression of the elementary work of the given external forces in 
case of a free rigid solid; we get the same result if we make 

′ = = =int intd d d 0W W W  and equate to zero the quantities connected to the 
constraint forces in the relation (11.2.31). For the power of the given forces we have 
(corresponding, analogously, to the formula (11.2.31')) 

′ ′= ⋅ + ⋅R v MO OP ω , 
 

(14.1.37') 

which allows to state 
Theorem 14.1.8  The power of the given external forces which act upon a free rigid 
solid, with respect to a given frame of reference, is equal to the power of the torsor of 
these forces at an arbitrary pole, rigidly linked to the rigid solid, with respect to the 
same frame. 

Introducing the kinematic torsor (11.2.33), we can express the relation (14.1.37') also 
in the form 

{ }( )′ = τ′ F, iP T . 
 

(14.1.37'') 

Starting from the theorem of momentum written in the form (12.1.33) for a 
continuous mechanical system and using the expression (14.1.21'), (14.1.21'') for the 
momentum of the rigid solid S, we may write 

( ) ( )
′ ′ ′= = + × + × × =H v a Rd d

d d C OM M M M
t t

ω ρ ω ω ρ ; 
 

(14.1.38) 

this result can be expressed also in the form ( ′ =R R , the resultant being invariant to a 
change of pole) 

+ =F R 0( )c
t , 

 

(14.1.38') 

where we have introduced the transportation complementary force 

( )[ ]′= − + × + × ×F a( )c
Ot M ω ρ ω ω ρ , 

 

(14.1.38'') 

14.1.1.7 General Theorems 
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corresponding to the mass centre. The above formulae can be obtained also from the 
formulae (11.2.11'), (11.2.12), where we make =H 0 , ∂ ∂ = 0/ tρ , ( )C

C =F 0 , 

=R 0 . Introducing the acceleration of the mass centre with respect to the inertial 
frame of reference ′R , it results 

′ =a RCM . 
 

(14.1.39) 

We can thus state: 
Theorem 14.1.9 (theorem of momentum)  The derivative with respect to time of the 
momentum of a free rigid solid, in an inertial frame of reference, is equal to the 
resultant of the given external forces which act upon that solid. 
Theorem 14.1.9' (theorem of motion of the mass centre)  The centre of mass of a free 
rigid solid moves, with respect to an inertial frame of reference, as a free particle at 
which would be concentrated the whole mass of the solid and which would be acted 
upon by the resultant of the given external forces. 

Analogously, we use the theorem of moment of momentum written in the form 
(12.1.33') for a continuous mechanical system, the moment of momentum of the rigid 
solid S  being given by (14.1.23'); we obtain 

( )[ ]′
′

′
′ ′ ′ ′ ′ ′= + × + × − × − × × =

K K v v r a a v M
d d
d d

O
O

O C O C O O OM
t t

ρ ω ρ , 
 

the moment of the given external forces being ′ ′= + ×M M r RO OO . Taking into 
account (14.1.17') and (14.1.39), it results 

( )′× + =Ka Md
d

O

O OM
t

ρ , 
 

(14.1.40) 

a relation of the form (11.2.18), where we make =M 0O . We state 
Theorem 14.1.10 (theorem of moment of momentum)  The derivative with respect to 
time of the pseudomoment of momentum of a free rigid solid with respect to an 
arbitrary pole O , rigidly connected to the solid, in an inertial frame of reference, is 
equal to the resultant moment of the given external forces which act upon this solid, 
with respect to that pole, from which we subtract the dynamic moment, in the inertial 
frame of the considered pole, translated at the centre of mass of the rigid solid, at 
which is assumed to be concentrated the whole mass of this solid, taken with respect to 
the pole O . 

The relation (14.1.24') allows also to write 

( )′× + =a I Md
( )

dO O OM
t

ρ ω . 
 

(14.1.40') 

If the non-inertial frame of reference R  is of Koenig type ( = 0ω ), then the rigid solid 
S  has a motion of translation and we remain with the relation 
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( )′× =a MO OMρ . 
 

(14.1.41) 

If we have ≡O C  (hence, = 0ρ ), then it results that the non-inertial frame of 
reference is a Koenig frame; we can have a motion of translation of the free rigid solid 
if and only if =M 0C . We notice that we can have =M 0O  even if the pole O  does 
not coincide with the centre of mass, if this pole has a uniform and rectilinear motion 
with respect to an inertial frame or if the support of the acceleration ′aO  of the pole O  

with respect to an inertial frame passes through the mass centre C . But if ≡O C  with 
≠ 0ω , then the theorem of moment of momentum becomes 

( )[ ]= =I Md d
d d

C

C C
K
t t

ωS , 
 

(14.1.41') 

without any loss of generality. We obtain the same result starting from the relation 
(11.2.24), where we make =K 0C  and =M 0C . Taking into account the relation 
(14.1.26') too, we state, as well, 
Theorem 14.1.10'  The derivative with respect to time of the moment of momentum of a 
free rigid solid, with respect to its mass centre, in an inertial frame of reference, with 
respect to this frame, is equal to the resultant moment of the given external forces 
which act upon this solid, with respect to the mass centre. 

′ ′= ⋅ + ⋅R v Md
d O O
T
t

ω . 
 

(14.1.42) 

There results 
Theorem 14.1.11 (theorem of kinetic energy). The derivative with respect to time of the 
kinetic energy of a free rigid solid, in an inertial frame of reference, is equal to the 
power of the given external forces considered to be applied at an arbitrary pole, rigidly 
linked to the solid, with respect to the given frame. 

Taking into account (14.1.29'), we are led to 

( ) ( ) ( )[ ]′ ′ ′ ′ ′ ′+ ⋅ + + + × = ⋅ + ⋅v a a v v R v Md
, , , , ,

d

O

O O O O O O O
T M M
t

ω ρ ω ρ ω, ω ρ ω ,  

and the formula (14.1.38) allows to write the theorem of kinetic energy in the form 

( )′+ = ⋅a Md
, ,

d

O

O O
T M
t

ω ρ ω , 
 

(14.1.43) 

corresponding to the relation (11.2.34); starting from the relation (14.1.30'), we are led 
to 

( )[ ] ( ) ( ) ( )= + × ⋅ + ⋅ = ⋅ + ⋅I I I I Id 1 1 1 1
d 2 2 2 2

O

O O O O O
T
t

ω ω ω ω ω ω ω ω ω ω , 
 

Starting from the theorem of kinetic energy stated in, Sect. 11.2.2.2, we obtain 
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wherefrom, taking into account (14.1.31), it results 

( ) ( )= ⋅ = ⋅I Id
d

O

O O
T
t

ω ω ω ω . 
 

(14.1.43') 

If we write the relation (14.1.43') in the form = ⋅Kd dO OT ω , then we notice that 
we have 

=K gradO OTω  
 

(14.1.44) 

too, where = ( )O OT T ω . Analogously, starting from the relation (14.1.29'), 
considering successively that ( )′ ′ ′= vOT T , ′ ′= ( )T T ω  and taking into account 
(14.1.21'), (14.1.26), we may write ′ ′ ′= ⋅H vd d OT  and ′ ′= ⋅Kd dOT ω , 
respectively, so that 

′′ ′= vH grad
O

T ,   ′ ′=K gradO Tω . 
 

(14.1.44') 

Observing that the kinetic energy ′T  is a homogeneous function of second degree with 
respect to the components of the vectors ′vO  and , Euler’s theorem allows to write 

′′ ′ ′ ′ ′ ′ ′= ⋅ + ⋅ = ⋅ + ⋅vv v H K2 grad grad
OO O OT T Tωω ω , 

 

(14.1.44'') 

finding thus again the relation (14.1.29'''). 
If ≡O C , then the relation (14.1.43) becomes 

( )[ ] ( )[ ]= ⋅ = ⋅ = ⋅I I Md
d

C

C C C
T
t

ω ω ω ω ωS S , 
 

(14.1.43'') 

without any loss of generality concerning the result. 
A scalar product of the formula (14.1.41') by  leads to the formula (14.1.43''); 

obviously, by a scalar product of the formula (14.1.40) by , we get, analogously, the 
relation (14.1.43). Because one can obtain the formula (14.1.43) taking into account the 
theorems of momentum and of motion of the mass centre, respectively, we can state that 
the theorem of kinetic energy is obtained as a linear combination of the theorems of 
momentum and moment of momentum; consequently, it represents a supplementary 
non-independent equation of motion. However, the theorem of kinetic energy is 
important by itself; it can be used directly in various applications (e.g., in the study of 
motion of the rigid solid with a fixed axis). One can also show that, starting from the 
theorem of kinetic energy, we find again the theorems of momentum and moment of 
momentum, because the relation (14.1.42) must hold for any rototranslation 

( ),O O′ ′≡ vωT , according to the relation (14.1.29'''). 
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The theorems of momentum and moment of momentum constitute together the 
theorem of torsor for a free rigid solid S ; these theorems lead to two vector differential 
equations or to six scalar differential equations and describe, entirely, the motion of the 
rigid solid, which has six degrees of freedom. Indeed, taking into account the principle 
of variation of the kinetic torsor for a continuous mechanical system, which can be 
applied to an arbitrary subsystem ⊂S S , and observing that if we know the motion of 
the subsystem S , then we know the motion of the whole rigid solid S, we obtain the 
same result. In vector form, these equations are 

( )[ ]′ + × + × × =a ROM ω ρ ω ω ρ , (14.1.45) 
( )′× + + × =a I I MO O O OMρ ω ω ω , (14.1.46) 

while, in components, we obtain 

( )′ + ∈ + ∈ ∈ =mj j iOi ijk k ijk klm lM a Rω ρ ω ω ρ ,   = 1,2,3i , 
 

(14.1.45') 
′∈ + + ∈ =j ij j jijk Ok ijk kl l OiM a I I Mρ ω ω ω ,   = 1,2,3i ; 

 

(14.1.46') 

these equations can be written also in the form 

[ ]( )′ + ∈ + =2j j i iOi ijk k jM a Rω ρ ω ω ρ ,   = 1,2,3i , 
 

(14.1.45'') 

( )′∈ + + ∈ =j jijk Ok kl ik l ijk l OiM a I Mρ δ ω ω ω ,   = 1,2,3i . 
 

(14.1.46'') 

With respect to the principal axes of inertia, we get 

( ) ( )′ ′− + + − =2 3 1 1 3 2 2 33 2 1O O OM a a I I I Mρ ρ ω ω ω , 
( ) ( )′ ′− + + − =3 1 2 2 1 3 3 11 3 2O O OM a a I I I Mρ ρ ω ω ω , 
( ) ( )′ ′− + + − =1 2 3 3 2 1 1 22 1 3O O OM a a I I I Mρ ρ ω ω ω , 

 
 

(14.1.46''') 

where ≥ ≥1 2 3I I I  are the principal moments of inertia relative to the pole O . 
Assuming that ≡O C , the equations of motion of the free rigid solid become 

′
′ = =

v
a R

d
d

C
CM M

t
, 

 

(14.1.47) 

( )+ × =I MC C CI ω ω ω ; (14.1.48) 

with respect to the central principal axes of inertia, we get 

′ = iCiMa R ,   = 1,2,3i , 
 

(14.1.47') 

( )+ − =( ) ( ) ( )
1 2 3 11 3 2

C C C
CI I I Mω ω ω , 

( )+ − =( ) ( ) ( )
2 3 1 22 1 3

C C C
CI I I Mω ω ω , 

( )+ − =( ) ( ) ( )
3 1 2 33 2 1

C C C
CI I I Mω ω ω , 

 
 

(14.1.48') 

14.1.1.8 General Equations of Motion
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where ≥ ≥( ) ( ) ( )
1 2 3
C C CI I I  are the central principal moments of inertia. The equations 

(14.1.46''') take the form (14.1.48') with respect to an arbitrary point O  of the rigid solid 
too, if this point has a uniform and rectilinear motion ( ′ =a 0O ) with respect to an 
inertial frame of reference or if the support of the acceleration of this point passes at 
any time through the mass centre C ; this form of the equations of the motion of rotation 
of the rigid solid S  about a point of it is due to L. Euler. 

We have seen that the theorem of kinetic energy is a linear consequence of the 
theorem of torsor; this theorem can be used to obtain a first integral of the system of 
equations of motion. In the non-inertial frame of reference R, the relation (14.1.43) 
takes the form 

( )1 1 1 2 2 2 3 3 3 1 2 31 2 3
1
2 jijk Oi k O O OI I I M a M M Mω ω ω ω ω ω ω ρ ω ω ω′+ + + ∈ = + + , 

 (14.1.49) 

with respect to the principal axes of inertia; if ≡O C , then the relation (14.1.49) 
becomes (corresponding to the relation (14.1.43''')) 

( )+ + = + +( ) ( ) ( )
1 1 2 2 3 3 1 2 31 2 31 2 3

1
2

C C C
C C CI I I M M Mω ω ω ω ω ω ω ω ω . 

 

(14.1.49') 

Because all the above equations are written with respect to the non-inertial frame of 
reference R, rigidly linked to the solid, the acceleration of the pole of this frame must 
be expressed analogously. Hence, 

′
′ ′= = + ×

v
a v v

d
d

O
O O Ot

ω ,   
′

′ ′= = + ×
v

a v v
d
d

C
C C Ct

ω , 
 

(14.1.50) 

where we have put into evidence the derivatives ′ ′=v v /O O t∂ ∂  and ′ ′=v v /C C t∂ ∂  
of the velocities ′vO  and ′vC  with respect to time, respectively. The equations 
(14.1.45), (14.1.46) take the form 

( )[ ]′ ′+ × + × + × =v v RO OM ω ω ρ ω ρ , 
 

(14.1.51) 
( ) ( )′ ′× + × + + × =v v I I MO O O O OMρ ω ω ω ω , 

 

(14.1.51') 

while the equation (14.1.47) becomes 

( )′ ′+ × =v v RC CM ω . 
 

(14.1.52) 

From the above considerations, we notice that the motion of the free rigid solid does 
not depend on the action of each external force, taken separately, but only on the torsor 
of all the forces with respect to an arbitrary point of it (the pole of the non-inertial frame 
of reference R ); hence, two equivalent systems of forces (modelled as sliding vectors) 
applied upon a free rigid solid lead to the same motion of it. In the modelling as a 
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particle of the rigid solid, its motion is reduced to the motion of translation of its mass 
centre C  acted upon by the resultant R, the number of degrees of freedom being 
reduced from six to three. If one cannot neglect the rotation of the solid about the centre 
C , then we introduce also the action of the resultant moment MC , which specifies the 
motion. Obviously, to can obtain such a decomposition, we must assume that 

( )′ ′=R R v, ;C tρ , non-depending on  and on Euler’s angles ψ, θ, ϕ; we can use thus 
the equation (14.1.47) as a Newton equation of motion for a particle. 

In general, we have 

               ( )′ ′ ′ ′ ′ ′= 1 2 31 2 3 1 2 3, , , , , , , , , , , ;i i O O O O O OR R x x x v v v tψ θ ϕ ω ω ω , 
           ( )′ ′ ′ ′ ′ ′= 1 2 31 2 3 1 2 3, , , , , , , , , , , ;Oi Oi O O O O O OM M x x x v v v tψ θ ϕ ω ω ω ,   = 1,2,3i , 

the rigid solid being non-autonomous; if the time does not intervene explicitly, then the 
solid is autonomous (or dynamic). The 12 unknown scalar functions (the co-ordinates 

′ ′= ( )Oi Oix x t  of the pole O , the components ′ ′= ( )Oi Oiv v t  of the velocity of the pole 

O  with respect to the inertial frame of reference ′R , Euler’s angles = ( )tψ ψ , 
= ( )tθ θ , = ( )tϕ ϕ  and the components = ( )i i tω ω , = 1,2,3i , of the instantaneous 

angular velocity vector of the rigid solid with respect to the non-inertial frame of 
reference R ) are determined by the system of first order differential equations 
(14.1.45''), (14.1.46'') and (14.1.15), written in the normal form (the coefficients of the 
equations (14.1.53), (14.1.53') are constant and we can solve this linear system with 
respect to the derivatives of first order) 

[ ]
′

+ ∈ = = −
dd

2
d d

jOi
i i j iijk k j

v
M M R R M

t t
ω

ρ ω ω ρ ,   = 1,2,3i , 
 

(14.1.53) 

′
∈ + = = − ∈

dd
d d

jOk
Oij ij jijk Oi ijk kl l

v
M I M M I

t t
ω

ρ ω ω ,   = 1,2,3i , 
 

(14.1.53') 

( ) ( )= = +1 1 2 1 2
d

, , , sin cos cosec
d

f
t
ψ

θ ϕ ω ω ω ϕ ω ϕ θ , 

( )= = −2 1 2 1 2
d

, , cos sin
d

f
t
θ

ϕ ω ω ω ϕ ω ϕ , 

( ) ( )3 1 2 3 3 1 2
d

, , , , sin cos cot
d

f
t
ϕ

θ ϕ ω ω ω ω ω ϕ ω ϕ θ= = − + , 

 
 
 

(14.1.53'') 

to which we associate the equations 

( )
′

′ ′ ′ ′ ′= = 1 2 3
d

, , ;
d

Oi
Oi Oi O O O

x
v v x x x t

t
,   = 1,2,3i , 

 

(14.1.53''') 

the derivatives being taken in the inertial frame of reference ′R , as well as the initial 
conditions (at the moment = 0t t ) of Cauchy type 

( )′ ′= 0
0Oi Oix t x ,   ( )′ ′= 0

0Oi Oiv t v ,   ( ) = 0
0tψ ψ ,   ( ) = 0

0tθ θ ,   
( ) = 0

0tϕ ϕ ,   ( ) = 0
0i itω ω ,   = 1,2,3i . 

 
(14.1.54) 
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For  the boundary value problem thus formulated, one can show 
Theorem 14.1.12 (of existence and uniqueness; Cauchy-Lipschitz). If the functions iR , 

OiM , if  and ′Oiv , = 1,2,3i , are continuous on the 13-dimensional interval D, 
specified by 

′ ′ ′− ≤ ≤ +0 0 0 0
i iOi Oi Oix X x x X ,   ′ ′ ′− ≤ ≤ +0 0 0 0

i iOi Oi Oiv V v v V ,   
− ≤ ≤ +0 0 0 0ψ Ψ ψ ψ Ψ ,   − ≤ ≤ +0 0 0 0θ Θ θ θ Θ ,   
[ ]∉ − +0 0 0 00 ,θ Θ θ Θ ,   − ≤ ≤ +0 0 0 0ϕ Φ ϕ ϕ Φ ,   

− ≤ ≤ +0 0 0 0
i i i i iω Ω ω ω Ω ,   − ≤ ≤ +0 0 0 0t T t t T ,   

=0 0 0 0 0
0, , , , , consti i iX V TΨ Θ Ω ,   = 1,2,3i , 

 

and defined on the space Cartesian product of the phase space (of canonical co-
ordinates ′ ′ ′1 2 3, ,O O Ox x x , ψ, θ, ϕ, ′ ′ ′ 1 2 31 2 3, , , , ,O O OMv Mv Mv M M Mω ω ω ) by the time 

space (of co-ordinate t ), and if Lipschitz’s conditions 

( )′ ′ ′ ′ ′ ′ 1 2 31 2 3 1 2 3, , , , , , , , , , , ;i O O O O O OR x x x v v v tψ θ ϕ ω ω ω  
( )′ ′ ′ ′ ′ ′− 1 2 31 2 3 1 2 3, , , , , , , , , , , ;i O O O O O OR x x x v v v tψ θ ϕ ω ω ω  

( )
=

⎧ ⎫⎡ ⎤′ ′ ′ ′≤ − + − + − + − + − + −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
∑
3

1

1
j jOj Oj Oj Oj

j

M x x v v λ
λ ω ω ψ ψ θ θ ϕ ϕ

τ τT
, 

( )′ ′ ′ ′ ′ ′ 1 2 31 2 3 1 2 3, , , , , , , , , , , ;Oi O O O O O OM x x x v v v tψ θ ϕ ω ω ω  
( )′ ′ ′ ′ ′ ′− 1 2 31 2 3 1 2 3, , , , , , , , , , , ;Oi O O O O O OM x x x v v v tψ θ ϕ ω ω ω  

( )
=

⎧ ⎫⎡ ⎤′ ′ ′ ′≤ − + − + − + − + − + −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
∑
3

1

1
j jOj Oj Oj Oj

j
M x x v v λ

λ ω ω ψ ψ θ θ ϕ ϕ
τ τ

L
T

, 

( ) ( )
=

⎛ ⎞
− ≤ − + − + −⎜ ⎟

⎝ ⎠
∑
3

1 2 3 1 2 3
1

1
, , , , , , , , ,i i j j

j
f fθ ϕ ω ω ω θ ϕ ω ω ω τ ω ω θ θ ϕ ϕT

( ) ( )
=

′ ′ ′ ′ ′ ′ ′ ′ ′ ′− ≤ −∑
3

1 2 3 1 2 3
1

1
, , ; , ;Oi O O O Oi O O O Oj Oj

j
v x x x t v x x x t x xT , 

where T  and L  are positive (temporal and spatial, respectively) constants, 
independent on ′ ′,Oi Oix v , ψ, θ, ϕ, iω  and t, while τ and λ are (temporal and spatial, 
respectively) constants equal to unity, for = 1,2,3i , then there exists a unique solution 

′ ′= ( )Oi Oix x t , ′ ′= ( )Oi Oiv v t , = = =( ), ( ), ( )t t tψ ψ θ θ ϕ ϕ , = ( )i i tω ω , = 1,2,3i , 
of the system (14.1.53)-(14.1.53''), which satisfies the initial conditions (14.1.54) and is 
defined on the interval − ≤ ≤ +0 0t T t t T , where 

⎡ ⎛ ⎞ ⎛ ⎞ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞≤ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎝ ⎠ ⎝ ⎠ ⎦

0 0 00 0 0

0min , , , , , , ,i i iX VT T ΩΨ Θ Φ
τ λ λ λ λτ T

V V V V V V
, 
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⎡ ⎛ ⎞ ⎤⎛ ⎞ ′= ⎜ ⎟⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎝ ⎠ ⎦

max , , ,   in Oii
i Oi

R M f v
M M

τ
τ λ

λ
V D . 

According to the theorem of Peano, the continuity of the functions iR , OiM , if  and 
′Oiv  on the interval D  ensures the existence of the solution; for its uniqueness, the 

conditions of Lipschitz must be fulfilled too. As a matter of fact, the conditions in the 
Theorem 14.1.12 are sufficient conditions of existence and uniqueness, which are not 
also necessary. As in the case of only one particle (see Chap. 6, Subsec. 1.2.1) or of a 
discrete mechanical system (see Sect. 11.1.1.5), we can make a prolongation of
the solution for [ ]∈ 1 2,t t t , outside the interval [ ]− +0 0,t T t T  (the time 0t  must 
not be necessarily the initial one, but can be a time arbitrarily chosen). As well, we can 
state a theorem on the continuous dependence of the solution on a parameter 
(analogous to the Theorems 6.1.3 and 11.1.2), a theorem of Poincaré type on the 
analytical dependence of the solution on a parameter (analogous to the Theorems 6.1.4 
and 11.1.3) and a theorem on the derivability of the solutions (analogous to the 
Theorems 6.1.5 and 11.1.4). Analogously, one can prove theorems concerning the 
continuous dependence of the solution on the initial conditions or on several 
parameters. 

One can use also another representation of the motion than that based on Euler’s 
angles; thus, if 

( )1 2 3 1 2 31 2 3 1 2 3, , , , , , , , , , , ;i i O O O O O OR R x x x v v v tα α α ω ω ω′ ′ ′ ′ ′ ′= , 
( )′ ′ ′ ′ ′ ′= 1 2 3 1 2 31 2 3 1 2 3, , , , , , , , , , , ;Oi Oi O O O O O OM M x x x v v v tα α α ω ω ω , 

 

then we replace the subsystem (14.1.53'') by the subsystem (5.2.37'), written in the form 

= − ∈d
d

i
jijk kt

α
ω α ,   = 1,2,3i , 

 

(14.1.54) 

passing to Euler’s angles by means of the relations (14.1.15), (14.1.16). The theorem of 
existence and uniqueness is stated analogously for the system of equations (14.1.53), 
(14.1.53'), (14.1.53'''), (14.1.54). 

If, in particular, the given functions iR  and OiM , = 1,2,3i , depend on a smaller 
number of variables, then the system of differential equations (14.1.53)-(14.1.53''') can 
be decomposed in subsystems. Thus, if 

( )′ ′ ′= 1 2 31 2 3, , , , , , , , ;i i O O OR R v v v tψ θ ϕ ω ω ω , 
( )′ ′ ′= 1 2 31 2 3, , , , , , , , ;Oi Oi O O OM M v v v tψ θ ϕ ω ω ω , 

 

then the system (14.1.53)-(14.1.53''') is decomposed in the subsystem (14.1.53''') and 
the subsystem (14.1.53)-(14.1.53''), while if 

( )′ ′ ′ ′ ′ ′= 1 2 31 2 3 1 2 3, , , , , , , , ;i i O O O O O OR R x x x v v v tω ω ω , 
( )′ ′ ′ ′ ′ ′= 1 2 31 2 3 1 2 3, , , , , , , , ;Oi Oi O O O O O OM M x x x v v v tω ω ω , 
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then this system is decomposed in the subsystem (14.1.53), (14.1.53'), (14.1.53''') and 
the subsystem (14.1.53''). If 

( )′ ′ ′= 1 2 31 2 3, , , , , ;i i O O OR R v v v tω ω ω , 
( )′ ′ ′= 1 2 31 2 3, , , , , ;Oi Oi O O OM M v v v tω ω ω , 

 

then the system (14.1.53)-(14.1.53''') is decomposed in the subsystem (14.1.53), 
(14.1.53'), which specifies the velocity of the rigid solid, the subsystem (14.1.53'''), 
which determines the motion of translation of the solid, and the subsystem (14.1.53''), 
which puts in evidence its motion of rotation. Obviously, to each subsystem we add 
initial conditions of Cauchy type in the form (14.1.54). We can state theorems of 
existence and uniqueness for each of these subsystems. 

We notice that one can replace the equations (14.1.53') by the equations (14.1.46'''), 
passing to the principal axes of inertia. 

As well, without any loss of generality, we can use the equations (14.1.47'), 
(14.1.48'), (14.1.53'') in the form 

′
=

d 1
d

Ci
i

v
R

t M
,   = 1,2,3i , 

 

(14.1.55) 
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1 1
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M M I I
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ω
ω ω , 

( )⎡ ⎤= = + −⎣ ⎦
( ) ( )2

2 3 12 3 1( ) ( )
2 2

d 1 1
d

C C
C CC C

M M I I
t I I

ω
ω ω , 

( )⎡ ⎤= = + −⎣ ⎦
( ) ( )3

3 1 23 1 2( ) ( )
3 3

d 1 1
d

C C
C CC C

M M I I
t I I

ω
ω ω , 

 
 
 
 

(14.1.55') 

′ ′=d
d

i
Civ

t
ρ ,   = 1,2,3i , 

 

(14.1.55'') 

to which we associate the equations (14.1.53''); thus, the importance of the mass centre 
C  is put in evidence. Observing that 

( )′ ′ ′ ′ ′ ′= 1 2 3 1 2 31 2 3, , , , , , , , , , , ;i i C C CR R v v v tρ ρ ρ ψ θ ϕ ω ω ω , 
( )′ ′ ′ ′ ′ ′= 1 2 3 1 2 31 2 3, , , , , , , , , , , ;Ci Ci C C CM M v v v tρ ρ ρ ψ θ ϕ ω ω ω , 

( )′ ′ ′ ′ ′= 1 2 3, , ;Ci Civ v tρ ρ ρ ,   = 1,2,3i , 

 

we can adapt the Theorem 14.1.12, correspondingly. As above, if iR  and OiM , 
= 1,2,3i , depend on a smaller number of variables, then the considered system of 

differential equations can be decomposed, conveniently, in subsystems. Thus, if 

( )′ ′ ′ ′ ′ ′= 1 2 3 1 2 3, , , , , ;i i C C CR R v v v tρ ρ ρ , ( )= 1 2 3, , , , , ;Ci CiM M tψ θ ϕ ω ω ω , = 1,2,3i , 

then the system (14.1.53''), (14.1.55)-(14.1.55'') is decomposed in the subsystem 
(14.1.55), (14.1.55''), which specifies the motion of the mass centre C  with respect to 
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the inertial frame of reference ′R  (as a single particle, justifying the modelling of the 
rigid solid as a particle), and the subsystem (14.1.53''), (14.1.55'), which determines the 
motion of rotation of the rigid solid about the centre C  (the rotation of the frame R  

with respect to the frame R ), considered as a fixed point; this allows to study the 
motion of the free rigid solid in two successive steps, representing an important 
simplification of calculation. To the whole system, as well as to each subsystem, we 
associate initial conditions of Cauchy type (at the moment = 0t t ), of the form 

( )′ ′= 0
0i itρ ρ ,   ( )′ ′= 0

0Ci Civ t v ,   ( ) = 0
0tψ ψ ,   ( ) = 0

0tθ θ ,   
( ) = 0

0tϕ ϕ ,   ( ) = 0
0i itω ω ,   = 1,2,3i . 

 
(14.1.56) 

For each of these subsystems one can state a theorem of existence and uniqueness. We 
notice also that the subsystem (14.1.55) corresponds to the theorem of momentum with 
respect to the frame R  (or to the frame ′R ), while the subsystem (14.1.55') 
corresponds to the theorem of moment of momentum, with respect to the same frame 
R . In what follows, we suppose to be in the latter case of decomposition. We can 
determine first integrals for the first subsystem, obtaining conservation theorems by 
means of the considerations in Chap. 6, Subsec. 1.2.2; for the second subsystem, we use 
the study contained in Chap. 15, §1 for the rigid solid with a fixed point. 

The equations of motion used above have been written with respect to the non-
inertial frame of reference R. Starting from the theorem of torsor written for a free 
rigid solid, by means of the relations (14.1.44'), and observing that 

′′ ′ ′ ′= + ×K K r HO OO , we can write these equations with respect to the inertial frame 
′R  in the form 

′∂⎛ ⎞ =⎜ ⎟′∂⎝ ⎠
d
d i

Oi

T R
t v

,   ′
′ ′∂ ∂⎡ ⎤′+ ∈ =⎢ ⎥′ ′∂ ∂⎣ ⎦

d
d ijk Oj O i

i Ok

T Tx M
t vω

,   = 1,2,3i  
 

(14.1.57) 

too. Passing from the frame ′R  to the frame R, we find again the above results. 

 

If =R 0  on an interval of time [ ]0 1,t t , 0t  being the initial moment, then the mass 

centre C  has a uniform and rectilinear motion, so that ′ ′= 0( )Ci Civ t v , while 

( )′ ′ ′= − +0 0
0( )i iCit v t tρ ρ , = 1,2,3i , for [ ]∈ 0 1,t t t ; in particular, if ′ =0 0Civ , 

= 1,2,3i , hence if the mass centre C  is at rest with respect to the inertial frame of 

reference ′R  at a given moment t (e.g., at the initial moment), then this point remains 
at rest in the whole interval [ ]0 1,t t . If =M 0C  in the time interval [ ]0 1,t t , then the 
solution of the subsystem of equations (14.1.55') corresponds to an Euler-Poinsot 
motion of the free rigid solid (particular case of rotation of a rigid solid about the mass 
centre C , considered to be fixed; see Sect. 15.1.2), which depends of the initial 
condition ( ) = 0

0tω ω ; if, in particular, =0 0iω , = 1,2,3i , hence if the free rigid 

14.1.1.9 State of Rest

226  MECHANICAL SYSTEMS, CLASSICAL MODELS 



www.manaraa.com

solid (the frame R  too) does not rotate with respect to the frame R  at a moment t 
(e.g., the initial moment), it will not rotate in the whole interval of time [ ]0 1,t t . We 
can thus state 
Theorem 14.1.13  A free rigid solid subjected to the action of a system of given 
external forces of null torsor has an inertial motion (a uniform rectilinear motion of 
translation, with respect to an inertial frame of reference, associated to an Euler-
Poinsot motion with respect to the mass centre, considered as a fixed point). 

This result can be considered also as a principle, generalizing the principle of inertia 
(from a free particle to a free rigid solid). 

If, in particular, the kinematic torsor { }′v0 0, Cω  vanishes, then we can state that the 
free rigid solid subjected to the action of a given system of external forces of null torsor 
remains at rest (in equilibrium) with respect to an inertial frame of reference if that 
state has been its initial one; we find thus again the Theorem 4.2.1, where we have a 
priori neglected the possibility of existence of homogeneous initial conditions. As well, 
the free rigid solid subjected to the action of two given external forces, of equal 
magnitude and contrary directions, having the same support (of null torsor), conserves 
its initial state of rest or motion with respect to an inertial frame of reference; we find 
thus again the modelling as sliding vectors of the forces which act upon a rigid solid 
(see Chap. 2, Subsec. 2.2.2). We mention also (what was stated before too) that two 
systems of given external forces having the same torsor (systems of equivalent forces) 
have the same effect (motion or rest), with respect to an inertial frame of reference, 
upon a free rigid solid (we apply the Theorem 14.1.13, the difference of the initial 
conditions vanishing); e.g., the field of gravity forces which act upon a free rigid solid 
can be replaced by a resultant (the own weight of the solid), applied at the mass centre 
C . 

 

The Theorem 4.1.8 allows to state 
Theorem 14.1.14 (theorem of virtual work)  The necessary and sufficient condition of 
equilibrium of a free rigid solid, acted upon by a system of given external forces, is 
given by the vanishing of the virtual work of these forces for any system of virtual 
displacements of the respective solid. 

Using the form (4.1.58') of this theorem, which implies the introduction of virtual 
velocities with respect to the frame of reference ′R , of the form 

∗ ∗ ∗= + ×v v ri iO ω ,   = 1,2,3i , (14.1.58) 

corresponding to Euler’s formula (5.2.3), we can write 

( )∗ ∗ ∗

= =
⋅ = ⋅ + ×∑ ∑F v F v r

1 1

n n

i i i iO
i i

ω  

∗ ∗ ∗ ∗

= =
= ⋅ + ⋅ × = ⋅ + ⋅ =∑ ∑v F r F v R M

1 1
0

n n

i i iO O O
i i

ω ω . 

 

14.1.1.10 Principle of Virtual Work
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Taking into account that the virtual quantities ∗vO  and ∗ω  are arbitrary, it results that 

the torsor of the external forces at the pole O  (in this case, the frame R  is inertial too) 
must be equal to zero for equilibrium, hence the same result as above. Obviously, as in 
the case considered in Chap. 4, Subsec. 1.2.3, we can start from the Theorem 14.1.14 
considered as a principle, finding again the results from which we started in the state of 
rest problem. 

In the dynamic case, the Theorem 11.1.28 allows to state 
Theorem 14.1.15 (theorem of virtual work; d’Alembert-Lagrange) The motion of a 
free rigid solid takes place so that the virtual work of the lost volume forces of 
d’Alembert which act upon it vanishes for any system of virtual displacements of the 
respective solid. 

We notice that, in this case, we have to do with a continuous mechanical system, so 
that we can no more use Newton’s equation (hence the lost forces of d’Alembert) in the 
classical form, being necessary to introduce the lost volume forces of d’Alembert. 
Using the virtual velocities 

∗ ∗ ∗= + ×v v rO ω , 
 

(14.1.58') 

we can write 

∗′⎡ ⎤− ⋅ =⎢ ⎥⎣ ⎦∫∫∫
vF r vd

( ) d 0
dV

V
t

μ , 
 

(14.1.59) 

so that 

( )∗ ∗′⎡ ⎤− ⋅ + ×⎢ ⎥⎣ ⎦∫∫∫
vF r v rd

( ) d
d OV

V
t

μ ω  

∗ ∗′ ′⎡ ⎤ ⎡ ⎤= ⋅ − + ⋅ × − =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫∫∫ ∫∫∫
v vv F r r F rd d

( ) d ( ) d 0
d dO V V

V V
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wherefrom 

′⎡ ⎤− =⎢ ⎥⎣ ⎦∫∫∫
vF r d

( ) d 0
dV

V
t

μ ,   
′⎡ ⎤× − =⎢ ⎥⎣ ⎦∫∫∫

vr F r d
( ) d 0

dV
V

t
μ , 

 

being thus led to the theorem of torsor for a free rigid solid. Obviously, the Theorem 
14.1.15 can be enounced also in the form of a principle. 

If the rigid solid is acted upon by the given external forces Fi , = 1,2,...,i n , we can 
write the theorem of virtual velocities in the form 

∗ ∗

=

′⎡ ⎤⋅ + − ⋅ =⎢ ⎥⎣ ⎦∑ ∫∫∫
vF v r v

1

d
( ) d 0

d

n

i i Vi
V

t
μ . 

 

(14.1.59') 

The Theorem 14.1.15 can be stated correspondingly. 
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In what follows, after some general results, we study various particular cases of 
constraints in which parts of a rigid solid have given motions; we consider thus several 
general classes of constraints to which the rigid solid can be subjected, establishing the 
corresponding equations of motion. 

If a rigid solid is subjected to constraints which may be holonomic or non-
holonomic, scleronomic or rheonomous, bilateral or unilateral, ideal or with friction, 
then we must introduce in the system of equations of motion – using the axiom of 
liberation of constraints – also the torsor { }R M, O  of the system of constraint forces at 

the pole O  of the non-inertial frame of reference R, rigidly linked to the solid. We 
replace thus the equations (14.1.51), (14.1.51') by the equations 

( )[ ]′ ′+ × + × + × = +v v R RO OM ω ω ρ ω ρ , 
 

(14.1.60) 
( ) ( )′ ′× + × + + × = +v v I I M MOO O O O OMρ ω ω ω ω , 

 

(14.1.60') 

with respect to the frame R. If ≡O C , these equations become 

( )′ ′ ′= + × = +a v v R RC C CM M ω , 
 

(14.1.61) 

( )+ × = +I I M MCC C Cω ω ω . 
 

(14.1.62) 

With respect to the central principal axes of inertia, we have 

′ = + iiCiMa R R ,   = 1,2,3i , 
 

(14.1.61') 

( )+ − = +( ) ( ) ( )
11 2 3 11 3 2

C C C
CCI I I M Mω ω ω , 

( )+ − = +( ) ( ) ( )
22 3 1 22 1 3

C C C
CCI I I M Mω ω ω , 

( )+ − = +( ) ( ) ( )
33 1 2 33 2 1

C C C
CCI I I M Mω ω ω . 

 
 

(14.1.62') 

We add to these equations initial conditions of Cauchy type too, e.g., of the form 
(14.1.56). 

As a matter of fact, the equations (14.1.60), (14.1.61) correspond to the equations 
(14.1.38), (14.1.39), written in the form 

′
= +H R Rd

dt
, 

 

(14.1.63) 

′ = +a R RCM . 
 

(14.1.63') 

We can thus state: 
Theorem 14.1.16 (theorem of momentum)  The derivative with respect to time of the 
momentum of a rigid solid subjected to constraints, in an inertial frame of reference, is 

14.1.2 Motion of the Rigid Solid Subjected to Constraints

14.1.2.1 General Results 
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equal to the resultant of the given and constraint external forces which act upon this 
solid. 
Theorem 14.1.16' (theorem of motion of the mass centre) The centre of mass of a rigid 
solid subjected to constraints moves, with respect to an inertial frame of reference, as a 
free particle at which would be concentrated the whole mass of the solid and which 
would be acted upon by the resultant of the given and constraint external forces. 

As well, the equations (14.1.60'), (14.1.62) correspond to the equations (14.1.40), 
(14.1.41'), written in the form 

( )′× + = +Ka M Md
d

O
OO OM

t
ρ , 

 
(14.1.64) 

= +K M Md
d

C
CCt

. 
 

(14.1.64') 

We thus state: 
Theorem 14.1.17 (theorem of moment of momentum) The derivative with respect to 
time of the pseudomoment of momentum of a rigid solid subjected to constraints, with 
respect to an arbitrary pole O , rigidly linked to the solid, in an inertial frame of 
reference, is equal to the resultant moment of the given and constraint external forces 
which act upon this solid, with respect to the same pole, from which one subtracts the 
dynamic moment, in the inertial frame, of the considered pole, translated at the centre 
of mass of the rigid solid, at which one assumes that would be concentrated the whole 
mass of the solid, with respect to the pole O . 
Theorem 14.1.17'  The derivative with respect to time of the pseudomoment of 
momentum of a rigid solid subjected to constraints, with respect to the mass centre, in 
an inertial frame of reference, is equal to the resultant moment of the given and 
constraint external forces which act upon this solid, with respect to the same centre. 

In what concerns the work, the formula (14.1.37) takes the form 

( ) ( )′ ′ ′+ = + ⋅ + + ⋅R R r M Md d d dOR O OW W tω  
 

(14.1.65) 

and the formula (14.1.37') becomes 

( ) ( )′ ′ ′+ = + ⋅ + + ⋅R R v M MOR O OP P ω , 
 

(14.1.65') 

so that we can state 
Theorem 14.1.18  The power of the given and constraint external forces which act 
upon a rigid solid subjected to constraints, with respect to a given frame of reference, is 
equal to the power of the torsor of the given and constraint external forces, at an 
arbitrary pole, rigidly linked to the solid, in the same frame. 

The formula (14.1.12) becomes 

( ) ( )′ ′= + ⋅ + + ⋅R R v M Md
d OO O
T
t

ω , 
 

(14.1.66) 

so that we state 
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Theorem 14.1.19 (theorem of kinetic energy)  The derivative with respect to time of the 
kinetic energy of a rigid solid subjected to constraints, in an inertial frame of reference, 
is equal to the power of the torsor of the given and constraint external forces, at an 
arbitrary pole, rigidly linked to the solid, in the same frame. 

Obviously, in this case too, the theorem of kinetic energy is a linear consequence of 
the theorems of momentum and moment of momentum. 

In general, the rigid solid may be subjected to p  holonomic constraints of the form 
(3.2.8), specified by the relations 

( ) ( )′ ′ ′ ′= =r 1 2 3, , , ; , , , , , ; 0l O l O O Of t f x x x tψ θ ϕ ψ θ ϕ ,   = 1,2,...,l p , 
 

(14.1.67) 

and to m  non-holonomic constraints of the form (3.2.13), given by the relations 

′ ′⋅ + ⋅ + = + + =v 0jk O k k kj Oj kj kvγ α β ω γα β ω ,   = 1,2,...,k m . 
 

(14.1.67') 

We have assumed that these constraints are bilateral; the unilateral constraints can be 
analogously introduced. Obviously, we can express the components jω  as functions of 

the angular velocities ψ , θ  and ϕ  in the constraint relations (14.1.67'). We notice that 
the relations (14.1.67) can be written in the form 

∂ ∂ ∂′= ⋅ + + + + =
∂ ∂ ∂

v
d

grad 0
d

l l l l
l O l

f f f f
f f

t
ψ θ ϕ

ψ θ ϕ
,   = 1,2,...,l p  

 

(14.1.67'') 

too, wherefrom 

∂∂ ⎛ ⎞ =⎜ ⎟′ ′∂ ∂⎝ ⎠
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Taking into account (14.1.15), we can also write 
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as well as 
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1
sin cot

ϕ
ϕ θ

ω
∂

= −
∂

,   
2

cos cot
ϕ
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ω

∂
= −

∂
,   ∂

=
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Finally, we get 
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d d
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d dO

l l
O l

f f
f

t tω ω ,   = 1,2,...,l p . 

 
 
 

(14.1.67''') 

These results have a general character and allow to determine the constraint forces in 
any particular case. 

We notice that one must have + < 6p m , otherwise the rigid solid remains at rest; 
we assume, obviously, that the constraint relations are independent. On the other hand, 
the constraint forces involve q unknown scalars; if = +q p m , then the problem of the 
rigid solid motion is determined. In general, the equations of motion and the constraint 
relations are not independent, so that the kinetostatic problem can be separated in two 
problems only in particular cases: the kinetic problem (determination of the kinematic 
parameters ′vO  and  of the motion) and the static problem (determination of the torsor 

{ }R M, O  of the constraint forces). 
We mention that the Theorems 14.1.14 and 14.1.15 concerning the virtual work are 

completed in the form: 
Theorem 14.1.20 (theorem of virtual work)  The necessary and sufficient condition of 
equilibrium of a rigid solid subjected to ideal constraints and acted upon by a system of 
given external forces consists in equating to zero the virtual work of these forces for 
any system of virtual displacements of the respective solid. 
Theorem 14.1.21 (theorem of virtual work; d’Alembert-Lagrange)  The motion of a 
rigid solid subjected to ideal constraints takes place so that the virtual work of the lost 
forces of d’Alembert, which act upon this solid, vanishes for any system of virtual 
displacements of the respective solid. 

 

Let us suppose that the point O  rigidly linked to the solid has a known motion, given 
by the equation 

′ ′=r r ( )O O t , 
 

(14.1.68) 

with respect to the inertial frame of reference ′R ; obviously, in this case, we know the 
velocity ′ ′=v v ( )O O t  and the acceleration ′ ′=a a ( )O O t  too. Eliminating the constraint 
by introducing the constraint force R  and using the system of equations (14.1.60), 
(14.1.60'), we can write the equations of motion of the rigid solid in the form 

( )[ ] ′× + × × = − +R a ROM Mω ρ ω ω ρ , 
 

(14.1.69) 

14.1.2.2 Rigid Solid a Point of Which has an Imposed Motion
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( ) ′+ × = − ×I I M aO O O OMω ω ω ρ . (14.1.69') 

The equation (14.1.69') specifies the rotation about the point O (the vector ), then the 

equation (14.1.69) determines the constraint force R ; if 
( )=M M 1 2 3, , , , , ;O O tψ θ ϕ ω ω ω , then we associate to the vector equation (14.1.69') 

the system of scalar equations (14.1.53'') too. We have thus introduced three relations of 
finite constraints of the form (14.1.63) ( = 3p , = 0m ) and three scalar components of 
the constraint force ( = 3q ). 

In particular, if the pole O  is fixed, then we have ′ ′ ′= = =r v a 0O O O , obtaining the 
equations of motion of the rigid solid with a fixed point. If we introduce in these 
equations also the influence of the complementary force ′− ∫∫∫ r a( ) dOV

Vμ  at the 

centre of mass C , then we find again the system of equations (14.1.69), (14.1.69') (one 

passes from the action of this force at C  to the corresponding torsor at O). 

If the point O  is constrained to stay on a given perfectly smooth surface S  (in 
general, movable), then the constraint relation (14.1.67) ( = 1p , = 0m ) is written in 
the form 

( ) ( )′ ′ ′ ′= =r 1 2 3; , , ; 0O O O Of t f x x x t . 
 

(14.1.70) 

The liberation of constraints axiom leads to a constraint force =R grad fλ , λ non-

determinate scalar, normal at O  to the surface S  (the moment ′ =M 0O ); the equations 
of motion (14.1.60), (14.1.60') of the rigid solid take the form 

( )[ ]′ ′+ × + × + × = +v v R gradO OM fλω ω ρ ω ρ , 
 

(14.1.71) 
( ) ( )′ ′× + × + + × =v v I I MO O O O OMρ ω ω ω ω . (14.1.71') 

To determine the vector unknowns ′vO  and  and the unknown scalar λ ( = 1q ; 7 
scalar unknowns) we have the vector equations (14.1.71), (14.1.71') and the scalar 
equation (14.1.70) (7 scalar equations). 

As well, if the point O  stays on a perfectly smooth curve C  (in general, movable), 
then the constraint relations (14.1.67) ( = 2p , = 0m ) become 

( ) ( )′ ′ ′ ′= =r 1 2 3; , , ; 0l O l O O Of t f x x x t ,   = 1,2l . 
 

(14.1.72) 

As in the previous case, we can write the equations (14.1.60), (14.1.60') in the form 

( )[ ]′ ′+ × + × + × = + +v v R 1 1 2 2grad gradO OM f fλ λω ω ρ ω ρ , 
 

(14.1.73) 
( ) ( )′ ′× + × + + × =v v I I MO O O O OMρ ω ω ω ω . (14.1.73') 
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The vector equations (14.1.73), (14.1.73') and the scalar equations (14.1.68) (8 scalar 
equations) determine thus the vector unknowns ′vO  and  and the scalar unknowns 1λ  
and 2λ  ( = 2q ; 8 scalar unknowns). 

 

Let us suppose that the points O  and 1O  of the rigid solid have known motions, 
given by the equations 

′ ′=r r ( )O O t ,   ′ ′=r r
1 1

( )O O t , 
 

(14.1.74) 

with respect to the inertial frame of reference ′R ; because the points O  and 1O  are at 

an invariable mutual distance (equal to l), the equations (14.1.74) are not independent, 
and the relation 

′ ′− =⎡ ⎤⎣ ⎦r r
1

2 2( ) ( )O Ot t l  
 

(14.1.74') 

takes place. Hence, there remain five independent finite constraint relations ( = 5p , 
= 0m ). As a matter of fact, the motion of any point 2O  on the straight line ≡ 1OOΔ  

is determined by the position vector ( )′ ′ ′ ′= + −r r r r
2 1O O O Oλ , λ scalar; the case thus 

considered is identical to that in which a straight line Δ rigidly linked to the solid (e.g., 
an axis of the frame of reference R ) describes a given motion, one of the points of this 
axis (e.g., the pole O) having a given motion too. Using the axiom of liberation of 

constraints, we introduce the constraint forces ′R  and R1  at the points O  and 1O , 

respectively; the torsor of these forces at the point O  is ( ){ }′ ′ ′+ − ×R R r r R
11 1, O O . 

The equations of motion (14.1.60), (14.1.60') are written in the form (the first equation 
(14.1.74) allows to calculate the acceleration ′ ′=a a ( )O O t  too) 

( )[ ] ′ ′× + × × = − + +R a R R1OM Mω ρ ω ω ρ , 
 

(14.1.75) 
( ) ( )′ ′ ′+ × = − × + − ×I I M a r r R

1 1O O O O O OMω ω ω ρ , 
 

(14.1.76) 

with respect to the non-inertial frame R. 
For the three vector unknowns , ′R  and R1  of the problem ( = 6q ; 9 scalar 

unknowns) we can use the vector equations (14.1.75), (14.1.76) and the second 
equation (14.1.74), together with the relation (14.1.74') (8 scalar equations). We can 
write the constraint relation also in the differential form (the velocity of the point 1O  

expressed with respect to the velocity of the point O) 

( )′ ′ ′ ′= + × −v v r r
1 1O O O Oω ; 

 

(14.1.74'') 

14.1.2.3 Rigid Solid Two Points of Which have Imposed Motions
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a scalar product by ′ ′−r r
1O O  leads to an identity, so that there result only two scalar 

relations. Hence, the number of unknowns is with a unity greater than the number of 
equations, the corresponding system being once indeterminate (as in the case of the 
static equilibrium of the rigid solid with a fixed axis). 

Choosing the axis 1OO  as axis 3Ox , we can write the equations (14.1.75), (14.1.76) 
in components, in the form 

( )[ ]
1

2
2 3 3 2 1 1 1 2 2 3 3 1 1 1 11OM R Ma R Rω ρ ω ρ ω ω ρ ω ρ ω ρ ω ρ ′ ′− + + + − = − + + , 

( )[ ]
2

2
3 1 1 3 2 1 1 2 2 3 3 2 2 2 12OM R Ma R Rω ρ ω ρ ω ω ρ ω ρ ω ρ ω ρ ′ ′− + + + − = − + + , 

( )[ ]
3

2
1 2 2 1 3 1 1 2 2 3 3 3 3 3 13OM R Ma R Rω ρ ω ρ ω ω ρ ω ρ ω ρ ω ρ ′ ′− + + + − = − + + , 

 (14.1.75') 
( ) ( ) ( )2 2

11 1 12 2 31 3 33 22 2 3 23 2 3 1 31 2 12 3I I I I I I I Iω ω ω ω ω ω ω ω ω ω+ + + − + − + −  
( )′ ′= − − −2 3 121 3 2O O OM M a a lRρ ρ , 

( ) ( ) ( )2 2
22 2 23 3 12 1 11 33 3 1 31 3 1 2 12 3 23 1I I I I I I I Iω ω ω ω ω ω ω ω ω ω+ + + − + − + −  

( )′ ′= − − −3 1 112 1 3O O OM M a a lRρ ρ , 
( ) ( ) ( )2 2

33 3 31 1 23 2 22 11 1 2 12 1 2 3 23 1 31 2I I I I I I I Iω ω ω ω ω ω ω ω ω ω+ + + − + − + −  
( )′ ′= − −1 23 2 1O O OM M a aρ ρ . 

 (14.1.76') 

As well, the condition (14.1.74'') leads to 

′ ′= +
1 21 1O Ov v lω ,   ′ ′= −

1 12 2O Ov v lω ,   ′ ′=
1 3 3O Ov v . 

 

(14.1.74''') 

The first two equations (14.1.74'''), together with the last equation (14.1.76'), determine 
entirely the vector . The last column of the matrix (3.2.11''') allows to specify Euler’s 
angles = ( )tψ ψ  and = ( )tθ θ  in the motion of the Δ-line (if we know the direction 
cosines of this line with respect to the frame of reference R ); in this case, the relations 
(5.2.35) allow to express the components of the vector  as function of the angle of 
proper rotation ϕ. Replacing in the last equation (14.1.76'), this one becomes a 

differential equation of second order in ϕ; by integration, we get = ( )tϕ ϕ  and then 
= ( )i i tω ω , = 1,2,3i . The first two equations (14.1.76') determine the constraint 

forces 11R  and 12R , while the first two equations (14.1.75') give the constraint forces 
′1R  and ′2R ; the third equation (14.1.75') specifies the sum ′ +3 13R R  of the last 

unknown components, the character of the non-determination being thus put into 
evidence. As in the statical case (see Chap. 4, Subsec. 2.1.3), the non-determination is 
due to the modelling as a rigid adopted for the solid body. 

If the axis Δ is a principal axis of inertia, the axes 1Ox  and 2Ox  having the same 
property, we have = = =23 31 12 0I I I , so that the system of equations (14.1.76') 
takes the simplified form 
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( ) ( )′ ′+ − = − − −1 1 3 2 2 3 2 3 121 3 2O O OI I I M M a a lRω ω ω ρ ρ , 
( ) ( )′ ′+ − = − − +2 2 1 3 3 1 3 1 112 1 3O O OI I I M M a a lRω ω ω ρ ρ , 

( ) ( )′ ′+ − = − −3 3 2 1 1 2 1 23 2 1O O OI I I M M a aω ω ω ρ ρ . 

 
 

(14.1.76'') 

In particular, if the points O  and 1O  are fixed, then we have ′ ′ ′= = =
1

0O i Oi Oiv v a , 
= 1,2,3i , while from the conditions (14.1.74''') it results = =1 2 0ω ω , =3ω ω ; we 

obtain thus the motion of the rigid solid with a fixed axis. 

axis Δ of which passes through this point

Let us suppose, in particular, that the point O  is fixed and that the straight line Δ 
describes a circular cone, having a motion of uniform rotation about the cone axis. To 
simplify the computation, we take ′ ≡O O , the ′3Ox -axis being the axis of the cone. 
The point 1O  describes a circle in a plane normal to the fixed axis ′3Ox . Introducing 

Euler’s angles ψ, θ, ϕ, the angular velocity of the point 1O  will be ψ , so that the 

velocity ′v 1O  will be directed along the line of nodes ON , having the magnitude 
′ =1 sinOv lψ θ  (Fig. 14.5); in components, there result ′ =

1 1 sin cosOv lψ θ ϕ , 

′ = −
1 2 sin sinOv lψ θ ϕ . If we make ′ ′= =1 2 0O Ov v  in (14.1.74''') or if we make = 0θ  

(because = constθ ) in the relations (5.2.35), then we obtain 

=1 sin sinω ψ θ ϕ ,   =2 sin cosω ψ θ ϕ ,   = +3 cosω ϕ ψ θ .  

We assume also that the axes iOx , = 1,2,3i , are principal axes of inertia; in this case, 
replacing in the third equation (14.1.76'') (we notice that = constψ , the rotation being 
uniform, and that ′ ′= =1 2 0O Oa a ), one obtains the equation of motion 

Fig. 14.5  Motion of a rigid solid a point O of which is fixed and an  
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3

3
sin 2 OM

k
I

Φ Φ+ = , 
 

(14.1.77) 

with the notations 

2ϕΦ = ,   2 1 2 2

3
sin

I I
k

I
ψ θ

−
= . 

 

(14.1.77') 

If =3 0OM  (e.g., if the rigid solid is subjected to the action of the own weight, the 
axis being a central principal axis of inertia), then the motion of rotation of the rigid 
solid is determined only by the angle of proper rotation ( )tϕ ϕ= , which is given by an 
equation of the simple pendulum equation type. 

More general, we can assume that a frictionless sliding of the rigid solid along the 
Δ-axis takes place; the equations of this axis with respect to the inertial frame of 

reference ′R  can be written, e.g., in the form (we put in evidence the point Ο on the 

Δ-axis) 

′ ′= +1 11 3( ) ( )O Ox t x tα β ,   ′ ′= +2 22 3( ) ( )O Ox t x tα β , 
 

(14.1.78) 

intervening thus two finite constraint relations; as above, knowing the motion of the 
straight line Δ, we can consider Euler’s angles ψ and θ as known, so that only the angle 

of proper rotation ϕ remains to be determined. We notice that, due to the frictionless 

sliding, the constraint forces ′R  and R1  are normal to the Δ-axis. We have to 

determine eight scalar unknowns ′ ′ ′1 2 11 12, , , , OiR R R R x , = 1,2,3i  and ϕ, for which we 
have eight equations (the equations (14.1.75'), (14.1.76'), where we make 

′ = =3 13 0R R , and (14.1.78)), the problem being thus determined. 

If in the particular problem considered above we have ′= i
11 33 ( )OOO x t , then it 

results 
1 1 3( ) ( )sinO Ot x t θ′ ′=v ψ , wherefrom 

′ ′=
1 11 3 sin cosO Ov xψ θ ϕ ,   ′ ′= −

1 12 3 sin sinO Ov xψ θ ϕ ,   ′ ′=
1 13 3O Ov x .  

Observing that ′ ′ ′= + ×a v v
1 1 1O O Oω , where ′v

1O  is the derivative with respect to the 
movable frame of reference, using the results previously obtained for the vector  and 
taking into account that = constψ , we get 

′ ′ ′= +
1 1 1

2
1 3 32 sin cos sin cos sinO O Oa x xψ θ ϕ ψ θ θ ϕ , 

′ ′ ′= − +
1 1 1

2
2 3 32 sin sin sin cos cosO O Oa x xψ θ ϕ ψ θ θ ϕ , 

′ ′= −
1 1 1

2 2
3 3 3 sinO O Oa x xψ θ . 
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In the system of equations (14.1.75'), (14.1.76') we take the movable frame at the point 
1O  (maintaining thus the notations in Fig. 14.5) and we introduce the results obtained 

above; the third equation (14.1.75') and the third equation (14.1.76') form a system of 
two second order differential equations with the unknowns ′ ′=

1 13 3 ( )O Ox x t  and 
= ( )tϕ ϕ . After integrating this system of equations, one obtains easily the other 

unknowns of the problem. Obviously, in this case, as in the preceding one, certain 
initial conditions of Cauchy type must be fulfilled too. 

d Solid Subjected to Certain 
 

Let us consider firstly the case of a rigid solid for which the point O  is constrained to 

stay on a given perfectly smooth curve C  (in general, movable) of equation (14.1.72), 

another point 1O  of which staying on a given perfectly smooth surface S  (in general, 

movable) of equation (14.1.70), where we replace the point O  by the point 1O  ( = 3p , 
= 0m ). Using the axiom of liberation of constraints, the equations of motion of this 

solid have the form 

( )[ ] 1 1 2 2grad grad gradO OM f f fλ λ λ′ ′+ × + × + × = + + +v v Rω ω ρ ω ρ , 
 (14.1.79) 

( ) ( ) ( )1
gradO O O O O O OM fλ′ ′ ′ ′× + × + + × = + − ×v v I I M r rρ ω ω ω ω . 

 (14.1.79') 

To determine the vector unknowns ′vO  and  and the scalar unknowns λ, 1λ  and 2λ  
( = 3q , 9 scalar unknowns) we have the vector equations (14.1.79), (14.1.79') and the 
scalar equations (14.1.70), (14.1.72) (9 scalar equations). 

Let be also the case of a rigid solid for which the points iO , = 1,2,3, 4i , are 
constrained to move on a perfectly smooth surfaces (in general, movable) iS , 

= 1,2,3, 4i , respectively, of equations ( = 4p , = 0m ) 

( ) ( )′ ′ ′ ′= =r 1 2 3; , , ; 0
i i i ii iO O O Of t f x x x t ,   = 1,2, 3, 4i . 

 

(14.1.80) 

The rigid solid remains thus with two degrees of freedom. Proceeding as in the 
preceding case, we can write the equations (14.1.60), (14.1.60') in the form 

( )[ ]
=

′ ′+ × + × + × = + ∑v v R
4

1
gradi iO O

i
M fλω ω ρ ω ρ , 

 
(14.1.81) 

( ) ( ) ( )
4

1
grad

ii iO O O O O O O
i

M fλ
=

′ ′ ′ ′× + × + + × = + − ×∑v v I I M r rρ ω ω ω ω , 

 (14.1.81') 

14.1.2.4 Other Cases of Motion of the Rigi
Constraint Conditions
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The vector equations (14.1.81), (14.1.81') and the scalar equations (14.1.80) (ten scalar 
equations) determine thus the vector unknowns ′vO  and  and the scalar unknowns iλ , 

= 1,2, 3, 4i  ( = 4q ; ten scalar unknowns). 

 

The general results previously obtained will be used, in what follows, to some 
important cases of motion of the rigid solid; we study thus the motion of the rigid solid 
about a fixed axis, as well as its plane-parallel motion. 

 

An important particular case of that presented in Sect. 1.2.3 is that one in which 
the axis is a fixed one (the two points O  and 1O  of the rigid solid are fixed). E.g., we 
mention the rigid pendulum. We will consider thus the pendulums of Borda, Kater and 
Bessel, the annular pendulum of Voinaroski, the inclined pendulum of Mach and the 
Weber-Gauss pendulum of torsion. 

Choosing the straight line ≡ 1OOΔ  as 3Ox -axis ( =1OO l ) and noting that this 

axis is fixed, it is convenient to take ′≡O O  and ′ ′≡3 3Ox O x ; in this case 
= =1 2 0ω ω , while =3ω ω , the angular velocity vector  being situated along the 

′ ′3O x -axis (Fig. 14.6). All the points of the rigid solid describe  circular  trajectories  in  

 
Fig. 14.6  Motion of a rigid solid about a fixed axis

planes normal to the ′ ′3O x -axis, the centres of which are on that axis (the fixed and the 
movable axoids are degenerated, coinciding with the axis). The motion has only one 
degree of freedom, to which corresponds the angle = ( )tθ θ  (classical notation for the 

14.2. Motion of a Rigid Solid about a Fixed Axis. Plane-parallel 
Motion of the Rigid Solid

14.2.1 Motion of the Rigid Solid about a Fixed Axis

14.2.1.1 General Results 
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angle of proper rotation in this motion, different of that corresponding to Euler’s 
angles); we have, obviously, =ω θ . Taking into account the conditions 

′ ′= =v v 0
1O O , the relations (14.1.74''') are identically verified. If we put also ′ =a 0O , 

then the equations of motion (14.1.75'), (14.1.76') take the form 

( ) ′− + = + +2
2 1 1 1 11M R R Rωρ ω ρ , 

( ) ′+ = + +2
1 2 2 2 12M R R Rωρ ω ρ , 

′= + +3 3 130 R R R , 

 
 

(14.2.1) 

− = −2
31 23 121OI I M lRω ω , 

+ = +2
23 31 112OI I M lRω ω , 

=33 3OI Mω , 

 
 

(14.2.1') 

where ′R  and R1  are the constraint forces at the points ′O  and 1O , respectively. 
The third equation (14.2.1') can be written in the form 

=33 3OI Mθ  
 

(14.2.2) 

too. If ( )=3 3 , ;O OM M tθ θ  and if initial conditions of Cauchy type 

( ) =0 0tθ θ ,   ( ) ( )= = =0 0 0 0t tθ ω θ ω  
 

(14.2.2') 

are given too for the differential equation of second order (14.2.2), then we can 
determine univocally the angle of proper rotation = ( )tθ θ , using the theorem of 
existence and uniqueness. If =3 0OM , then the motion of rotation is uniform, and if 
we have =0 0θ  ( ( ) =03 , 0; 0OM tθ ) too, then the rigid solid is at rest with respect to 
the fixed frame of reference. Observing that 

2
33

1
2

T I ω′ =   

and 

( )′ ′+ = + ⋅ =M M 3d d d dOR O OW W t M tωω ,  

and applying the theorem of kinetic energy in the form (14.1.66), we find again the 
equation of motion (14.2.2). We mention that the pseudomoment of momentum is given 
by 

= + +K i i33 31 1 23 2
O I I Iω ωω ;  

we have =K 33
O I ω , so that the pseudomoment of momentum is directed along the 

fixed axis if and only if that axis is a principal axis of inertia. 
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The first two equations (14.2.1') and then the first two equations (14.2.1) allow to 
compute the constraint forces along the axes 1Ox  and 2Ox ; we obtain 

⎡ ⎤ ⎡ ⎤′ = − − + − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
2

1 1 2 23 1 312
1 1 1

OR M R M I M I
l l l

ρ ω ρ ω , 

⎡ ⎤ ⎡ ⎤′ = − − + + − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
2

2 2 1 31 2 231
1 1 1

OR M R M I M I
l l l

ρ ω ρ ω , 

 
 

(14.2.3) 

( )[ ]= − − + 2
11 23 312

1
OR M I I

l
ω ω , 

( )[ ]= − − 2
12 31 231

1
OR M I I

l
ω ω . 

 
 

(14.2.3') 

The third equation (14.2.1) specifies only the sum ′ + = −3 13 3R R R  of the other two 
components of the constraint forces, the problem being thus indeterminate from this 
point of view (as in the static case), due to the model of rigid solid adopted for the solid 
body. 

We notice that the constraint forces depend on the angular velocity  and on the 
angular acceleration ω ; for great values of these quantities (the square of the angular 
velocity, 2ω , or its non-uniformity given by ω ), e.g., for the rotation velocities of the 
propellers and of the turbines, the constraint forces increase very much; the stress in the 
axle increases also and it is possible to reach the state of fracture. As it was noticed by 
L. Euler, this dependence disappears if = =23 31 0I I  and = =1 2 0ρ ρ , hence if the 
axis of rotation is a central principal axis of inertia; it results 

′ = −1 12
1

OR M R
l

,   ′ = − −2 21
1

OR M R
l

, 
 

(14.2.4) 

= −11 2
1

OR M
l

,   =12 1
1

OR M
l

, 
 

(14.2.4') 

corresponding to the formulae (4.2.7'') obtained in the static case (the dynamic 
constraint forces coincide with the static ones). In this case, the constraint forces depend 
only on the given external forces, which are equilibrating them from the statical point of 
view, and are not influenced by the rotation of the rigid solid. 

Putting the condition that the constraint force at the point 1O  be zero ( =R 01 ) for 
any rotation of the rigid solid, we obtain = =23 31 0I I , = =1 2 0O OM M ; we get 
thus the constraint forces 

( )′ = − − + 2
1 1 2 1R R M ρ ω ρ ω ,   ( )′ = − + − 2

2 2 1 2R R M ρ ω ρ ω ,   ′ = −3 3R R , 
 (14.2.5) 

the problem becoming statically determinate. Hence, for any rotation of the rigid solid, 
it is sufficient only one point of support of the axis of rotation (the fixed point O) if and 
only if that one is a principal axis of inertia, the given external forces having a resultant 
moment with respect to the point of support, which is directed along this axis. Such an 
axis is obtained, e.g., in the case in which the rigid solid is acted upon by a unique 
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given force, situated in a plane normal to a principal axis of inertia, non-intersecting 
this axis, the trace of which on the plane being a fixed point. We obtain an analogous 
result if the support of the given force passes through a fixed point, the axis of rotation 
(which is a principal axis of inertia) passing through the same point; in this case, we 
have =3 0OM , hence =M 0O  too, being led to a motion of uniform rotation 
(corresponding to the equation (14.2.2)), so that 

′ = − − 2
1 1 1R R Mρ ω ,   ′ = − − 2

2 2 2R R Mρ ω ,   ′ = −3 3R R . 
 

(14.2.5') 

We can state 
Theorem 14.2.1  If a rigid solid with a fixed point is subjected to the action of a system 
of given forces equivalent to a resultant the support of which passes through this point 
and if this solid has an initial uniform motion of rotation about a principal axis of 
inertia which passes, as well, through the very same fixed point, then the rigid solid 
continuous to have this motion indefinitely. 

In this case, the axis of rotation  is called permanent axis of rotation; sometimes, this 
denomination (justified by the Theorem 14.1.21) is used also in the more general case 

≠3 0OM . 
The supplementary condition which imposes the vanishing of the constraint force at 

the point O  too ( ′ =R 0 ), for any rotation of the rigid solid, leads to = =1 2 0ρ ρ , 
= = =1 2 3 0R R R . If and only if the axis of rotation is a central principal axis of 

inertia, the rigid solid being acted upon only by a couple contained in a plane normal 
to this axis, then no point of support is necessary for that axis; in this case, the axis of 
rotation is a free axis of rotation, and the fixed axle is not acted by a given force. If 

=3 0OM , hence if =M 0O  too, then we can state 
Theorem 14.2.2  If a free rigid solid is not acted upon by any given force and has a 
uniform motion of rotation about a central principal axis of inertia, then it will continue 
to have this motion indefinitely, the axis remaining fixed. 

In this case, the free axis of rotation is called spontaneous axis of rotation; 
sometimes, this denomination (justified by the Theorem 14.2.2) is used also in the more 
general case in which ≠3 0OM . This result can be verified experimentally in a space 
laboratory, in conditions of imponderability. The Theorem 14.2.2 can be considered as  
a completion for the rigid solid of Newton’s “principle of inertia”, enounced for a 
particle (eventually for the mass centre of the rigid solid). 

 

We call physical (rigid, compound) pendulum a rigid solid which is rotating about a 
horizontal fixed axis, being subjected only to the action of its own weight. We take the 

′ ′ ′2 3O x x -plane as horizontal plane, the fixed axis as ′ ′3O x -axis, the ′ ′1O x -axis being 
along the descendent vertical. Without any loss of generality, the 1Ox -axis will be 

taken so as to pass through the centre of mass C , at which acts the own weight G; the 
position of the rigid solid will be thus specified by the angle of proper rotation 

14.2.1.2 Physical Pendulum. Huygens’s Theorems
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= ( )tθ θ  (Fig. 14.7). Denoting =OC l  and observing that =G gM , we get 

= −3 sinOM Mgl θ ; we can thus write the equation of motion (14.2.2) in the form 

+ =′ sin 0
g
l

θ θ ,   ′ = 33I
l

Ml
. 

 

(14.2.6) 

We find again the equation (7.1.38') of a simple pendulum of equivalent length ′l , 
called the synchronous simple pendulum of the considered physical pendulum; 
imposing the same initial conditions, the motions of the two pendulums will be 
specified by the same function = ( )tθ θ , so that one can use all the results obtained in 
Chap. 7, Subsec. 1.3.1. In case of great oscillations, we use the formula (7.1.43'') which, 
with a good approximation, leads to the period 

′ ⎛ ⎞ ⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

2 2
332 1 2 1

16 16
IlT

g Mgl
α α

π π , 
 

(14.2.7) 

where = maxα θ ; in case of isochronous (small) oscillations, we can write 

′
= = 332 2

IlT
g Mgl

π π . 
 

(14.2.7') 

The Huygens-Steiner theorem, expressed by the formula (3.1.113), allows to write 
= + 2

33 CI I Ml , where CI  is the moment of inertia of the physical pendulum with 
respect to an axis parallel to the horizontal ′ ′3O x -axis, passing through the mass centre 

C . If we denote by sT  the period of the simple pendulum of length l, then it results 

( )= + = +
2

21 1C C
s s

I i
T T T

lMl
, 

 
(14.2.7'') 

Fig. 14.7  Physical pendulum
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where = /C Ci I M  is the central radius of gyration, defined by the relation (3.1.30), 

corresponding to the same axis which passes through C . Thus, we can write 

′ = + 1l l l ,   = =
2

1
C CI i

l
Ml l

. 
 

(14.2.8) 

A point 1O  on the axis 1Ox  is defined so that 1OO l l′= > , the centre of mass C  

being contained between the point O , called centre of suspension, and the point 1O , 
called centre of oscillation (Fig. 14.7). A particle situated at the point 1O  has the same 
motion as the synchronous simple pendulum. The horizontal axes parallel to the axis 

′ ′3O x , which pass through the points O  and 1O  are called axis of suspension and axis of 
oscillation, respectively. If we maintain the direction of the horizontal axis ′ ′3O x  
(hence, the quantities CI  and Ci ), as well as the distance from the centre of mass C  to 

the centre of suspension O , the length ′l  of the synchronous simple pendulum remains 
invariant; we can thus state that all the generatrices of a circular cylinder the axis of 
which is horizontal and passes through the mass centre lead to physical pendulums 
which, in the same initial conditions, have identical motions. If we maintain constant 
only the axis of suspension, the length ′l  depends on the distance l. The graphic of the 
function ′ ′= ( )l l l  is a branch of a hyperbola contained in the second octant of the 
plane (Fig. 14.8); we notice that for = Cl i  we get ′ = =min 2 2Cl i l . 

 

Assuming that the axis of suspension is a principal axis of inertia (e.g., in case of a 
geometrical and mechanical symmetry with respect to the 1 2Ox x -plane, we have 

= =23 31 0I I ) and observing that = =1 2 0O OM M , it results that this one is a 
permanent axis of rotation too (in a large sense, with ≠3 0OM ); hence, it is sufficient 
only one point of support for the axis, having only one constraint force at ′ ≡O O , the 
components of which are given by (14.2.5) in the form 

Fig. 14.8  Diagram of l ′  vs l in case of a physical pendulum 
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( )′ = − + 2
1 cosR M g lθ ω ,   ( )′ = − +2 cosR M g lθ ω ,   ′ =3 0R , 

 

(14.2.9) 

and which is situated in the 1 2Ox x -plane. Starting from the equation (14.2.6), which we 
multiply by =θ ω , we obtain 

= +′

2
cos

2
g C
l

ω
θ ,   = − ′

2
0

0cos
2

gC
l

ω
θ , 

 
(14.2.9') 

where we take into account the initial conditions ( ) =0 0tθ θ , ( ) =0 0tω ω ; finally, we 
can write 

1
2

cos 2
l lR Mg CMl

l
θ

′ +′ = − −′ ,   1
2 sin

l
R Mg

l
θ′ = ′ ,   ′ =3 0R . 

 

(14.2.9'') 

Hence, the constraint forces are periodical functions of time with the period T; the 
component ′2R  does not depend on the initial conditions, being directed in the sense of 

the motion ( ′2R  has the same sign as sin θ , hence as θ), but the component ′1R  depends 
on these conditions, being always directed in the opposite sense to that in which is the 
mass centre ( ′ <1 0R ). 

If the angular velocity =ω θ  maintains its sign, then the motion is circular and the 
pendulum is rotating in the same sense. From (14.2.9') we notice that, to have such a 
motion, it is necessary and sufficient that ′> /C g l , wherefrom 

> 0
0 2 cos

2
g
l

θ
ω ; 

 

(14.2.10) 

the initial angular velocity (considered to be positive) must be greater than a given 
value, depending on the initial conditions (angle 0θ ) too. Such a situation is 
encountered, e.g., in case of a fly wheel, the axle of which (assumed to be horizontal) 
does not pass exactly through the mass centre, but at a short distance to that one; the 
phenomenon of resonance (the frequency of the perturbing constraint force is close to 
the frequency of the proper vibration), which leads to a critical rotation speed, must be 
avoid. 

From the equation (14.2.6) it results that the physical pendulum is at rest with respect 
to the inertial frame of reference ′R  if =0sin 0θ , where 0θ  corresponds to the initial 

position (at the moment = 0t t ); it results that =0 0θ  or =0θ π , the centre of mass C  
being situated on the vertical of the centre of suspension. Obviously, only the position 

=0 0θ  is a stable position of equilibrium; in this case =( ) 0tθ  and 
= = =0( ) ( ) 0t tθ ω ω . 

We have seen that the centre of oscillation is at a distance ′ >l l  (we can have an 
equality only if = 0Ci , hence only if the rigid solid is reduced to a particle or to a 
material segment of a line, parallel to the axis of suspension) of the suspension centre; 
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Huygens showed that all the points of the axis of oscillation move as they would be 
mathematical pendulums connected to the axis of suspension by inextensible threads of 
length ′l . 

The second relation (14.2.8) can be written also in the form 

= = 2
1

C
C

I
ll i

M
. 

 

(14.2.11) 

This allows to state 
Theorem 14.2.3 (Huygens)  The suspension and oscillation axes of a physical 
pendulum are reciprocal. 

This property with an involutive character shows that if one takes the axis of 
oscillation as axis of suspension, then the axis of suspension becomes an axis of 
oscillation. 

 
Fig. 14.9.  Huygens’s theorem 

The relation (14.2.8) can be written in the form of an equation of second degree 

′− + =2 2 0Cl l l i , 
 

(14.2.12) 

of roots (for given ′l  and Ci  correspond two values for l) 

( ) ( )⎡ ⎤′′ ′= ± − = ± −⎢ ⎥′⎣ ⎦

2
2 2

1,2
21

4 1 1
2 2

C
C

ill l l i
l

. 
 

(14.2.12') 

We can thus state 
Theorem 14.2.4  (Huygens)  The locus of the straight lines of given direction, which – 
taken as axes of suspension – allow to a physical pendulum to oscillate about them with 
a given period is formed by two circular cylinders (the common axis of which passes 
through the mass centre and has the given direction). 

The period T  being given, it results that the length ′l  of the synchronous simple 
pendulum is, as well, given. Assuming that ′ > 2 Cl i , the formula (14.2.12') gives the 
lengths 1l  and 2l  of the radii of the two cylinders; if ′ ′= = min2 Cl i l  (corresponding to 
Fig. 14.8), then the two cylinders coincide ( ′= = =1 2 min /2 Cl l l i ). 
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Observing that = 2
1 2 Cl l i , it results ≥1 Cl i  and ≤2 Cl i  (or conversely); as well, we 

have ′+ =1 2l l l . If the centre of suspension iO  corresponds to the centre of 
oscillation iO ′ , = 1,2i , and if we assume that these centres are coplanar with the 

centre of mass C , so that the points 1O  and ′2O  and the points 2O  and ′1O , 
respectively, be on the same arcs of circle (Fig. 14.9), the Theorem 14.2.4 leads to 
Theorem 14.2.4'  (Huygens)  If two parallel axes of suspension of a physical pendulum 
lead to the same length for the corresponding synchronous simple pendulums, then this 
length is equal to the sum of the distances from the mass centre to the two axes. 

This theorem is justified for the relation of order ≤ ≤2 1Cl i l . In the particular case 
in which the two axes of suspension are coplanar with the mass centre, we find again 
the Theorem 14.2.3. 

 

The theory of the physical pendulum allows an experimental determination of the 
moment of inertia of a rigid solid with respect to a given axis, which pierces this solid. 
To do this, one takes the respective axis as axis of suspension and one measures the 
isochronous oscillation period of the rigid solid, in its behaviour as a physical 
pendulum; knowing the own weight of the rigid solid (the mass and the gravity 
acceleration) and the distance from the centre of mass to the considered axis, the 
formula (14.2.7') gives the possibility to compute the axial moment of inertia in the 
form 

( )= =
2 2

33 2 24
T TI Mgl Mgl

ππ
. 

 

(14.2.13) 

Because the quantities M  and I  cannot be measured with a sufficient precision, one 

resorts to experimental artificial means. A rigid mass M  uniformly distributed around 
the axis of suspension is added, so that its centre of mass be on this axis, the 
corresponding moment of inertia being 33I . Obviously, we have 

( )+ = +
2

3333 24
TI I M M gl
π

. 
 

Taking into account the relation of static moments ( )+ =M M l Ml  and the relation 
(14.2.13), we obtain 

( )
= =

− −

2

33 3333 2 22

1

/ 1

TI I I
T T T T

. 
 

(14.2.14) 

Knowing the moment of inertia 33I  and measuring the periods T  and T , we get the 
moment of inertia 33I  with a sufficient good precision. 

14.2.1.3 Experimental Determination of Moments of Inertia of Rigid Solids
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e Gravity Acceleration. The Borda, the 
Kater and the Bessel Pendulums 

The physical pendulum and the formula (14.2.7') of its isochronous oscillations 
allow, as well, to determine experimentally the gravity acceleration; we get thus 

( )⎡ ⎤′= = = +⎢ ⎥⎣ ⎦

22 2 2
33

2 2 2
4 4 4

1 CiI
g l l

Ml lT T T
π π π . 

 

(14.2.15) 

We assume that in this formula are known or measurable all the quantities, so that it is 
possible to obtain g. In 1792, Borda used a physical pendulum formed by a 
homogeneous sphere of platinum, suspended by a thin metallic thread, of negligible 
mass with respect to the mass of the sphere; the mass centre C  of the physical 

pendulum is thus practically situated at the centre of the sphere of radius R  and mass 

M . The formula (3.1.27) leads to the central radius of gyration = 2/5Ci R . If l is the 
distance from the centre of suspension to the centre of the sphere and if we determine 
experimentally the period T  of the isochronous oscillations, then we obtain the 

acceleration g of gravity. We notice that, to have a result with the best precision, one 
must take into account the influence of the medium (temperature correction, reduction 
to vacuum, resistance of the air etc.), the influence of the suspension (the curvature of 
the supporting blade edge, the displacement of the support, the friction on the axle etc.) 
and the influence of the experimental measurements (the measure of the distance 

=l OC  and the measure of the period T  of the isochronous oscillations). 
The period of oscillation of the pendulum is obtained by one of the known 

experimental methods (e.g., the method of simultaneousness or the method of 
registering); the use of the formula (14.2.15) corresponds to an absolute determination 
of the gravity constant g. A rigorous determination being particularly difficult, as we 
have seen, one obtains such results only in gravimetrical stations of reference (such 
stations are, e.g., these of Potsdam and Helsinki). In other stations one obtains relative 
determinations, starting from the determinations 0T  and 0g  in a station of reference, 
using an identical physical pendulum, in the same conditions (to have the same length 

′l  of the synchronous simple pendulum), 

( )=
2

0
0

T
g g

T
. 

 
(14.2.16) 

The gravity acceleration g is thus obtained by a simple measurement of the period T . 
If in the Theorem 14.2.4' the plane of the axes of suspension contains the centre of 

mass C  too, so that the latter one be situated between the points 1O  and 2O  (in this 
case ′≡2 1O O ), then the length of the synchronous simple pendulum is equal to the 
distance between the two axes; the respective pendulum is a reversible pendulum, 

14.2.1.4 Experimental Determination of th
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allowing the determination of the centre of oscillation and of the length ′ = +1 2l l l . 
Such a pendulum was built for the first time in 1818 by H. Kater from a bar of bronze, 
along which glide two masses 1m  and 2m , with the aid of a micrometric screw, and 
which has two centres of suspension 1O  and 2O , with two blades; thus, by the 

displacement of the mass centre C , one can make one of the centres of suspension to 
become centre of oscillation for the other one, and reciprocally. In fact, one obtains 

⎛ ⎞= +⎜ ⎟⎝ ⎠

2 2
2

1 1
1

4 ciT l
g l
π ,   ⎛ ⎞= +⎜ ⎟⎝ ⎠

2 2
2
2 2

2

4 ciT l
g l
π , 

 

where Ci  must be the same in the two expressions, till an experimental error; 
eliminating the central radius of gyration, it results 

( ) −′= = + =
−

2 22 2
1 1 2 22

1 2
1 2

4 4 T l T l
T l l l

g g l l
π π ,   ≠1 2l l , 

 
(14.2.17) 

wherefrom 

( )

2 2
2 2 2 2

1 1 1
1 2 1 1 2 1

1 1 1 ...
2

l T l T
T T T T

l l T l l T
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞= + − = + − +⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥− −⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

  (14.2.17') 

Hence, the passing from a centre of suspension to another one leads to a term of 
correction applied to the period noticed in case of the first axis of suspension. From 
(14.2.17) we obtain also 

 

−
=

−

2 2
1 22

2 2
1 1 2 2

4
l l

g
T l T l

π . 
 

(14.2.17'') 

This formula is much used in geodesy to determine experimentally the gravity 
acceleration by two measurements of periods corresponding to two axes of suspension. 

Fig. 14.10  Bessel’s pendulum 
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Making − →1 2 0T T  and taking into account the Theorem 14.2.4', we find again the 
formula (14.2.15). 

If the masses 1m  and 2m  have a different form, then one obtains experimental 
errors due to a different resistance of the air. To eliminate these errors, Bessel 
considered a physical pendulum for which the masses 1m  and 2m  have the same form 
and the same dimension, but different masses (a hollow cylinder and a full one) 
(Fig. 14.10). 

 

One has used physical pendulums of various forms to determine the gravity 
acceleration. Such a pendulum is an annular one, imagined in 1939 by L. Teodoriu and 
R. Voinaroski; it is a homogeneous right cylinder of steel, having a height h  and a 

circular annulus section, of radii iR  and eR , suspended at a centre O  on the internal 
face by a blade, along the respective generatrix (Fig. 14. 11). The moment of inertia 

( )= −4 4 /2e iCI h R Rπ μ , where μ is the density; the mass of the pendulum is, 

obviously, given by ( )= −2 2
e iM h R Rπ μ , so that ( )= +2 2 /2e iCI M R R  and 

( )= +2 2 2 /2e iCi R R . We obtain thus 

+ ⎛ ⎞′ = + = +⎜ ⎟⎝ ⎠

2 2 21
3

2 2
e ei

i i
i i

R R Rl R R
R R

. 
 

(14.2.18) 

Observing that ( ) ( )′ = ⎡ − ⎤⎣ ⎦
2d /d 1/2 3 /ei il R R R , we obtain ′ =min 3el R  

= 3 iR  for = / 3eiR R ; in this case, it results (Fig. 14.11) 

= =
2 2

2 2
4 3 12

e ig R R
T T
π π . 

 

(14.2.19) 

The construction of the annular pendulum so that ′l  have a minimal value ( ′l  is 
determined in a range zone) leads to small experimental errors due to various technical 

Fig. 14.11  Voinaroski’s Annular Pendulum 

with respect to a central principal axis of inertia along the direction of the generatrix is 
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deficiencies. R. Voinaroski realized this pendulum in the Laboratory of Mechanics of 
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the University of Bucharest in the above mentioned conditions, obtaining 
2

Buc 9.806 m/sg =  (with three exact decimals). 

 

The inclined pendulum imagined by E. Mach is a physical pendulum, the suspension 
axis of which is inclined by an angle α, < <0 /2α π , with respect to the horizontal 

plane (Fig. 14.12). The mass centre C  oscillates in a plane Π normal to the axis Δ, the 

trace of which on the plane being just the suspension centre O . The equilibrium 

position of the pendulum is that for which the moment of the own weight Mg with 

respect to the Δ-axis is equal to zero, the meridian plane determined by the axis Δ and 

the centre C  being vertical for this position; during the motion, the meridian plane 

oscillates about this position of equilibrium. We decompose the force Mg in a 

component sinMg α , parallel to the axis Δ, and a component cosMg α , normal to 

this axis, contained in the plane Π; observing that the first component gives a null 

moment with respect to the Δ-axis, we obtain the equation of motion of Mach’s 
pendulum in the form 

 
 

+ =′ sin 0
g
l

θ θ ,   ′ = cos
I

l
Ml

Δ α . 
 

(14.2.20) 

Hence, we find again the previous results, where we replace the distance l by 
cosl α . In case of isochronous oscillations, we find the period 

2 sec
I

T
Mgl

Δ
α π α= . 

 

(14.2.21) 

Fig. 14.12  Mach’s inclined pendulum  
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For 0α =  we find again the period (14.2.7'), so that 
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2
02
2cos

T
Tα

α = , 
 

(14.2.22) 

and we have an experimental verification of the above obtained results. 
If = /2α π , then the Δ-axis is vertical and the equation of motion becomes 0θ = ; 

it results a uniform rotation if ( )0 0 0tω θ= ≠ . If =0 0ω , then any position 
( )0 0tθ θ θ= =  is a position of equilibrium. A door with a vertical axis illustrates this 

assertion. 

 

Let be a homogeneous rigid solid S  with axial symmetry, suspended at a point O ′ 
by an inextensible thread along the symmetry axis (the descendent vertical of the point 
O ′ ), which is taken as ′ ′3O x -axis (Fig.14.13,a). This solid is rotated by an angle 0θ  
(till an initial position), being then let free. We obtain thus the Weber-Gauss torsion 
pendulum. The thread plays the rôle of a constraint and acts as a couple of torsion of 
moment 2

3ν θ= −M i  (we take 3 3Ox O x′ ′≡ , O O ′≡ ) upon the rigid body, ( )tθ θ=  
being the angle of rotation about the stable position of equilibrium. The equation of 
motion with respect to the axis of rotation will be 

2
33I θ ν θ= − , 

 

(14.2.23) 

where we assume that 2 4 /fk d Lν μ= , d  and L being the diameter of the cross section 
of the thread and its length, respectively, fμ  is the linear density of it, while 0k >  is a 
constant of the nature of an angular acceleration. We obtain thus 

14.2.1.7 The Weber-Gauss Torsion Pendulum

Fig. 14.13  The Weber-Gauss torsion pendulum 
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(14.2.23') 
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so that 

22
2

2
MRT MRπ π

ν ν
= =  

 
(14.2.24) 

for isochronous oscillations. 
If the rigid solid S  is a circular cylinder of radius R  and mass M , then we have 

= 2
33 /2I MR . We can verify the mathematical model considered for the torsion of 

threads adding to the rigid solid two equal homogeneous spheres, each of radius r  and 

mass m , connected by a thin rod of length 2l and negligible mass with respect to m  
(Fig. 14.13,b). Denoting by ′33I  the axial moment of inertia of the new obtained 
mechanical system and using the Huygens-Steiner theorem (formula (3.1.113)), we 
obtain 

2
2 2

33
2 2 4

2
2 5

MRT I ml mrπ π
ν ν

′ ′= = + + . 
 

(14.2.24') 

Assuming that the periods T  and T ′  are obtained experimentally, one determines the 

constant ν of torsion of the thread. Practically, the values thus obtained differ very little; 
if the difference is not great, then one can assume that the determination is sufficiently 
good. Eliminating ν between the relations (14.2.24) and (14.2.24'), one obtains the 
moment of inertia 33I  by experimental determinations; this result can be of interest for 
any rigid solid of revolution S. 

 

The plane-parallel motion of the rigid solid is a particular case of motion which is 
frequently encountered in practice. In this order of ideas, after some applications, we 
make considerations concerning the dynamics of the three-dimensional motion of an 
airplane and then the plane-parallel motion of it. As well, we present the motion with 
sliding and rolling friction on an inclined or on a horizontal plane. 

 

As we have seen in Chap. 5, Subsec. 2.3.4, a rigid solid S  has a plane-parallel 
motion if three non-collinear points of it are contained during the motion in a fixed 
plane, hence if a plane section (the 1 2Ox x -plane or the 1 2Ox x -plane) of the rigid solid 
slides on a fixed plane (the ′ ′ ′1 2O x x -plane); the axes 3O x′ ′  and 3Ox  (or 3Ox ) are 
normal to these planes. Without particularizing the motion, we can take the mass centre 
as pole of the non-inertial frame of reference (O C≡ ) (Fig. 14.14). In this case, the 

14.2.2 Plane-parallel Motion of the Rigid Solid

14.2.2.1 General results
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rigid solid S  has only three degrees of freedom and we can choose as parameters 
which specify the motion the co-ordinates 1ρ ′  and 2ρ ′  ( 3 0ρ ′ = ) of the mass centre C  
and the angle θ made by the axis 1Cx  with the axis 1Cx . The fixed and the movable 
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axoids are two cylinders the traces of which on the fixed plane are the fixed and 
movable centrods, respectively, tangent one to the other at the instantaneous centre of 
rotation (see Chap. 5, Sect. 2.3.4). 

Starting from the equations (14.1.48), (14.1.52), we can write the equations of 
motion along the axes of the frame of reference R  in the form 

( ) 1 11 2C CM v v R Rω′ ′− = + , 
( ) 2 21 2C CM v v R Rω′ ′+ = + , 

3 30 R R= + , 

 
 

(14.2.25) 

2
131 23 1 CCI I M Mω ω− = + , 

2
223 31 2 CCI I M Mω ω+ = + , 

333 3 CCI M Mω = + , 

 
 

(14.2.25') 

where we noticed that 3 0Cv ′ = , while 3ω= iω ; here { }, CR M  is the torsor of the 
given forces, while { }, CR M  is the torsor of the constraint forces. Projecting the 
equation (14.1.47) on the axes of the inertial frame of reference ′R , we obtain the 
scalar equations (which replace the equations (14.2.25)) 

2
1

1 12
d
d

M R R
t
ρ ′

= + ,   
2

2
2 22

d
d

M R R
t
ρ ′

= + ,   3 30 R R= + , 
 

(14.2.26) 

where the notations correspond to these co-ordinate axes. 

Fig. 14.14  Plane-parallel motion of the rigid solid 
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To have a plane-parallel motion of the rigid solid, it is sufficient that three non-
collinear points of it (e.g., the points C , ( )1 1 , 0, 0P h  and ( )2 20, , 0P h , 1 2, 0h h > ) be 
during the motion in the fixed plane; assuming that the motion of these points is 
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frictionless, the corresponding constraint forces are of the form 33C CR=R i , 

1 13 3R=R i , 2 23 3R=R i , which leads to 1 2 0R R= = , 3 13 233CR R R R= + + , 

1 2 23CM h R= , 2 1 13CM h R= − , 3 0CM = . Associating adequate initial conditions of 
Cauchy type, we notice that the third equation (14.2.25') determines the angular 
velocity ( )t=ω ω ; then the first two equations (14.2.25) give the components 

( )Cj Cjv v t′ ′= , 1,2j = , of the velocity of the mass centre C  with respect to the inertial 
frame of reference. In this case too, we can adopt correspondingly the theorem of 
existence and uniqueness. The first two equations (14.2.25') allow to calculate the 
components 23R  and 13R  of the constraint forces, while the third equation (14.2.25) 
specifies the constraint force 3CR . Thus, the plane-parallel motion of the rigid solid is 
statically determinate; in the case in which the number of the points of the solid which 
coincide all the time with the fixed plane is greater than three, then the problem 
becomes statically indeterminate (due to the model of rigid solid adopted). If the motion 
of the rigid solid is a plane-parallel one, the constraint forces vanishing, one must have 

=3 0R ; hence, the resultant of the given forces must be parallel to the fixed plane. The 
moment of the given forces is directed along the normal to the fixed plane 
( 1 2 0C CM M= = ) if and only if the 3Cx -axis is a central principal axis of inertia, 
hence if 23 31 0I I= = . In this case, the pseudomoment of momentum CK  has the 
components  1 constCK = , 2 constCK = ; because at the initial moment we have 

1 2 0C CK K= = , it results that during the motion we have 3 3
C CK=K i . 

 

Le be a rigid straight bar AB  of length 2l, which is moving in the fixed plane 
′ ′ ′1 2O x x  (in a modelling of unidimensional solid). Assuming that the bar is 

homogeneous, of linear density μ, the mass centre will be at its middle; in the same 
fixed plane, we consider also the non-inertial frames of reference 1 2C x x  (the axes of 
which are parallel to the axes of the inertial frame ′ ′ ′1 2O x x ) and 1 2Cx x , the axis 1Cx  
being along the bar. The position of the bar will be specified by the co-ordinates 1ρ ′  and 

2ρ ′  of the centre of mass and by the angle θ, made by the 1Cx -axis with the 1Cx -axis. 
Because of the symmetry, the 1Cx -axis is a central  principal axis of inertia, any normal 

axis at C  to that one having the same property; thus, we have 23 31 0I I= = . On the 

other hand, 2
33 1 1d

l

l
I x xμ

−
= ∫ , so that 3 2

33 2 /3 /3I l Mlμ= = , where = 2M lμ  is 

the mass of the bar. 
We assume that the bar is in a vertical plane and is subjected to the action of its own 

weight M=G g ; its centre of mass C  is connected to the fixed point ′O  by an 

14.2.2.2 The Plane-Parallel Motion of a Rigid Straight Bar
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inextensible thread (in which arises the tension T ) (Fig. 14.15a). It results C =M 0 so 
that = 0ω , wherefrom 0 0tθ ω θ= + , 0θ  and 0ω  corresponding to the position and to 
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the angular velocity at the initial moment = 0t , respectively. The equations of motion 
of the mass centre in the non-parallel frame of reference R  have the form 

( ) ( )01 2 cos cosC CM v v Mg Tω θ θ ϕ′ ′− = − − , 
( ) ( )02 1 sin sinC CM v v Mg Tω θ θ ϕ′ ′+ = − − − , 

 
(14.2.27) 

but it is difficult to study them directly; it is more convenient to use the equations 
(14.2.26), which lead to 

2
1

2
d

cos
d

M Mg T
t
ρ

ϕ
′

= − ,   
2

2
2

d
sin

d
M T

t
ρ

ϕ
′

= − . 
 

(14.2.27') 

Observing that 1 coshρ ϕ′ = , 2 sinhρ ϕ′ = , h O C′=  and eliminating the tension T , 
we obtain the equation of the mathematical pendulum 

2

2
d

sin 0
d

h g
t
ϕ

ϕ+ = , 
 

the tension being given by 

( )2d
cos

d
T M g h

t
ϕ

ϕ⎡ ⎤= +⎢ ⎥⎣ ⎦
. 

 

Hence, the centre of mass C  oscillates as a simple pendulum about the fixed point O ′ , 

the bar AB  rotating uniformly around it in the considered vertical plane. 
Let us suppose now that the straight bar slides frictionless on a horizontal fixed plane 
′ ′ ′1 2O x x , being attracted by the fixed axis ′ ′1O x  in direct proportion to the mass and to 

the distance of each point of it to this axis (Fig. 14.15b). In this case (we use the 
formula (3.1.9') of static moments) 

Fig. 14.15  Plane-parallel motion of a rigid straight bar
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1 0R = ,   2 2
2 2 1 2d

l

l
R k x x k Mμ ρ

−
′ ′= − = −∫ ,   constk = ,  
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the equations of motion (14.2.26) leading to 1 at bρ ′ = + , ( )2 sinA ktρ α′ = + ; 

eliminating the time t, we obtain 

( )2 2sin
kA b
a

ρ ρ α⎡ ⎤′ ′= − +⎢ ⎥⎣ ⎦
, 

 

(14.2.28) 

the trajectory of the mass centre C  being a sinusoid in the fixed plane. As well (the 

static moment with respect to an axis which passes through C  vanishes) 

( )
1 2

2 2 2
21 2 1 1 2 13 d d

l l
x xC l l

M k x x x k x x x k Iμ μ ρ
− −

′ ′= − = − + = −∫ ∫  
2 2 2

1 1 33sin cos d sin cos
l

l
k x x k Iμ θ θ θ θ

−
= − = −∫ . 

 

The angle ( )tθ θ=  verifies the equation 

2 sin cos 0kθ θ θ+ = . 
 

(14.2.29) 

We find thus again the equation of the mathematical pendulum for the argument 2θ; the 
oscillations defined by the equation (14.2.29) have been denoted by W. Thomson and 
P.G. Tait, in 1861, quadrantal oscillations. Multiplying by 2θ  and integrating, we get 

2 2 2
0 sinkθ ω θ= − , 

 

(14.2.29') 

where 0ω  is the angular velocity for = 0 ; if kω < , then the bar oscillates about the 
axis 1Cx , while if kω > , then the bar has a circular motion (it rotates in the same 
sense). If = kω , we obtain 

cosω θθ = ,   ( )1
ln tan

2 4
t θ π

ω
= + , 

 
(14.2.30) 

where = 0θ  for = 0t ; in this case, the bar tends to the 2C x -axis in an infinite time 
( t → ∞  for /2θ π→ ). 

 

Let be an inclined plane formed by two axes Δ′  and Δ′′ , concurrent at O ′ , equally 
inclined on a horizontal plane and situated over it, and let be ′ ′1O x  the bisectrix of the 
angle formed by these axes. We put on them a rigid double cone, formed by two equal 
homogeneous circular cones, the bases of which are joined, so that their common plane 
coincides with the vertical plane Π and passes through the bisectrix ′ ′1O x , which makes 

Sphere on an Inclined Plane
14.2.2.3 The Plane-Parallel Motion of a Rigid Double Circular Cone and of a Rigid 
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θ

the angle α with the horizontal. We assume that this solid is placed, in the initial 
position, at the lowest part of the angle formed by the axes Δ′  and Δ′′ , in the 



www.manaraa.com

proximity of the point O ′ ; then, it is left to a free rolling, without sliding, on these axes, 
under the action of its own weight M g. In the fixed plane Π we specify the inertial 

frame of reference ′ ′ ′1 2O x x . The axes Δ′  and Δ′′  are projected on the plane Π along 
the ′ ′1O x -axis, while the points at which the double cone lays on them are projected at 

the point I ; as well, the vertices of the cones are projected at the point C , the centre of 
mass of the double cone, the whole mechanical system being symmetric with respect to 
the plane Π. The planes which pass through the axes Δ′  and Δ′′ , respectively, and are 
tangent to the two cones, make constant angles with the horizontal plane, being thus 
fixed. Let Δ be their intersection straight line, which is fixed too and is contained in the 

plane Π, making an angle β with the horizontal. The base circle of the two cones is 

tangent to the axis Δ, while its centre describes the axis Δ , parallel to the axis Δ. We 

assume that the axis Δ is situated below the horizontal, at the initial moment the mass 
centre lying over the ′ ′1O x -axis (Fig. 14.16). This plane-parallel motion, in which the 
rigid solid, without initial velocity, seems to ascend on the inclined plane (its centre of 
mass moves downwards), has been studied in the XIXth century by Résal, Fleury, 
Mannheim and Saint-Germain. 

In the plane of symmetry Π,  the point I  is the instantaneous centre of rotation and 

lies on the ′ ′1O x -axis; hence, the straight line IC  is normal to the trajectory Δ  of the 

point C  and we have d dCC s r θ′ = = , r IC=  and d /d d dCv s t r t rθ′ = = θ/ = , 

where =θ ω  is the angular velocity, while θ is the angle by which the double cone is 
rotating, starting from an initial position. At the moment dt t+ , =IC r  becomes 

Fig. 14.16  Plane-parallel motion of a rigid double cone
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dI C r r′ ′ = − , ||I C IC′ ′ , while the parallel through C ′  to ′ ′1O x  pierces IC  at N ; 
we have 
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( )d tanCN r CC α β′= − = + + ,  

hence 

( )1d d cot dr rρ θ α β= = − + . (14.2.31) 

The theorem of kinetic energy is written in the form 

( )2 2 2 21 1
d sin cot d

2 2 CMr Mi Mg rθ θ β α β⎡ ⎤+ = − +⎢ ⎥⎣ ⎦
,  

where we have used the theorem of Koenig, Ci  being the gyration radius with respect 
to the symmetry axis of the double cone, which is a central principal axis of inertia 
( 2

C CI Mi= ); the elementary work is given by dM ⋅g ρ . By integration, 

( ) ( ) ( )2 2 2 2 2
0 cotCi r k r rθ α β+ = − + ,   ( )2 2 sin tank g β α β= + , 

 (14.2.32) 

where 0r  corresponds to the initial moment 0t = , for which we have 0θ =  too. 
Taking into account (14.2.31) and integrating, the time will be given by the elliptic 
integral 

0

2 2

0

1 1
d

r C
r

i r
t r

k r r r
+

= −
−∫ , 

 
(14.2.32') 

where we have taken the sign minus because it is obvious, from a geometrical point of 
view, that r  diminishes starting from 0r . For 0r →  it results t → ∞ , hence the mass 

centre C  tends to the limit position 1A O x Δ′ ′≡ ∩ , without reaching it (or in an 
infinite time). Starting from (14.2.31) we can also write 

( )tan
0er r θ α β− += ,   ( ) ( )0 0 cots s r r α β− = − + , 

 

(14.2.33) 

where we have assumed that 0θ =  for 0r r= , while s  is the abscissa along the Δ -
axis. Thus, the relation (14.2.32) may lead to 1 1 ( )tρ ρ= , obtaining the law of motion 
of the mass centre along the Δ -axis; the same relation shows that its velocity is given 
by 

( )0
2 2 cotC
C

r r
v kr

i r
α β

−′ = +
+

. 
 

(14.2.32'') 
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This velocity vanishes at the initial position 0r r=  and at the final position 0r = ; it 
has a maximum in the interval of time in which the motion takes place. From a 
kinematical point of view, the motion of the base circle of the cones is obtained rolling 
the logarithmic spiral given by the first equation (14.2.33) on the 1O x′ ′ -axis. 
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Mannheim considers in 1859 a similar problem for a homogeneous sphere of radius 
R  which, as well, seems to ascend on the inclined plane in the same conditions (the 

centre of mass moves downwards). We keep the previous notations. If we denote by N  
the point at which the axis Δ′ , e.g., is tangent to the sphere, we have 

2 22 2 2
1 2O C R O N ρ ρ′ ′ ′ ′= + = + , where we have specified the mass centre C  (the 

centre of the sphere) with respect to the non-inertial frame of reference 1 2O x x′ ′ ′ ; 

observing that 1 cosO N ρ ϕ′ ′= , where 2ϕ is the angle formed by the axes Δ′  and Δ′′ , 
it results 

 

Hence, the centre of mass C  describes an arc of ellipse of semiaxes 

/sina O A R ϕ′= =  and b O B R′= =  (Fig. 14.17); the normal at C  to the ellipse 

pierces the 1O x′ ′ -axis at the instantaneous centre of rotation I  in the vertical plane Π. 

The normal from C  to 1O x′ ′  pierces the circle of radius a  and centre O ′  at Q ; 

introducing the eccentric anomaly u  (see Chap. 9, Sect. 2.1.3, Fig. 9.8 too), the 

parametric equations of the ellipse are 1 cosa uρ ′ = , 2 sinb uρ ′ = . The tangent at C  to 

the ellipse (the equation of which is obtained by halving) pierces the 1O x′ ′ -axis at T  so 

that 2
1/O T a ρ′ ′= ; in the right triangle ICT  we get 

( ) ( )
2

22 2 2 2 2sin cos
br IC a u b u
a

= = + . 
 

Fig. 14.17  Plane-parallel motion of a rigid sphere 
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We can thus write 

( ) ( )22 2 2 2 2 2 2 2 2 2
1 2d d d sin cos d d

as a u b u u r u
b

ρ ρ′ ′= + = + =   
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for the element of arc of ellipse. But d ds r θ= , so that ( )d / da b uθ = ; the velocity of 
the mass centre will be ( )/Cv r r a b uθ′ = = . Applying the theorem of kinetic energy, 
as in the preceding case, we get the equation 

( )2 2 2 2 2 2sin cosC
a i a u b u u
b

⎡ ⎤+ +⎢ ⎥⎣ ⎦
 

( ) ( )[ ]0 02 sin cos cos cos sin sing a u u b u uα α= − + − , 

 
 
 

(14.2.34) 

which allows to compute the time t as function of the anomaly u  by a quadrature. From 
a kinematical point of view, the motion of the sphere is obtained by rolling an 
epicycloid on the 1O x′ ′ -axis. 

 

We present firstly the general equations of motion of the airplane; this one will be 
modelled as a free rigid mechanical system with a plane of symmetry, subjected to the 
action of given forces: own weight (dead and useful load), forces of aerodynamical 
resistance and driving forces. The inertial frame of reference ′R , called geodesic 
frame, has the origin O ′  at the initial position of the mass centre C ; the 1O x′ ′ -axis is 

taken along the direction of the initial velocity of the centre C  and the 3O x′ ′ -axis along 
the descendent vertical. The non-inertial frame R  will be rigidly linked to the airplane, 
having the pole at C ; the 1Ox -axis is along the longitudinal axis of the airplane, its 
sense coinciding with the sense of advance, while the 3Ox -axis is contained in the 
symmetry plane. 

14.2.2.4 Dynamics of Motion of the Airplane
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Fig. 14.18  Dynamics of the motion of an airplane 
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To pass from the initial position of the airplane to its actual position, hence from the 
frame ′R  to the frame R, one performs a translation, which brings the pole O ′  at the 
pole C  so as to coincide with the frame R  (the axes of which are parallel to those of 
the frame ′R ) and a rotation, composed of three successive rotations (Fig. 14.18); i) a 
rotation  of angle ψ (angle of gyration, which puts in evidence the rotation with 
respect to the initial direction), about the 3C x -axis, which carries the 1C x -axis in the 
vertical plane which contains 3C x  (let be 1 2 3C xξ ξ  the frame in this position); ii) a 

rotation  of angle θ (angle of pitching, which is the angle of inclination of the 
longitudinal axis of the airplane), about the 2C ξ -axis, which carries the 1C ξ -axis in the 
position 1Cx  (let 1 2 3Cx ξ η  be the corresponding position of the frame); iii) a rotation  

of angle ϕ (the angle of rolling, which indicates the inclination on a wing), about the 
axis 1Cx , which carries 2C ξ  in the position 2Cx  and 3C η  in 3Cx . These three 

rotations are, in fact, specified by angles of Eulerian type (ψ, θ and ϕ), adapted to the 
problem of motion of the airplane. As in Chap. 3, Subsec. 2.2.3, we introduce the 
column matrices (3.2.11), the unit vectors ji , 1,2,3j = , of the frame R  being 
expressed with respect to the unit vectors k′i , 1,2, 3k = , of the frame ′R  by means 
of the matric product (3.2.11''). Noting that 

cos sin 0

sin cos 0

0 0 1

ψ ψ

ψ ψ

⎡ ⎤
⎢ ⎥

= −⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Ψ ,   

cos 0 sin

0 1 0

sin 0 cos

θ θ

θ θ

⎡ ⎤−
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Θ ,   

1 0 0

0 cos sin

0 sin cos

ϕ ϕ

ϕ ϕ

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

Φ , 

 (14.2.35) 
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Ψ

Θ

we introduce the matrix  of components jjk kβ ′= ⋅i i , , 1,2, 3j k = , which specifies 
the direction cosines of the axes of the frame R  with respect to the axes of the frame 
R  in the form 

cos cos sin cos sin

sin cos cos sin sin cos cos sin sin sin cos sin

sin sin cos sin cos cos sin sin sin cos cos cos

ψ θ ψ θ θ

ψ ϕ ψ θ ϕ ψ ϕ ψ θ ϕ θ ϕ

ψ ϕ ψ θ ϕ ψ ϕ ψ θ ϕ θ ϕ

⎡ ⎤−
⎢ ⎥

= − + +⎢ ⎥
⎢ ⎥+ − +⎢ ⎥⎣ ⎦

β . 

 (14.2.35') 

Observing that 3 1ψ θ ϕ′= + +i j iω , 2versC ξ=j , we obtain the components of the 
rotation angular velocity vector in the frame R  in the form 

1 sinω ϕ ψ θ= − , 

2 cos sin cosω ψ θ ϕ θ ϕ= + , 

3 cos cos sinω ψ θ ϕ θ ϕ= − , 

 
 

(14.2.36) 

β
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wherefrom 

( )2 3sin cos secψ ω ϕ ω ϕ θ= + , 

2 3cos sinθ ω ϕ ω ϕ= − , 
( )1 2 3sin cos tanϕ ω ω ϕ ω ϕ θ= + + . 

 
 

(14.2.36') 

The angles ψ, θ and ϕ are measured by the gyrocompass, the angular velocity being 
then given by (14.2.36). With the aircraft instruments one can also measure the 
components Civ ′  of the velocity C′v  in the frame ′R , along the axes of the frame R, 
the formula ijCj CiV vβ′ ′= , 1,2, 3j = , allowing then to pass to the axes of the frame 

′R ; integrating the system of equations d /dj Cjt Vρ ′ ′= , 1,2, 3j = , we determine the 

motion of the mass centre C  in the latter frame of reference. 
The equations (14.1.48), (14.1.52) take the form ( 23 12 0I I= = , because the plane 

1 3Cx x  is a plane of symmetry) 

( )2 3 11 3 2 sinC C CM v v v Mg Rω ω θ′ ′ ′+ − = − + , 
( )3 1 22 1 3 cos sinC C CM v v v Mg Rω ω θ ϕ′ ′ ′+ − = + , 
( )1 2 33 2 1 cos cosC C CM v v v Mg Rω ω θ ϕ′ ′ ′+ − = + , 

 
 

(14.2.37) 

( )11 1 31 3 33 22 2 3 31 1 2 1CI I I I I Mω ω ω ω ω ω+ + − + = , 
( ) ( )2 2

22 2 11 33 3 1 31 3 1 2CI I I I Mω ω ω ω ω+ − + − = , 
( )33 3 31 1 22 11 1 2 31 2 3 3CI I I I I Mω ω ω ω ω ω+ + − − = , 

 
 

(14.2.37') 
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where M=G g  is the weight of the airplane, while ( ), C′=R R vω  and 

( ),C C C′=M M vω  are the components of the torsor of the aerodynamic actions at C . 

We notice that components of a pseudomoment of momentum OK  can intervene too, 
leading to supplementary terms of the form 

OO
ki jijkK Kω+ ∈ , 1,2,3i = , in the left 

member of the equations (14.2.37'), due to the rotation of some parts of the airplane 
(e.g., of a wing of it); thus, in the right member of the same equations appear 
supplementary moments, called moments of gyration. In any case, in a leeway (drift 
angle) navigation we have O =K 0 . 

The airplane can change its direction of advance modifying the angle between the 
fixed and the movable surfaces by which its wings are fitted out; the movable surfaces 
(called ailerons) corresponding to the frontal wings are coupled so that if one of them is 
moving upwards the other one is moving downwards, acting thus upon the rolling axis 

2Cx . The horizontal empennage (the movable part of which is called depth rudder) and 
the vertical empennage (the movable part of which is called direction) are at the back 
part of the airplane, helping – as well – to change its direction. We denote by ψ ′  the 
angle between the horizontal empennage and the depth rudder, by θ ′  the angle between 
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the vertical empennage and the direction and by ϕ ′  the angle between the wing and the 
aileron; one can establish the driving (manoeuvre) equations 

( ) ( )1 1 2 3 1 3 1 2 11 3 2 1C C C dI Me v v v J R Rψ ω ω ω ω ω′ ′ ′ ′ ′+ + − + − = + , 
( ) ( )2 2 3 1 2 1 2 32 1 3C C CI Me v v v Jθ ω ω ω ω ω′ ′ ′ ′− + − − +  

( )2 3 1 2 2dJ R Rω ω ω ′− − = + , 
( )3 3 2 3 1 3 32 dI J R Rϕ ω ω ω′ ′+ + = + , 

 
 
 

(14.2.38) 

where ,k kI J , 1,2, 3k = , and J  are axial and centrifugal moments of inertia, 
respectively, of some movable parts (e.g., 1I  is the moment of inertia of the depth 
rudder with respect to its axis of rotation), 1M  and 2M , 1e  and 2e  are the masses and 
the eccentricities of the depth rudder and of the direction, respectively, kR ′  are the 
aerodynamic forces which appear due to these rotations, while dkR , 1,2,3k = , are the 
corresponding driving actions. To determine the 12 unknown functions ( )Ck Ckv v t′ ′= , 

( )k k tω ω= , 1,2,3k = , ( )tψ ψ= , ( )tθ θ= , ( )tϕ ϕ= , ( )tψ ψ′ ′= , ( )tθ θ′ ′=  
and ( )tϕ ϕ′ ′=  we have thus at our disposal the system of 12 differential equations 
(14.2.36')-(14.2.38), corresponding to a given command. In particular problems, these 
equations can be simplified (e.g., in case of dynamic equilibrated commands we have 

1 2 3 0J J J J= = = = , 1 2 0e e= = , while in problems of stability with free wings 
we put 1 2 3 0d d dR R R= = = ). 

Besides the aerodynamic and manoeuvre loads, one can take into consideration the 
storm loads (of aerodynamical nature too), the loads which arise at take-off and 
landing, various types of loads with a local character etc. 
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In case of the plane-parallel motion, the problem in the preceding subsection is 
considerably simplified; we put thus in evidence the motion in the symmetry plane of 
the airplane, which is a vertical plane. Unlike the general case, we report the motion to 
the inertial frame of reference 1 2O x x′ ′ ′  (the 1O x′ ′ -axis being horizontal) and to a non-
inertial frame 1 2Cx x , with the axes parallel to those of the inertial one. At the mass 

centre C , which moves with the velocity C′v , which makes the angle α with the 

longitudinal axis Δ of the airplane, acts the own weight M=G g , the propelling force 
F and the torsor { }, CR M  of the aerodynamic forces exerted upon the aircraft’s 
surface. It is convenient to decompose the resultant of the aerodynamic forces in the 
form = +R W N , where W (the so-called resistance) is along the velocity C′v , while 
N (force of uplift) is normal to W (Fig. 14.19a). The magnitudes of these components 
are obtained by studies of aerodynamical nature, in the form 

2( )
2W CW C A v
g

γ
α ′= ,   2( )

2N CN C A v
g

γ
α ′= , 

 

(14.2.39) 

14.2.2.5 Plane-Parallel Motion of the Airplane
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where A  is the area of the lifting surface, γ is the unit weight of the air, while the 
coefficients of resistance ( )WC α  and ( )NC α , characteristic for each airplane, are two 

non-dimensional functions of angle α; we assume that for 0α =  we have 
( )0 0NC = , hence 0N = , the velocity C′v  being along the longitudinal axis of the 

aircraft. 

The motion of the aircraft’s centre of mass will be specified by the equation 

2

2
d
d

M M
t

′
= + + +g F N Wρ , 

 

(14.2.40) 

written with respect to the inertial frame of reference ′R , and its rotation by the 
equation 
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Fig. 14.19  Plane-parallel motion of an airplane
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C CI Mθ = , 
 

(14.2.40') 

where ( )tθ θ=  is the angle made by the longitudinal axis Δ with the 1O x′ ′ -axis, while 

CI  and CM  correspond to the 3Cx -axis, normal to the considered vertical plane. The 
magnitude of the moment CM  is obtained, by aerodynamical research too, in the form 

2( , )C CM m v nvα δ θ′= − − , 
 

(14.2.39') 

where the function ( , )m α δ , of the nature of a mass, depends on α and on the angle δ 

made by the altitude rudder with its normal position, while the coefficient n , of the 
nature of a product of a mass by a length, is due to the motion of the rudder surfaces 
(the damping action of the moment CM ); here too, m  and n  are characteristics of each 
aircraft. We obtain thus three scalar equations (14.2.40), (14.2.40') for the unknown 
functions 1 1 ( )tρ ρ′ ′= , 2 2 ( )tρ ρ′ ′=  and ( )tθ θ= . 

If the airplane advances with switched off motor ( =F 0 ) and constant velocity 
constC′ =v  (case of a gliding flight), then the equation (14.2.40) leads to 
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M + + =g N W 0 . (14.2.41) 

Hence, the resultant R of the aerodynamic forces equilibrates the weight of the aircraft 
( M= −R g ). The soaring angle ϕ, made by the velocity C′v  with the horizontal axis 

1C x  (Fig. 14.19b), is given by tan / /W NW N C Cϕ = − = − , where we took into 
account (14.2.39); analogously, starting from the relation 2 2 2 2 2G M g N W= = + , 
the magnitude of the soaring velocity C′v  is given by 

2
2

2 2

2
C

W N

Mgv
A C Cγ

′ =
+

. 
 

(14.2.41') 

In case of a normal flight (horizontal flight with constant velocity) we have 0ϕ =  
and constCv ′ = ; the equation (14.2.40) takes the form 

M + + + =g F N W 0 . (14.2.42) 
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In projection on the axes 1C x  and 2C x , we get (Fig. 14.20a) 

cos 0W F β− + = ,   sin 0N G F β− + = , (14.2.42') 

where β is the angle made by the force F with the velocity C′v . We obtain thus 

tan
G N

W
β

−= ,   ( )2 2F G N W= − + . 
 

(14.2.42'') 

We can easily calculate the angle α β β ′= + , because the angle β ′  between the force 
F and the longitudinal axis Δ is known. Observing that constθ = , from the equations 

(14.2.39'), (14.2.40') it results ( , ) 0m α δ = , determining thus δ, that is the necessary 
deviation angle of the altitude rudder. 

Fig. 14.20  Case of a horizontal flight with constant velocity 
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Lanchester studied in 1909 the motion of an aircraft with switched of motor ( =F 0 ) 
and with a nearly vanishing resultant ( ≅W 0 ), the velocity C′v  of which makes a 
constant angle with the longitudinal axis ( constα = ). It results the equation of motion 
of the mass centre 

2

2
d
d

M M
t

′
= +g Nρ . 

 
(14.2.43) 

Projecting on the direction of the velocity C′v  and on a direction normal to it, we obtain 
(using the expressions (5.1.14) of the velocity in polar co-ordinates (Fig. 14.20b) 

d
sin

d
Cv g
t

ϕ
′

= − ,   2d
cos

dCv g Kv
t
ϕ

ϕ′ = − + , 
 

(14.2.43') 

where /2NK C A Mgγ=  is a coefficient of the nature of the inverse of a length. We 
have thus d /d sinC Cv v s g ϕ′ ′ = −  for an element of arc along the trajectory of the 

centre C; observing that 2d d sinx s ϕ′ = , it results 
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2
2

2
2C

hv gx
M

′ ′= − + , 
 

(14.2.44) 

where h  is the energy constant (corresponding to the first integral of the kinetic energy). 

Observing that 2
2d /d sin d /dC Cv t v xϕ ϕ ϕ′ ′ ′=  and taking into account (14.2.44), we 

can write the second equation (14.2.43') in the form 

( )2 2

d cos cos
0

d 2
Mg

K
x h Mgx

ϕ ϕ
− + =′ ′−

. 
 

The change of variable 1x x ′= , 2/y h Mg x ′= −  (one passes to a left-handed inertial 

frame of reference Oxy , with the Oy -axis along the ascendent vertical and with the 

Ox -axis at a level at which, in conformity to the formula (14.2.44), the velocity of the 
mass centre vanishes) leads to 

d cos cos
d 2

K
y y

ϕ ϕ
+ = , 

 

wherefrom 

2
cos

a by
y

ϕ = + ,   2
3

b K= ,   , consta b = . 
 

(14.2.45) 

Observing that 
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( ) ( )1/2 1/22 2 2

d d 1
cos

d d d 1 d /d

x x
s x y y x

ϕ = = =
+ ⎡ + ⎤⎣ ⎦

, 
 

we obtain the differential equation of the trajectory of the mass centre in the form 

( )2d 2
1

d
y a by
x y

+ = + . 
 

Differentiating with respect to the variable x , we obtain 

( )

2 2

3/22

d /d 1

1 d /d

y x a b
R y yy x

= = −
⎡ + ⎤⎣ ⎦

, 
 

(14.2.45') 

where R  is the curvature radius of the trajectory at the point C . Using the relations 
(14.2.45), (14.2.45'), one obtains the trajectory by a graphical integration; the curve 
thus obtained is called a figoid, the corresponding motion being a figoidal motion. 
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Let be a homogeneous circular cylinder of radius R  and weight M=G g , situated on 

a plane inclined  with  the  angle  α  with respect  to  the  horizontal;  considering  the 
plane-parallel motion of the cylinder, it is sufficient to make a study in a vertical plane, 
which passes through the mass centre of the cylinder (Fig. 14.21). Assuming at the 
beginning that sliding friction does not exist, the circular disc of radius R  (to which is 
reduced the cylinder in our study) glides downwards in a uniform accelerated motion, 
under the action of the own weight G and of the constraint force N. Writing the 
equations of motion of the mass centre in the inertial frame of reference 1 2O x x′ ′ ′ , we 
find the magnitude of the normal constraint force 

cos cosN G Mgα α= = , (14.2.46) 

as well as d /d sinCM v t G α′ = , wherefrom d /d sinCv t g α′ = . Hence, the centre C 

moves frictionless as a heavy particle of mass M  on a plane inclined by the angle α 
with respect to the horizontal; its trajectory is, obviously, the 1C x -axis, the disc having 
a motion of translation, while the component of ′ρ  along the 1O x′ ′ -axis is given by 

( )2 0
1 1/2 singtρ α ρ′ ′= + , where 0

1ρ ′  corresponds to the initial moment 0t = . 

If a tangential constraint force T, applied at the point I , intervenes too, the inclined 
plane being rough, we obtain the equations of motion ( CI  is the moment of inertia with 

respect to an axis normal at C  to the fixed plane in which the motion takes place; we 
use a left-handed frame of reference) 

 14.2.2.6 Rolling on an Inclined Plane
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d
sin

d
CvM Mg T
t

α
′

= − ,   CI TRω = , 
 

(14.2.47) 

the ideal constraint force being given by the relation (14.2.46) too; here  is the angular 
velocity by which the disc is rolling without sliding on the inclined plane and we have 

Cv Rω′ = , I  being the instantaneous centre of rotation. We notice also that 

( )0
1 1 0Rρ ρ θ θ′ ′= + − , where 0θ  corresponds to the initial moment 0t = , being the 

angle made by the 1Cx -axis with the 1C x -axis. Hence, ( )2/ d /dC CT I R v t′= ; 
replacing in the first equation (14.2.47), it results 
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ω

d sin
d 1

Cv g
t

α
λ

′
=

+
,   m

M
λ = ,   2

CIm
R

=  
 

(14.2.48) 

for the rolling without sliding, where m  is the peripheral mass of the disc (the mass 

which, situated at the distance R  from the centre C , leads to the axial moment of inertia 

CI ). Observing that 2 /2CI MR= , it results 1/2λ = . If the disc is reduced to a 

peripheral circle of mass M  (corresponds to a hollow cylinder, with a very thin wall), 
then we have 1λ = . We can thus state that a homogeneous full cylinder is rolling 
without sliding on the inclined plane with an acceleration greater (hence, quicker) than 
that of the hollow cylinder, assuming that both cylinders are rolling without initial 
velocity. 

Studying, analogously,  the rolling without sliding of a homogeneous sphere in a 
vertical plane, which contains its centre of mass, we notice that 22 /5CI MR= ; we 
find thus 2/5λ = , the corresponding acceleration being greater than the acceleration 
of the two cylinders. Observing that ( )[ ] 2 0

1 1/2 1 sing tρ λ α ρ′ ′= + +  and denoting 

Fig. 14.21  Rolling on an inclined plane 
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by cft , cht , st  and pt  the times in which a full and a hollow cylinder, a sphere and a 
particle, respectively, are rolling without sliding on the same inclined plane, without 
initial velocity, travelling through the same space, we obtain 

s cf ch
p

27/5 3/2
t ttt = = = . 

 
(14.2.49) 

The tangential constraint force is given by 

sin
1

T Mgλ
α

λ
=

+
. 

 

(14.2.50) 
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The above results hold also for a rigid solid with an axis of geometric and mechanical 
symmetry and with a plane of geometric and mechanical symmetry, normal to that axis 
(including thus also the case of a non-homogeneous rigid solid). 

To have a rolling without sliding, it is necessary that T fN≤ , where tanf ϕ=  is 

the coefficient of sliding friction, while ϕ is the angle of sliding friction between the 
cylinder and the inclined plane; hence, the condition of rolling without sliding of the 
cylinder is 

1 1
tan tanfλ λ

α ϕ
λ λ
+ +≤ =  

 

(14.2.51) 

or 

α ϕ ′≤ ,   1
tan tan

λ
ϕ ϕ

λ
+′ = ,   ϕ ϕ′ > . 

 

(14.2.51') 

Corresponding to the results in Chap. 4, Subsecs 1.1.8 and 2.1.6 too, a particle would 
slide on the inclined plane if ϕ α< ; if α ϕ ′> , the cylinder is rolling with sliding. 

Experimentally, one sees firstly that, for a sufficiently small angle α, the cylinder 
remains at rest, due to the apparition of a moment of rolling friction rM , which equates 
to zero the couple TR ; observing that, in this case, 0Cv ′ = , the first equation (14.2.47) 
gives sinT Mg α= , so that the respective couple will be sin tanMgR NRα α= . For 
an angle 0α α> , 0tanrM NR α= , the cylinder recommences to roll; introducing the 
coefficient of rolling friction 0tans R α= , it results rM sN= , corresponding to the 
considerations in Chap. 3, Subsec. 2.2.12 and Chap. 4, Subsec. 2.1.4. The experiments 
show that, in general, the influence of the rolling friction is smaller than the influence of 
the sliding friction and we have 0α ϕ< , hence /f s R< . 

If the rolling friction appears too, then the second equation (14.2.47) is completed in 
the form 

CI TR sNω = − , (14.2.47') 

so that, analogously, we obtain 
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( ) ( )
( )

0

0

d sin
sin cos

d 1 1 cos
Cv gg s
t R

α α
α α

λ λ α
′ −

= − =
+ +

. 
 

(14.2.48') 

Comparing the relations (14.2.48) and (14.2.48') and observing that 
( )0 0sin sin cosα α α α− < , it results that the intervention of the rolling friction 

diminishes the acceleration of the mass centre of the disc. The tangential constraint 
force will be given, in the same way, by 

( )d
sin cos

d 1
Cv Mgs sT m N
t R R

λ α α
λ

′
= + = +

+
. 

 
(14.2.50') 
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The condition of rolling without sliding (T fN≤ ) becomes 

( ) ( )0
1 1

tan tan tan tan
sf f
R

α ϕ ϕ α
λ λ

≤ + − = + −  
 

(14.2.52) 

or 

α ϕ ′′≤ ,   ( )0
1

tan tan tan tanϕ ϕ ϕ α
λ

′′ = + − , 
 

(14.2.52') 

where we suppose that 0ϕ α> . Finally, for 0α α≤  the disc is at rest, for 

0α α ϕ ′′< ≤  the disc is rolling without sliding, while for α ϕ ′′>  the rolling takes 
place with sliding, assuming a null velocity at the initial moment. 

The above results can be put in connection also with the study of the equilibrium 
problems of the drawn and of the motive wheels (see Chap. 4, Subsec. 2.1.4). 

 

If the cylinder considered at the preceding subsection lies on a horizontal plane (the 
case 0α = ), then the problem has a different character; indeed, if upon the cylinder (a 
disc in a vertical cross section) acts only its own weight M=G g  as a given force, the 
initial velocity being equal to zero, this one remains at rest. To roll on the horizontal 
plane, the disc must be acted upon also by other given forces (which will be considered 
constant in time), of torsor { }, CF M  at the mass centre C  (Fig. 14.22); as well, the 
initial velocity can be non-zero. In the case of rolling without sliding, the contact point 
I  of the disc with the horizontal plane is the instantaneous centre of rotation, while the 

velocity of the mass centre C  (which moves along a horizontal) is given by 

C R′ =v ω , 
 

(14.2.53) 

where  is the rotation angular velocity about the centre C ; the relation takes place at 

the initial moment 0t =  too, in the form 0
0C R′ =v ω . If the point I  slides along the 

14.2.2.7 Rolling on a Horizontal Plane

ω
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1O x′ ′ -axis with the velocity I′v  (the disc has a motion of translation too), then – by 
composition of velocities – we can write 

C I R′ ′= +v v ω . 
 

(14.2.53') 

At the initial moment we have, obviously, 0 0
0C I R′ ′= +v v ω . In general, arises a force 

of sliding friction T, opposite to the motion (to the velocity I′v ) and a moment of 
rolling friction of magnitude rM sN= , 0tans R α= , which, as well, is opposite to 
the motion or to the tendency of motion. 
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From the theorem of motion of the mass centre, it results 

1
d
d

CvM T F
t
′

= − + ,   2 0N G F− + = , 
 

(14.2.54) 

while the theorem of moment of momentum with respect to the same centre gives (we 
use a left-handed frame of reference) 

rC CI M M TR TRω = − + = +M ,   rCM M= −M . 
 

(14.2.54') 

We find the normal constraint force 

2N G F= − , (14.2.55) 

where we assume that 2G F>  (otherwise, the cylinder would be detached from the 

plane). Eliminating the constraint force T , it results 

1
d
d

C
C

v
I MR F R

t
ω

′
+ = +M . 

 

(14.2.56) 

In case of rolling without sliding (pure rolling) we can assume that at a moment t (as 
well, at the initial moment 0t = ) takes place the relation (14.2.53). The equation 
(14.2.56) becomes 

Fig. 14.22  Rolling on a horizontal plane 
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( ) ( )2 2
11CI MR MR F Rω λ ω+ = + = +M ,   m

M
λ = ,   2

CIm
R

= , 
 

whence, by integration, 

( )
1

0 21
F R

t
MR

ω ω
λ
+

= +
+

M
,   

( )
10

1C C
F R

v v t
MRλ

+′ ′= +
+

M
. 

 

(14.2.57) 

The force of sliding friction will be given by 
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( )
1

1
F R

T
R

λ
λ
−

=
+

M
. 

 
(14.2.58) 

Imposing the condition ( )2fN f G F≤ = −T , we find 1F Rλ − M  
( ) ( )21 f G F Rλ≤ + − , so that the condition of rolling without sliding becomes 

− ≤ ≤ +′ ′′ ′ ′′M M M M M ,   1F Rλ=′M ,   ( ) ( )21 f G F Rλ= + −′′M . 
 (14.2.59) 

If 1 0F R+ >M , then the quantities ω and Cv ′  are always positive, while the angular 

velocity ω (hence, the velocity Cv ′  too) grows indefinitely, in direct proportion to time; 

in case of equality ( 1 0F R+ =M ), the velocities ω and Cv ′  remain constant during 
the motion. If 1 0F R+ <M , then the rolling takes place with an angular velocity 
which diminishes in direct proportion to time till the moment 

( ) ( )2
0 11 /t MR F Rλ ω= − + +M , when 0ω =  and 0Cv ′ = ; for t t>  one obtains 

a rolling in the opposite sense ( 0ω < ), where rCM M= +M  is taken (because the 
moment of rolling friction is opposed to the motion). If 1r rCM M F R M− ≤ + ≤  and 

0 0ω = , then the cylinder remains at rest. 
In the case in which one of the relations 

< −′ ′′M M M ,   > +′ ′′M M M  (14.2.60) 

takes place, we must assume that ( )2fN f G F= = −T , having to do with a rolling 
without sliding; in this case, the equations (14.2.54), (14.2.54') lead to 

( )0
1

1
C Cv v F T t

M
′ ′= + − ,   ( )0

1

C
TR

I
ω ω= + +M . 

 

(14.2.61) 

We suppose that 0Iv ′ =  at the initial moment; but at a moment t takes place the 
relation (14.2.53'). We obtain thus the relation (we notice that we have a relation of the 
form (14.2.53) at the initial moment) 
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( )1
Iv t

mR
′ = − + ′ ′′∓M M M , 

 

(14.2.62) 

where we have used the relations introduced above; the double sign corresponds to the 
sense of the force of sliding friction T, obtaining thus 0Iv ′ >  or 0Iv ′ < , as the sign − 
(for T in a sense opposite to the motion, as in Fig. 14.22) or the sign + is taken, 
respectively. Hence, if the first relation (14.2.60) is taken, then the motion involves a 
sliding of velocity 0Iv ′ >  on the 1O x′ ′ -axis, while – in case of the second relation 
(14.2.60) – the sliding velocity is 0Iv ′ < . 
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If 0 0Iv ′ ≠ , then the relation (14.2.53') takes place at the initial moment too. Because  

Iv ′  is a function continuous in time, it must have the same sign as 0
Iv ′ , at least for small 

values of t. On the same way, we can write 

( )

( )

0 0

0 0

1
 for  0,

1
 for  0.

I I

I

I I

v t v
mRv

v t v
mR

⎧ ′ ′+ − + − >⎪′ = ⎨
⎪ ′ ′+ − + + <⎩

′ ′′

′ ′′

M M M

M M M
 

 
 

(14.2.62') 

Firstly, let us suppose that 0 0Iv ′ > . If ≤ −′ ′′M M M , then we have, 0Iv ′ >  for 
any time, while if > −′ ′′M M M , then 0Iv ′ >  at the initial moment and it is 
diminishing and then vanishing for 0 /( )It mRv ′= − +′ ′′M M M ; thus, we come 
back to the case considered before ( 0 0Iv ′ = ), taking the moment t t=  as initial 

moment. Let be now 0 0Iv ′ < . If ≥ +′ ′′M M M , then  0Iv ′ <  at any moment t, 
while if < +′ ′′M M M , then 0Iv ′ <  at the initial moment and then increases till 
vanishing for 0 /( )It mRv ′= − + −′ ′′M M M ; we return thus to the case 0 0Iv ′ = . 

Finally, if − ≤ ≤ +′ ′′ ′ ′′M M M M M , then takes place firstly a rolling with 
sliding and then a rolling without sliding, while if > +′ ′′M M M  or 

< −′ ′′M M M , then a phenomenon of rolling with sliding takes place for any time. 
In the first of these cases, the sliding velocity Iv ′  vanishes at the moment t t= , while 

the force of sliding friction has no more the absolute value fN  but it is given by 

(14.2.58), which leads to discontinuities both for T  and for the derivatives d /dCv t′  

and ω  in the equations (14.2.54), (14.2.54'); but the velocities Cv ′  and ω remain 
continuous functions. These results can be put in connection with the study 
corresponding to the drawn and motive wheel (see Chap. 4, Sect. 2.1.4). 

In our study, we have assumed till now that the disc reaches the horizontal plane at 
only one point I . In this case, under the action of a moment CM  and of a tangential 
force T, we obtain the equations of motion (Fig. 14.23a) 

d
d

CvM T
t
′

= − ,   C CI M TRω = + . 
 

(14.2.63) 
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Taking into account the relation Cv Rω′ =  corresponding to the phenomenon of rolling 

(without sliding) and eliminating the force of sliding friction T , we obtain 

( ) ( )2 21C CI MR MR Mω λ ω+ = + = , 
 

(14.2.63') 

which shows that the disc begins to roll for any 0CM >  (having 0ω >  too). In 
reality, the disc cannot remain perfectly rigid; it is deformed, the contact with the 
horizontal plane taking place on the segment P P′ ′′  (Fig. 14.23b). Taking into account 

275 14 Dynamics of the Rigid Solid 

the sense of rolling of the disc, that one will effect – in fact – a motion of rotation about 
the point P ′′ , being detached from the point P ′ ; we can thus assume that the normal 
constraint force N is applied at the point P ′′ , at a distance s  from the support of the 
own weight G, the equation of motion being written in the form 

C CI M TR sNω = + − , (14.2.64) 

so that 

( ) ( )2 21C CI MR MR M sNω λ ω+ = + = − = M . 
 

(14.2.64') 

Hence, for a phenomenon of rolling it is necessary that rCM sN M> = . We must 
mention that, in reality, the horizontal plane is also deformed, so that – locally – the 
contact zone is as in the Fig. 14.23c. 

 

By a powercraft we mean a vehicle which is displaced by the rolling of its wheels, 
put in motion by a motor (of any nature), e.g., automobile, locomotive, street motorcar, 
motorcycle etc. 

We, firstly, consider the departure of a powercraft (the starting, the departure from a 
state of rest) with respect to an inertial frame of reference. We point our attention on a 
motive wheel, assuming that it is acted upon by a driving torque of moment CM  and 
that a rolling moment rM  arises too; we assume also that 1 2 0F F= =  (we use the 

14.2.2.8 Departure and Stopping of a Powercraft

Fig. 14.23  Rolling of a rigid and of a non-rigid disc on a horizontal plane 
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notations in the previous subsection). At the initial moment, when the wheel is at rest, 
we have 0 0ω = , 0 0 0C Iv v′ ′= = . The formulae (14.2.59) lead to 

0=′M ,   ( )1 fGRλ= +′′M . (14.2.65) 

To can put the wheel in motion, we must have 0rCM M= − >M . 
If ≤ ′′M M , then the wheel begins to roll without sliding, and the motion can 

continue till infinity; the angular velocity ω grows in direct proportion to time. From the 
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second formula (14.2.57) it results that in an interval of time given by 
(1 ) /t MRVλ= + M  the powercraft reaches the velocity V ; thus, it results 

(1 )
MRV

t
λ= +M , 

 

(14.2.66) 

hence, the moment M  of the driving couple necessary to reach the velocity V  in an 
interval of time equal to t . Taking into account (14.2.65), (14.2.66), the condition  

≤ ′′M M  takes the form 

GV f t
M

≤ , 
 

(14.2.67) 

obtaining thus a limitation of the velocity V  function of the time t ; we notice that G  is 
the part of the whole weight of the powercraft which corresponds to the axle of the 
wheel, M  being the mass of it. 

The kinetic energy of the wheel at the moment t  will be (we have /V Rω = , 
( )tω ω= ) 

( ) ( )2 2 2 22
2

1 1 1 1
1

2 2 22C CT MV I I MR V MV
R

ω λ= + = + = + ,  

while the kinetic energy consumed by rolling friction is calculated in the form (we use 
the first formula (14.2.57) and the formula (14.2.66)) 

( )
( )2 2

20

1
d

2 21
t

r r
t sG MVT M t sG

MR
λ

ω
λ

+= = =
+∫

M
M . 

 

Thus, the kinetic energy consumed by the powercraft to reach the velocity V  is given 
by 

( ) ( ) 21
1 1

2r
sGT T T MVλ= + = + +
M

. 
 

(14.2.68) 

If > ′′M M , then the rolling will be accompanied by sliding and the wheel will 
slip. Obviously, in this case the kinetic energy necessary to reach the velocity V  in an 
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interval of time t  will be greater. To avoid this loss of kinetic energy it is necessary 
that the inequality ≤ ′′M M  takes place; in this order of ideas, from the relations 
(14.2.66) and (14.2.67) we obtain 

(1 )fGRλ≤ +M . 
 

(14.2.69) 
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Assuming that the moment rM  of the driving couple is realized by a force F applied 
tangentially at the peripheral of the wheel ( rM FR= ) and observing that 

0tanrM sG GR α= =  we can also write ( rCM M= −M ) 

( )[ ]0tan 1F f Gα λ≤ + + . 
 

(14.2.70) 

Neglecting the angle of rolling 0α  (e.g., in case of a locomotive), it results 

( )1F fGλ≤ + , (14.2.70') 

a formula particularly useful in applications. 
Analogously, one can make a study of the stopping of the powercraft by braking the 

wheels; in this case, we must have 0CM Rψ= − < , where 0ψ >  is a coefficient of 
the nature of a length, which corresponds to the brake slipper friction on the peripheral 
of the wheel. We notice that Cv V′ = , 0 /V Rω = , 0 0Iv ′ = , 1 0F = , hence 0=′M . 

If > − ′′M M , then we have a rolling without sliding; the time t  necessary to 
make vanishing the velocity V  by deceleration will be given by the second formula 
(14.2.57) in the form (we have 0tanrM sN sG GR α= = = ) 

0
(1 ) (1 ) (1 )

tanr

MRV MRV MVt
R M G

λ λ λ
ψ ψ α

= − + = + = +
+ +M . 

 

(14.2.71) 

If < − ′′M M , then the powercraft will stop by the rolling with sliding of the 
wheels; the formulae (14.2.61) lead to (we have put T fN fG= = ) 

1
Cv V fGt

M
′ = − ,   ( )1

C
fGR t

I
ω ω= + +M ,   V

R
ω = .  

In this case, 

( ) 0tan
C CI I V MVt

GfGR R fGR
ω λ

ψ α
′ = − = − =

++ +M M ,   MVt
fG

′′ =  
 

(14.2.72) 

represents the interval of time after which the linear velocity Cv ′  and the angular 

velocity ω, respectively, vanish; it results 

(1 )fGRMVt t
fG fGR

λ+ +′′ ′− =
+

M
M . 

 

(14.2.72') 
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As in the case of the departure of the powercrafts, the moment M ′′  is given by 
(14.2.65); from 0+ <′′M M  we obtain (1 ) 0fGR fGRλ+ < + + <M M , so that 
t t′′ ′> . Hence, after an interval of time t ′ , the wheel is slipping (it does no more 
rotate) with the velocity I Cv v′ ′=  till the moment t ′′  when 0I Cv v′ ′= = , and the 
powercrafts stops. 
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If we use simplified models (the modelling as particles), for the powercraft and for 
the wheel in the interval of time t ′′  in which the wheel is slipping and if G Mg=  
(corresponding to the powercraft), we can write ( 0t ′ = , assuming a null peripheral 
mass, hence 0λ = ) 

Vt
fg

′′ = . 
 

(14.2.73) 

The distance l  travelled through in this interval of time will, obviously, be given by 

2

2
Vl

fg
= , 

 

(14.2.73') 

hence  a  formula  of  the  Torricelli  type.  Taking  29.806 m/sg =  and  assuming  a 

Table 14.1 
V 

 f  
30 40 50 60 70 80 90 100 

0.3 11.80 20.98 32.79 47.21 64.26 83.93 106.22 131.14 
0.6 5.90 10.49 16.39 23.61 32.13 41.97 53.11 65.57 

coefficient of friction 0.3f =  for a wet ground and a coefficient of friction 0.6f =  
for a dry ground, we give in Table 14.1 the braking distance l in m for various values 

of the velocity V  in km/h. 
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Chapter 15 

Dynamics of the Rigid Solid with a Fixed Point 

The frictionless motion of a rigid solid about a point of it, fixed with respect to an 
inertial (fixed) frame of reference, is one of the basic problems in the motion of a rigid 
solid, important from a theoretical point of view (as an intermediary phase in the 
solution of other problems or as a problem in itself), as well as from the point of view 
of practical applications. This problem has been considered for the first time in 1749 by 
d’Alembert, but the final form of the equations of motion has been given by L. Euler in 
1758. Subsequent researches are due to J.-L. Lagrange, L. Poinsot, S.-D. Poisson, 
C.G.J. Jacobi, Ch. Hermite and Sonya Kovalevsky. Further, many other studies have 
been made, which are continuing also now. 

After a general study of the motion of a rigid solid with a fixed point, one considers 
the most important cases of integrability of the corresponding system of differential 
equations. 

15.1 General Results. Euler-Poinsot Case 

Using the general results which are presented, one considers the Euler-Poinsot case of 
integrability, interesting both in the study of the heavy rigid solid and in the study of 
other cases of loading; thus, various analytical and geometric aspects of the problem are 
developed. 

15.1.1 General Results 

In what follows, one makes firstly some preliminary considerations; general methods of 
computation are then presented, using the theory of the last multiplier, as well as the 
most important cases of integrability. 

15.1.1.1 Kinematical Considerations 

Fixing one of the points of the rigid solid S, the number of degrees of freedom of it is 
reduced to three, corresponding to the three components of the rotation vector applied 
at the fixed point. Obviously, this point is chosen as pole O ′  of the inertial frame of 
reference ′R ; as well, without any loss of generality, the pole O of the non-inertial 
frames R  and R  can be situated at the same point O O ′≡  (hence, O′ =r 0 ), so that 

≡ ′R R  (the frame R  being inertial too). 
The position of the frame of reference R  (hence, of the rigid solid) with respect to 

the frame ′R  is specified by Euler’s angles: ( )tψ ψ= , 0 2ψ π≤ < , ( )tθ θ= , 

P.P. Teodorescu, Mechanical Systems, Classical Models,  
© Springer Science+Business Media B.V. 2009 
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0 θ π≤ ≤ , and ( )tϕ ϕ= , 0 2ϕ π≤ <  (Fig. 15.1); as a matter of fact, these angles 
can be considered as components of the rotation of the rigid solid about the fixed point. 
Indeed, be PQ a segment of a line which belongs to the rigid solid, situated in the 
position P Q′ ′  with respect to the frame ′R , at the initial moment at which the frame 
R  coincides with the frame ′R ; after the motion of the rigid solid about the fixed 
point, the frame R  reaches the actual position, while the segment of a line PQ has 
another position with respect to the frame ′R , but the  same  position  with  respect  to  

 
Fig. 15.1  The fixed and movable frames of reference. Euler’s angles 

the frame R. Obviously, we have P Q PQ′ ′ =  and OP OP′ = , OQ OQ′ = . The 
plane PΠ , normal to the segment of a line P P′  at its middle P , passes through the 

point O, being a plane of symmetry for the isosceles triangle P OP′ ; the plane QΠ , 

normal to the segment of a line Q Q′  at its middle Q , has the same property. The 
intersection of the two planes is a line OR (Fig. 15.2). Because of symmetry reasons 

with respect to the plane PΠ , we have P OR POR′ = ; analogously, we can write 

Q OR QOR′ = . But, by means of the considered motion, the point P ′  reaches the 

point P, while Q ′  reaches the point Q, the angles P OR′  and Q OR′  remaining 

invariant; the straight line OR remains fixed with respect to the frame ′R  during the 
motion, so that it is an axis of rotation. We find thus again Euler’s Theorem 14.1.1, 
which can be applied in the case of a finite rotation, as well as in the case of an 
instantaneous one. 

Hence, one passes from the frame of reference ′R  to the frame R  by a rotation of 
angle χ about an axis of unit vector u; this motion can be represented in various forms 

(see Sects. 14.1.1.1-14.1.1.3). Denoting OP ′ ′= r  and OP = r  and using the results in 
Sect. 14.1.1.1, we can write (see Fig.14.3 too) 
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cos ( )(1 cos ) sinχ χ χ′ ′ ′= + ⋅ − + ×r r r u u u r . (15.1.1) 

 
Fig. 15.2  Passing from the frame of reference ′R  to the frame R 

Projecting on the axes of the frame ′R , we obtain the transformation matrix α of 
components ( ′=r rα , i ij jx xα ′= , ij i jα ′= ⋅i i , , 1,2,3i j = ) 

cos (1 cos ) sinij ij i j ijk ku u uα δ χ χ χ= + − − ∈ ,   , 1,2,3i j = . (15.1.1') 

Calculating the trace of this tensor, the rotation angle χ will be given by ( 1k ku u = ) 

( )1cos 1
2 llχ α= − , 

 

(15.1.2) 

corresponding to the considerations in Sect. 14.1.1.1. Noting that j k jkl l× =∈i i i , 
, 1,2,3j k = , and projecting on the axes of the frame ′R , it results 

mjijk mk lmn liα α α∈ =∈ , , , 1,2, 3i m n = . Taking into account the relation 

ij ik jkα α δ= , , 1,2, 3j k = , too, we get [ ] [ ]2 3 2jj kk ll jk jkα α α α α− = − , wherefrom 

( )21 /4 1llα − ≤ ; the formula (15.1.2) leads thus always to acceptable values for the 

angle χ. Considering the antisymmetric part of the tensor (15.1.1'), we obtain, 
analogously, 

2sin
ijk jk

iu
α
χ

∈
= − ,   1,2,3i = . 

 

(15.1.2') 

Hence, sin χ−u  is the vector associated to the antisymmetric part of the tensor α. 

Knowing the matrix α, we can determine the rotation of angle χ about the axis of unit 
vector u; as we have seen in Sect. 14.1.1.2, this representation is multiform. Even if we 
restrict ourselves to the interval [ ]0,2π , the relation (15.1.2) leads to the values χ and 
2π χ−  (distinct values, excepting the particular case χ π= ); from (15.1.2') one 
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obtains the components iu  and iu− , respectively, in fact the same rotation otherwise 
represented. 

Denoting 

1 sin
2

u
χ

λ = ,   2 sin
2

u
χ

μ = ,   3 sin
2

u
χ

ν = ,   cos
2
χ

ρ = , 
 

(15.1.3) 

we find again the representation (14.1.6) of the matrix α. 
The rotation velocity of the movable frame of reference R, rigidly linked to the 

solid, with respect to the fixed frame ′R , is characterized by the angular velocity 
vector ( )t=ω ω , which is expressed, by means of Euler’s angles ψ, θ, ϕ, in the vector 
form (5.2.34) and, in components, in the form (5.2.35), with respect to the frame R, or 
in the form (5.2.35'), with respect to the frame ′R ; we mention also the inverse 
relations (14.1.15) and (14.1.15'), respectively (see Sect. 14.1.1.4 and Fig. 14.1 too). 
Introducing the functions ( )i i tα α= , 1,2,3i = , which represent the direction cosines 
of the 3Ox ′ -axis with respect to the movable frame R, we obtain the relations (5.2.36) 
and (14.1.16). The functions iα  and iω  are linked by the differential relations (5.2.37') 
(see Chap. 5, Sect. 2.3.3). The accelerations distribution will be of the form (5.2.38), 
the fixed point being the only one of null acceleration. We remark also that the motion 
is reduced to a finite rotation if and only if the vectors ω  and ω are collinear or if 

= 0ω . Noting that 2
i iω ω ω= , we get 

2 2 2 2 2 cosω ψ θ ϕ ψϕ θ= + + + . (15.1.4) 

The fixed and movable axoids are two tangent cones, with the vertices at the fixed 
point (Poinsot’s cones); the motion of the rigid solid with a fixed point will be thus 
characterized by the rolling without sliding of the polhodic (movable) cone  pC  over the 
herpolhodic (fixed) cone  hC  (see Fig. 5.16 too). Let iω , 1,2,3i = , be the components of 

the vector ω in the frame of reference R ; an arbitrary point P on the support of the vector 

ω has the co-ordinates i ix λω= , 1,2,3i = , λ scalar, with respect to this frame. 

Replacing in the relations (5.2.35) and eliminating the parameter λ and the time t 
between these three relations, we obtain the equation of the polhodic cone with respect 
to the non-inertial (movable) frame R. Analogously, we denote by iω ′ , 1,2,3i = , the 

components of the same vector ω with respect to the frame ′R ; the point P will have 
the co-ordinates i ix λω′ ′= , 1,2,3i = . We replace then in the relations (5.2.35') and 

eliminate the parameter λ and the time t between these three relations; we get thus the 
equation of the herpolhodic cone with respect to the inertial (fixed) frame ′R . 

The points of the rigid solid which are situated on a sphere of centre O form a 
spherical figure F, of invariable form, movable on this sphere. The traces of the cones 

 hC  and pC  of vertex O on this sphere are two curves: the curve hC , fixed on the 
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sphere, and the curve pC , invariably linked to the spherical figure mentioned above; 
the motion of the spherical figure F  is obtained by rolling without sliding of the curve 

pC  over the curve hC . 

15.1.1.2 Kinetical Considerations 

In case of the rigid solid with a fixed point we have O′ =v 0 , so that the velocity of the 

mass centre C is given by (see the results in Sect. 14.1.1.5) 

C′ = ×v ω ρ , (15.1.5) 

and the momentum of the rigid solid will be expressed in the form 

M′ = ×H ω ρ . (15.1.6) 

We notice that constρ= =ρ , the centre C describing a curve situated on the sphere 

( )0,ρ ; in this case, the magnitudes C′v  and ′H  are in direct proportion to ρ. 
As well, we obtain the moment of momentum 

O OO ′′ ′= =K K I ω ; (15.1.7) 

making O C≡ , we notice that this formula is identical with the formula (14.1.26'), 
which takes place in the case of a free rigid solid. This result was to be expected, 
because we have seen that the general motion of a free rigid solid can be studied in two 
steps: (i) the motion of the mass centre C as a free particle at which is concentrated the 

whole mass M of the rigid solid; (ii) the motion (rotation) of the rigid solid about the 

centre C (considered as a fixed point). Hence, if we take O C≡ , then our study is 
useful for the second step of the mentioned general problem too. In this case, = 0ρ , 
hence C′ =v 0  and ′ =H 0 , while the formula (15.1.7) is reduced to the formula 
(14.1.26'). 

The kinetic energy is given by 

( )1 1
2 2O OT ′ ′= ⋅ = ⋅K Iω ω ω , 

 

(15.1.8) 

and we can use all the considerations in Sect. 14.1.1.6; if O C≡ , then we can write 

( )1 1
2 2C CT ′ ′= ⋅ = ⋅K Iω ω ω . 

 

(15.1.8') 

Besides the torsor { }, OR M  of the given forces, we introduce the constraint force 

R , applied at the fixed point O; we notice that O =M 0  (Fig.15.3a). In this case, the 
elementary work of the given external forces is given by 
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d dOW t′ = ⋅M ω , (15.1.9) 

while the elementary work of the external constraint forces vanishes; as well, the power 
of the given forces is of the form 

OP ′ = ⋅M ω . (15.1.9') 

 
Fig. 15.3  The rigid solid with a fixed point acted upon by arbitrary external forces;  

the case O distinct from C (a) and the case O C≡  (b) 

The vector equations of motion (14.1.60), (14.1.60') become (see Sect. 14.1.2.2 too) 

( ) ( )[ ]
d
d

C
C C CM M M M

t
′

′ ′ ′= = + × = × + × × = +
v

a v v R Rω ω ρ ω ω ρ ,     (15.1.10) 

( )O O O+ × =I I Mω ω ω , (15.1.11) 

where /C C t∂ ∂′ ′=v v  is the derivative of the velocity C′v  with respect to time, in the 
frame of reference R. In components, along the axes of the non-inertial frame R  we 
can write 

[ ]( )2 ij j i iCi ijk k jMa M R Rω ρ ω ω ρ′ = ∈ + = + ,   1,2,3i = , (15.1.10') 

( )jkl ik l ijk l OiI Mδ ω ω ω+ ∈ = ,   1,2,3i = ; 
 

(15.1.11') 

with respect to the principal axes of inertia, we obtain Euler’s equations (taken again by 
Lagrange, Poisson, Poinsot, P. Saint-Guilhem, R.B. Hayward, J.C. Maxwell, G. 
Schmidt, P.V. Harlamov etc.) 

( )1 1 3 2 2 3 1OI I I Mω ω ω+ − = , 
( )2 2 1 3 3 1 2OI I I Mω ω ω+ − = , 
( )3 3 2 1 1 2 3OI I I Mω ω ω+ − = , 

 
 

(15.1.11'') 

where 1 2 3I I I≥ ≥  are the principal moments of inertia relative to the pole O. 
Assuming that O C≡ , the equation (15.1.11) becomes (Fig. 15.3,b) 

+ =R R 0 , (15.1.10'') 
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as in the static case, while the equation (15.1.11) takes the form (14.1.48). 
We can express the kinetic energy also in the form 

( )2 2 2 2
1 1 2 2 3 3

1 1
2 2

T I I I IΔω ω ω ω′ = + + = , 
 

(15.1.8'') 

where we have reported to the principal axes of inertia and to the instantaneous axis of 
rotation Δ, respectively (along the direction of the vector ω). 

The theorem of kinetic energy (14.1.66) reads 

d
d O
T
t

′
= ⋅M ω , 

 

(15.1.12) 

and if the fixed point is just the mass centre, then we have 

d
d C
T
t

′
= ⋅M ω . 

 

(15.1.12') 

In components, along the principal axes of inertia, it results 

( )1 1 1 2 2 2 3 3 3 1 2 31 2 3
1
2 O O OI I I M M Mω ω ω ω ω ω ω ω ω+ + = + + , 

 

(15.1.12'') 

while if O C≡ , then we become the formula (14.1.49'). 
Sometimes it is useful that the non-inertial frame of reference R  with the pole at O 

have a rotation Ω with respect to the rigid solid (not being rigidly connected to it); 
obviously, in this case the equations of motion given by the general theorems have a 
more intricate form, as it was mentioned in Sect. 14.1.1.4. 

Using Euler’s angles and the relations (5.2.35), we can express the kinetic energy 
(15.1.8'') in the form 

( ) ( )2 2
1 2

1 sin sin cos sin cos sin
2

T I Iψ θ ϕ θ ϕ ψ θ ϕ θ ϕ⎡′ = + + −⎣  

( )23 cosI ψ θ ϕ ⎤+ + ⎦  

 
 
 

(15.1.13) 

too. If the O3-axis is a kinetic axis of symmetry of the rigid solid (the ellipsoid of 
inertia is of rotation), then we have 1 2I I J= =  (important case in applications) and 
we obtain the remarkable formula 

( ) ( )22 2 2
3

1 sin cos
2

T J Iψ θ θ ψ θ ϕ⎡ ⎤′ = + + +⎣ ⎦ . 
 

(15.1.13') 

We notice that, in this case, / / 0T T∂ ∂ψ ∂ ∂ϕ= = . If the ellipsoid of inertia is a 
sphere ( 1 2 3I I I I= = = ), then we get 

( )2 2 2 21 12 cos
2 2

T I Iψ θ ϕ ψϕ θ ω
⋅

′ = + + + = , 
 

(15.1.13'') 
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in conformity to the formula (15.1.4). 
Taking into account the results in Sect. 14.1.1.6 (e.g., the formula (14.1.31)), we can 

write 

d d dO OT ′ ′ ′= ⋅ = ⋅K Kω ω . (15.1.14) 

Observing that the ellipsoid of inertia is the locus of the points P for which the position 

vector OP  is given by (see the formulae (14.1.32) and (15.1.8'')) 

2
KOP
T

=
′
ω , 

 

(15.1.15) 

we obtain d 0O OP′ ⋅ =K ; we can thus state that the moment of momentum O′K  is 

along the normal OQ from O to the plane Π (Q Π∈ ), tangent to the ellipsoid of 

inertia (see Fig. 3.9 too). The distance from the point O to the plane Π is given by 

vers
2

O O
O

O O
h OQ OP OP K

K K T
′ ′⋅′= = ⋅ = ⋅ =′ ′ ′

K K
K

ω
. 

 

Taking into account (15.1.8), it results 

2
O

K Th
K

′
= ′ . 

 
(15.1.16) 

The vector OJ  associated to the moment of inertia tensor OI  is thus defined in the 
form 

vers
2
O O

O
I
IT Δ

′
= =

′
K

J ω  
 

(15.1.17) 

and is situated along the same normal OQ. In conformity to the formula (14.1.34'), 

OJ OQ K= ; the locus of the extremity P ′  of the vector OJ  (we take 2K R M= , 

so that P ′  be the inverse of the point Q with respect to a sphere of centre O and of 

radius R; Fig. 3.9) is the ellipsoid of gyration. We obtain thus a graphic method for the 
determination of the moment of momentum O′K . 

15.1.1.3 General Methods of Computation. Case of the Heavy Rigid Solid 

To determine the motion of the rigid solid with a fixed point O, subjected to the action 
of given forces of torsor { }, OR M , as well as to the constraint force R  (Fig. 15.3,a), 
knowing its position at a given moment, we have at our disposal the vector equations of 
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motion (15.1.10), (15.1.11) (or the equivalent equations) and the relations (5.2.35), 
hence two vector equations and three scalar ones for the two vector functions 

( )t=ω ω  and ( )t=R R  and the three scalar functions ( )tψ ψ= , ( )tθ θ=  and 
( )tϕ ϕ= . 

In general, ( )1 2 3, , , , , ;i iR R tψ θ ϕ ω ω ω=  and 1 2 3( , , , , , ; )Oi OiM M tψ θ ϕ ω ω ω= , 
1,2,3i = . The six unknown scalar functions (Euler’s angles ( )tψ ψ= , ( )tθ θ= , 

( )tϕ ϕ=  and the components ( )i i tω ω= , 1,2,3i = , of the angular velocity vector 
of the rigid solid) are determined by the system of differential equations (15.1.11''), 
written in the normal form 

( )[ ]11 2 3 2 31
1 1

1 1
O OM M I I

I I
ω ω ω= = + − , 

( )[ ]22 3 1 3 12
2 2

1 1
O OM M I I

I I
ω ω ω= = + − , 

( )[ ]33 1 2 1 23
3 3

1 1
O OM M I I

I I
ω ω ω= = + − , 

 
 
 

(15.1.18) 

and by the system of equations (14.1.53''); the initial conditions (at the moment 0t t= ) 
of Cauchy type will be of the form 

( ) 0
0tψ ψ= ,   ( ) 0

0tθ θ= ,   ( ) 0
0tϕ ϕ= ,   ( ) 0

0i itω ω= ,   1,2,3i = . 
 (15.1.19) 

Starting from the Theorem 14.1.12, we can state a theorem of existence and uniqueness 
of the solution. 

It is interesting to see that the formulation of the problem would be more intricate 
(equations (14.1.55)–(14.1.55'')) by choosing the centre of mass C as pole of the 
movable frame of reference R. 

If we determine the position of the rigid solid and the angular velocity ω, then the 
equation (15.1.10) allows to express the constraint force in the form 

( )[ ]M= − + × + × ×R R ω ρ ω ω ρ . (15.1.20) 

If O C≡ , then the constraint force is 

= −R R , (15.1.20') 

hence the same as in the static case (Fig. 15.3,b). 
Introducing the direction cosines iα , 1,2,3i = , of the 3Ox ′ -axis with respect to the 

axes of the frame of reference R  (one can pass to Euler’s angles by means of the 
relations (5.2.36)), the components of the torsor of the given forces are of the form 

( )1 2 3 1 2 3, , , , , ;i iR R tα α α ω ω ω=  and ( )1 2 3 1 2 3, , , , , ;Oi OiM M tα α α ω ω ω= ; the six 
unknown functions ( )i i tα α=  and ( )i i tω ω= , 1,2,3i = , are determined by 
Poisson’s system of geometric equations (14.1.54), written in the normal form, and by 
the system of dynamic equations (15.1.18). Associating the initial conditions 
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( ) 0
0i itα α= ,   1,2,3i = , 

 

(15.1.19') 

to the initial conditions (15.1.19) (with which they must be compatible), we can state, 
analogously, a theorem of existence and uniqueness. 

 
Fig. 15.4  The rigid solid with a fixed point acted upon by its own weight G 

An important particular case is that in which the rigid solid is acted only by its own 
weight 3M Mg ′= = −G g i  at the centre of mass C (Fig. 15.4). The equations 
(15.1.11'') take the form 

( ) ( )1 1 3 2 2 3 3 2 2 3I I I Mgω ω ω ρ α ρ α+ − = − , 
( ) ( )2 2 1 3 3 1 1 3 3 1I I I Mgω ω ω ρ α ρ α+ − = − , 
( ) ( )3 3 2 1 1 2 2 1 1 2I I I Mgω ω ω ρ α ρ α+ − = − . 

 
 

(15.1.21) 

If the fixed point is just the mass centre, then Euler’s equations (15.1.21) read 

( ) ( ) ( )( )1 2 31 3 2 0C C CI I Iω ω ω+ − = , 
( ) ( ) ( )( )2 3 12 1 3 0C C CI I Iω ω ω+ − = , 
( ) ( ) ( )( )3 1 23 2 1 0C C CI I Iω ω ω+ − =  

 
 

(15.1.21') 

and form a system of homogeneous equations. 
The latter case can be seen as a second step in the study of the motion of the free 

rigid solid subjected only to the action of its own weight; the first step is represented by 
the study of the motion of the mass centre, the trajectory of which is a parabola (in 
particular, the local vertical; see Sect. 14.1.1.8 too). 

15.1.1.4 Jacobi’s Multiplier 

To determine the first integrals of the systems of differential equations considered 
above, a particularly important rôle is played by Jacobi’s multiplier. We will present the 
corresponding theory for a system of differential equations 
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( )1 2 1, ,..., ;j j nx X x x x t−= ,   1,2,..., 1j n= − . 
 

(15.1.22) 

As it was shown in Chap. 6, Sect. 1.2.2 and in Sect. 11.1.1.6, if the functions jX  and 
/j kX x∂ ∂ , , 1,2,..., 1j k n= − , are defined and continuous in a neighbourhood V  of 

the point ( )0 0 0
0 1 2 1; , ,..., nt x x x − , then there exists a neighbourhood ⊂V V  in which 

the solution of the system of differential equations (15.1.22) is obtained by means of the 
first integrals 

( )1 2 1, ,..., ;j jnf x x x t C− = ,   constjC = ,   1,2,..., 1j n= − . 
 

(15.1.23) 

We can set up at the most 1n −  independent first integrals; we say that the first 
integrals { }, 1,2,..., 1kf k n= −  form a fundamental system of first integrals if they are 

of class 1C  with respect to all variables ( kx , 1,2,..., 1k n= − , and t), the 
corresponding functional determinant being non-zero. 

( )
( )

1 2 1

1 2 1

, ,...,
det 0

, ,...,
n

n

f f f
x x x

∂
∂

−

−

⎡ ⎤ ≠⎢ ⎥⎣ ⎦
. 

 

(15.1.23') 

The initial conditions of Cauchy type allow the determination of the constants jC , 
1,2,..., 1j n= − , the solution 

( )1 2 1; , ,...,j j nx x t C C C −= ,   1,2,..., 1j n= −  (15.1.22') 

thus obtained being unique. 
In a study of the problem of first integrals it is convenient to denote nt x=  (t has no 

more a privileged position), the system of differential equations (15.1.22) being written 
in the form ( 1nX = ) 

1 2

1 2

d d d... n

n

x x x
X X X

= = = . 
 

(15.1.24) 

Thus, a function ( )1 2, ,..., nf f x x x=  is a first integral of the system (15.1.22) if 

1
d d 0

n

j
jj

f
f x

x
∂
∂=

= =∑ . 
 

(15.1.25) 

Taking into account (15.1.24), we can write this condition in the form 

0f =D ,   
1

n

j
jj

X
x
∂

∂=
= ∑D . 

 

(15.1.25') 
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We notice that the system (15.1.24) is just the characteristic differential system 
associated to the equation with partial derivatives of first order (15.1.25'), written by 
means of the differential operator D ; hence, we may state 
Theorem 15.1.1 The relation (15.1.25') represents the necessary and sufficient 
condition so that the function f be a first integral of the system (15.1.24). 

We can write (the function f depends on the functions kf , 1,2,...,k m= , 
1m n≤ − ) 

1 1 1 1
d d d

n m m n
k k

j j
j jk kj k k j

f ff f
f x x

f x f x
∂ ∂∂ ∂

∂ ∂ ∂ ∂= = = =
= =∑∑ ∑ ∑ , 

 

as well as 

1
0

m

k
kk

ff f
f

∂
∂=

= =∑D D , 
 

(15.1.25'') 

if 0kf =D , 1,2,...,k m= ; it results 

Theorem 15.1.2 Any function f which depends on 1m n≤ −  first integrals kf , 
1,2,...,k m= , of the system of differential equations (15.1.24) is a first integral of this 

system. 
If the rank of the matrix 

( )
( )

1 2

1 2

, , ,...,
, ,...,

m

n

f f f f
x x x

∂
∂

⎡ ⎤
⎢ ⎥⎣ ⎦

 
 

is 1m + , 1m n< − , then the first integral f is independent of the first integrals kf , 
1,2,...,k m= . Let us suppose now that the relations 0kf =D  take place for the 

functions 0kX ≠ , 1,2,... 1k n= − , the rank of the matrix 

( )
( )

1 2 1

1 2

, ,...,
, ,...,

n

n

f f f
x x x

∂
∂

−⎡ ⎤
⎢ ⎥⎣ ⎦

 
 

being 1n − ; the 1n −  first integrals kf  are, in this case, independent and form a 
fundamental system of first integrals { }, 1,2,..., 1kf k n= − . We have 0f =D  and 
can state 
Theorem 15.1.3 A fundamental system of first integrals of the system (15.1.24) being 
given, any other first integral of this system is a function of the considered fundamental 
system. 

The corresponding functional determinant vanishes 

( )
( )

1 2 1

1 2

, , ,...,
det 0

, ,...,
n

n

f f f f
D

x x x
∂

∂
−⎡ ⎤= =⎢ ⎥⎣ ⎦

. 
 

(15.1.26) 
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Developing Jacobi’s determinant D after the first line, it results 

1

n

i
ii

fD
x

∂
Δ

∂=
= ∑ ,   ( ) 11 i

i iDΔ += − ,   1,2,...,i n= , 
 

(15.1.26') 

where iD  is the minor of the element / if x∂ ∂  of the first line, while iΔ  is the 
corresponding algebraic complement. The relations (15.1.25') and (15.1.26), (15.1.26') 
are equivalent, both being the necessary and sufficient conditions so that the function f 

be a first integral of the differential system (15.1.24); hence, there exists a function M, 
called Jacobi’s multiplier, so that 

i iMXΔ = ,   1,2,...,i n= . (15.1.27) 

The relation 

M f D=D  (15.1.27') 

takes place too. 
Together with Jacobi, we consider the determinant 

1 2

11 12 1

1,1 1,2 1,

n

n

n n n n

a a a
u u u

U

u u u− − −

=

…
…

… … … …
…

,   i
ij

j

f
u

x
∂
∂

= ,   constja = , 

 

where 1,2,..., 1i n= − , 1,2,...,j n= ; using the above notations, we can write 

1

n

j j
j

U a Δ
=

= ∑ , 
 

wherefrom /j jU aΔ ∂ ∂= , 1,2,...,j n= . Noting that jΔ  depends on jx  by means of 
the quantities iku , 1,2,..., 1i n= − , 1,2,...,k n= , k j≠ , we have 

21 1

1 1 1 1

n n n nj j jik i

j j jik ik ki k i k

u f
x u x u x x

∂Δ ∂Δ ∂Δ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

− −

= = = =
= =∑∑ ∑∑ ,   k j≠ ,   1,2,...,j n= , 

 

so that 

2 21 1

1 1 1 1 1 1 1

n n n n n n nj j ji i

j j jik k ik kj j i k i j k

f f
x u x x u x x

∂Δ ∂Δ ∂Δ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂

− −

= = = = = = =
= =∑ ∑∑∑ ∑∑∑  

21

1 1 1

1
2

n n n j k i

ij jik ki j k

f
u u x x

∂Δ ∂Δ ∂
∂ ∂ ∂ ∂

−

= = =

⎛ ⎞= +⎜ ⎟
⎝ ⎠

∑∑∑
22 21

1 1 1

1
2

n n n
i

j ij jik k ki j k

fU U
u a u a x x

∂∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

−

= = =

⎛ ⎞= +⎜ ⎟
⎝ ⎠

∑∑∑ ,
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k j≠ , 

where we took the symmetric part of the parenthesis with respect to the indices j and k 
(the contribution of the corresponding antisymmetric part vanishes) and where we took 
into account the expression of the algebraic complement jΔ . Let us consider now, in 

the determinant U, the minor of second order formed by the lines 1 and i and by the 

columns j and k, that is 

j k
j ijik kij ik

a a
a u a uu u = − . 

 

The determinant considered above will be thus of the form 

( )j ijik kU a u a u U U′ ′′= − + ,   j k≠ ,  

where the algebraic complement U ′  of this minor does not contain any of the elements 
, , ,j ijk ika a u u , while U ′′  may depend at the most linearly on these elements. In this 

case, 

2 2
0

j ijik k

U U U U
u a u a
∂ ∂

∂ ∂ ∂ ∂
′ ′′+ = − = , 

 

and one obtains Jacobi’s identity in the form 

1
0

n
i

ii x
∂Δ
∂=

=∑ . 
 

(15.1.28) 

Taking into account (15.1.27), one gets the equation of Jacobi’s multiplier in the 
form 

( )
1

0
n

i
ii

MX
x
∂

∂=
=∑  

 

(15.1.29) 

or in the form 

( )
1

ln 0
n

i
i

i ii

X
X M

x x
∂

∂ ∂=

∂⎡ ⎤+ =⎢ ⎥⎣ ⎦∑ . 
 

(15.1.29') 

Writing the latter condition for two multipliers 1M  and 2M  and subtracting the two 
relations thus obtained one from the other, we get 

1 1

2 21
ln ln 0

n

i
ii

M M
X

x M M
∂

∂=

⎛ ⎞ = =⎜ ⎟
⎝ ⎠∑ D . 
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Hence, ( )1 2ln /M M  is a first integral of the differential system (15.1.24); but a 
function of a first integral is a first integral too. We can thus state 
Theorem 15.1.4 If 1M  and 2M  are two multipliers of the differential system (15.1.24), 
then their ratio 1 2/M M   is also a first integral of this system. 

Starting from the conditions (15.1.25') and (15.1.29), we may write 

( )
1

0
n

i
ii

MfX
x
∂

∂=
=∑   

obtaining thus another form of the Theorem 15.1.4. We state 
Theorem 15.1.4' If M is a multiplier of the differential system (15.1.24) and f is a first 

integral of this system, then Mf  is a multiplier of the respective system too. 
If 

1
0

n
i

ii

X
x

∂
∂=

=∑ , 
 

(15.1.30) 

hence if the divergence of the n-dimensional vector of components iX , 1,2,...,i n= , 
vanishes, then the equation of Jacobi’s multiplier is verified for 1M =  (any constant is 
a Jacobi multiplier). Taking into account the above result, we can state 
Theorem 15.1.4'' Any non-constant multiplier is a first integral of the differential 
system (15.1.24) which verifies the condition (15.1.30). 

15.1.1.5 Properties of Invariance. Theory of the Last Multiplier 

Let be the change of variables 

( )1 2, ,... ni ix x y y y= ,   1,2,...,i n= , (15.1.31) 

where ix  are functions of class 1C , the functional determinant being non-zero 

( )
( )

1 2

1 2

, ,...,
det 0

, ,...,
n

n

y y y
J

x x x
∂
∂

⎡ ⎤≡ ≠⎢ ⎥⎣ ⎦
. 

 

(15.1.31') 

Writing again the differential system (15.1.24) in the form (15.1.22), we have 
( nx t= , 1nX = ) 

1 1

dd
d d

n nji i i i
j i

j jj j

xy y y y
X y

t t x t x
∂ ∂ ∂
∂ ∂ ∂= =

= + = =∑ ∑ D ,   1,2,...,i n= . 
 

Denoting i iy Y=D , where iY , 1,2,...,i n= , are functions of jy , 1,2,...,j n= , by 
means of the relations (15.1.31), the differential system (15.1.24) takes the form 

1 2

1 2

d d d... n

n

y y y
Y Y Y

= = = . 
 

(15.1.32) 
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We notice that 

1 1 1 1

n n n n
i

j j i
j i j ij j i i

yf f f
f X X Y

x y x y
∂∂ ∂ ∂

∂ ∂ ∂ ∂= = = =
= = =∑ ∑∑ ∑D . 

 

Hence, the differential operator D  is invariant to a change of variable (15.1.31). Let 
0M  be a multiplier of the differential system (15.1.24), which satisfies the relation 

(15.1.27'), written in the form 

0 xM f D=D , (15.1.33) 

to put in evidence the differentiation with respect to the variables ix , 1,2,...,i n= , in 
the functional determinant. We observe that the matric relation 

( )
( )

( )
( )

( )
( )

1 2 1 1 2 1 1 2

1 2 1 2 1 2

, , ,..., , , ,..., , ,...,
, ,..., , ,..., , ,...,

nn n

n n n

f f f f f f f f y y y
x x x y y y x x x

∂ ∂ ∂
∂ ∂ ∂

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

 

takes place, whence we have x yD D J= ; taking into account (15.1.33), we can write 

1
0 yM J f D− =D ,   1 1J

J
− = , 

 

(15.1.33') 

because the operator D  remains constructively invariant. If f is a first integral of the 
differential system (15.1.24), then 0M M f=  is a multiplier corresponding to this 
system; hence, we get 1 1

0MJ M J f− −= . But 1
0M J −  verifies the relation (15.1.33'), 

which is of the form (15.1.27'), being thus a multiplier of the differential system 
(15.1.32); on the other hand, f is a first integral for this differential system too. Hence, 
we can state 
Theorem 15.1.5  If M is a multiplier for the differential system (15.1.24), then 1MJ −  is 
a multiplier for the differential system (15.1.32). 

By a direct calculation, one can also show that 

( )1

1 1

n n ii

i ii i

Y JX
J

x y
∂∂

∂ ∂

−

= =
=∑ ∑ , 

 
(15.1.34) 

which justifies once more the above statement, if we take into account the equation 
(15.1.29) of the multiplier. 

Let us suppose that the differential system (15.1.24) admits the independent first 
integrals if , 1,2,...,i k= , k n< , and let us make the change of variable 

i iy x= ,   1,2,...,i n k= − ,   jn k jy f− + = ,   1,2,...,j k= . (15.1.35) 

In this case, the considered differential system takes the form 
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1 2

1 2

dd d
... n k

n k

yy y
Y Y Y

−

−
= = = , 

 
(15.1.36) 

where the functions iY , 1,2,...,i n k= − , are obtained from the corresponding 
functions iX , where we take into account the transformation (15.1.35) ( ix  is replaced 

by iy  for 1,2,...,i n k= − ; then, for 1i n k= − + , 2n k− + ,…,n, the second 
group of relations (15.1.35) allows to replace ix  as functions of 1 1x y= , 2 2x y= ,…, 

n k n kx y− −=  and of n k j n k jy c− + − += , 1,2,...,j k= , n k jc − +  being constants). In this 
case, the functional determinant (15.1.31') becomes 

1 2

1 1 1

1 2

2 2 2

1 2

1 2

1 1 1

1 2

2 2 2

1 2

1 0 0 0

0 1 0 0

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

k

k

k

n k n k n k

k

n k n k n k

k

n k n k n k

k

n n n

ff f
x x x

ff f
x x x

ff f
x x x

J
ff f

x x x
ff f

x x x

ff f
x x x

∂∂ ∂
∂ ∂ ∂

∂∂ ∂
∂ ∂ ∂

∂∂ ∂
∂ ∂ ∂

∂∂ ∂
∂ ∂ ∂

∂∂ ∂
∂ ∂ ∂

∂∂ ∂
∂ ∂ ∂

− − −

− + − + − +

− + − + − +

=

… …

… …

… … … … … … … … …

… …

… …

… …

… … … … … … … … …

… …

 

( )
( ) [ ]1 2

1 2

, ,...,
det

, ,...,
k

k
nn k n k

f f f
D

x x x
∂

∂ − + − +

⎡ ⎤= =⎢ ⎥⎣ ⎦
; 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(15.1.37) 

in the notation introduced above, the index k puts in evidence a section in the set 
{ }1,2,...,n . Taking into account the properties mentioned above, it results that 

[ ] 1
kM D − , [ ] [ ]1 1/k kD D− = , is a multiplier for the differential system (15.1.36) if M is 

a multiplier for the differential system (15.1.24); this multiplier verifies the equation 

[ ]( )1

1
0

n k

ik
ii

M D Y
y∂

−
−

=

∂ =∑ . 
 

(15.1.38) 

The knowledge of k independent first integrals reduces thus the number of differential 

equations which remain to be integrated with k units (we remain with a sequence of 

n k−  equal ratios), eliminating k variables. In particular, if 1f  is a first integral of the 
differential system (15.1.24) ( 1k = ), then we eliminate the variable nx  (we remain 
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with a sequence of 1n −  equal ratios); if M is a multiplier for the differential system 

(15.1.24), then ( ) 1
1 / nM f x∂ ∂ −  is a multiplier for the new differential system thus 

obtained. 
A particularly important case is that in which 2k n= − ; if we would also know a 

first integral 1nf −  independent on the first 2n −  first integrals if , 1,2,..., 2i n= − , 

then we could express 1n −  variables as functions of the nth variable and of 1n −  
constants of integration, obtaining thus a general integral of the differential system 
(15.1.24). But this system is reduced to the system 

1 2

1 2

d dy y
Y Y

= , 
 

(15.1.39) 

which is, in fact, an ordinary differential equation in the Pfaff form 

2 1 1 2d d 0Y y Y y− = . (15.1.39') 

Multiplying by the integrant factor μ, we obtain an exact differential of the form 
( )1 2d , 0y yϕ = , hence ( )1 2, consty yϕ = , which represents the first integral which 

was still necessary to integrate the differential system; the equation which must be 
verified by the integrant factor is written in the form 

( ) ( )1 2

1 2
0

Y Y
y y

∂ μ ∂ μ
∂ ∂

+ = . 
 

(15.1.38') 

Comparing with the equation (15.1.38), we can state that the multiplier [ ] 1
2nM D −

− , 
called the last multiplier, is an integrant factor for the differential equation (15.1.39'). 
We can state 
Theorem 15.1.6 If we know a multiplier M for the differential system (15.1.24), then 

2n −  first integrals are sufficient to integrate it. 
In particular (the system (15.1.24) has a multiplier equal to unity), it results 

Theorem 15.1.6' There are necessary 2n −  first integrals to obtain the general 
integral of a differential system (15.1.24), which verifies the condition (15.1.30). 

15.1.1.6 Cases of Integrability 

Let us assume that the rigid solid with a fixed point O is acted upon only by its own 

weight M=G g , applied at the mass centre C. In this case, the problem is governed by 
the dynamic equations (15.1.21) and by the geometric equations (14.1.54). In the 
particular case in which O C≡ , the dynamic equations read 

( )1 1 3 2 2 3 0I I Iω ω ω+ − = , 
( )2 2 1 3 3 1 0I I Iω ω ω+ − = , 
( )3 3 2 1 1 2 0I I Iω ω ω+ − = , 

 
 

(15.1.40) 
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no more containing the unknown functions ( )i i tα α= , 1,2, 3i = ; starting from this 
system, we can determine firstly the unknown functions ( )i i tω ω= , passing then to 
the system (14.1.54) to obtain the position of the rigid solid. 

Introducing the notations i ix ω= , 3 iix α+ = , ( )/i j iijk Oj k kX K Mg Iω α ρ′=∈ +  

(without summation with respect to i), 3 ji ijk kX α ω+ =∈ , 1,2, 3i = , where, taking 
into account (15.1.7), we have 1 11OK I ω′ = , 2 22OK I ω′ = , 3 33OK I ω′ = , we may 
write the system (15.1.21), (14.1.54) in the form 

1 2 6

1 2 6

d d d
... d

x x x
t

X X X
= = = = , 

 

(15.1.41) 

considered in the preceding subsection. Let us assume now that for the system 

1 2 6

1 2 6

d d d
...

x x x
X X X

= = = , 
 

(15.1.41') 

which does not contain the time explicitly, we succeeded to determine the independent 
first integrals ( )1 2 6, ,...,k kf x x x C= , 1,2,..., 5k = , constkC = , which form a 
fundamental system of first integrals (the rank of the matrix [ ]/ jkf x∂ ∂ , 

1,2,...,5k = , 1,2,...,6j = , is 5); we can thus express five of the variables as a 
function of the sixth one (e.g., ( )56 1 2, , ,...k kx x x C C C= , 1,2,..., 5k = ), so that the 
system (15.1.41) be reduced to the differential equation with separate variables 

( )56 6 6 1 2d , , ,..., dx X x C C C t= . By a quadrature, we get ( )6f x t τ= + , 
constτ = ; noting that 6 6 6d /d d /d 1/ 0f x t x X= = ≠ , the theorem of implicit 

functions leads to 6 6 ( )x x t τ= + , obtaining then ( )51 2, , ,...,k kx x t C C Cτ= + , 
1,2,..., 5k = , too. Hence, to integrate the system of differential equations (15.1.21), 

(14.1.54) it is sufficient to determine five independent first integrals, not depending on 
time. Noting that 

6

1
0i

ii

X
x

∂
∂=

=∑ , 
 

(15.1.41'') 

and using the theory of the last multiplier, it results that it is sufficient to know four 
independent first integrals 1 2 3 4, , ,f f f f  of the considered differential system to can 
determine a fifth first integral too, independent on the other first integrals; a 
corresponding integrant factor is [ ] 1

4D − , where we use the notation of the preceding 
subsection. 

Euler’s system (15.1.21) can be written in the vector form 

( ) ( ) 3
d
d O O O Mg
t

′= + ⋅ = ⋅ω ω ω ω ρI I I i . 
 

(15.1.21'') 
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A scalar product by 3′i  leads to ( )[ ] 3d /d 0O t ′⋅ =ωI i  or ( )[ ]3d /d 0O t′⋅ =ωI i , so 
that 

( ) 3 3O OK ′′ ′⋅ =ωI i , (15.1.42) 

where, taking into account (15.1.7), we notice that 3OK ′′  represents the constant 
projection of the moment of momentum on the fixed axis 3Ox ′  (distinct from the 
component 3OK ′  of the moment of momentum O′K  along the 3Ox -axis). We obtain 
thus a scalar first integral of the moment of momentum (conservation of the component 
of the moment of momentum along the local vertical) in the form 

1 1 1 2 2 2 3 3 3 3OI I I Kω α ω α ω α ′′+ + = . (15.1.42') 

By a scalar product of the equation (15.1.21'') by ω, we get 

( ) ( ) ( ) ( )3
3 3 3, ,O Mg Mg Mg Mg

t
∂

∂
′ ⋅′ ′ ′⋅ = = × ⋅ = − ⋅ = −

ρ
ω ω ω ρ ω ρ ρ

i
I i i i ,  

the differentiation taking place with respect to the movable frame of reference; by 
integration, we obtain 

( ) 32 2O Mg h′⋅ = − ⋅ +ω ω ρI i , (15.1.43) 

where h represents the energy constant. It results thus the first integral of the 
mechanical energy (it can be obtained also from the theorem of kinetic energy 
(15.1.12)) in the form 

( )2 2 2
1 1 2 2 3 3 1 1 2 2 3 32 2I I I Mg hω ω ω ρ α ρ α ρ α+ + = − + + + . (15.1.43') 

The third first integral will be 

2 2 2
1 2 3 1α α α+ + = , (15.1.44) 

which is justified because 3′i  is a unit vector. 
Taking into account the above results, we can state that the problem of integration of 

the system of equations (15.1.21), (14.1.54) is reduced to the problem of finding a 
fourth first integral of this system. This problem has been studied by H. Poincaré, Ed. 
Husson, P. Burgatti, F. Quatela and others. In the same period (the last two decades of 
the XIXth century), H. Burns dealt with algebraic first integrals for the problem of n 
particles. Starting from this problem, H. Poincaré passed to the existence of uniform 
solutions of the equations of motion which contain a small parameter ν ; in the case of 

the rigid solid with a fixed point O one takes Mgν ρ= , the small parameter being thus 

the product of the weight Mg of the solid by the distance OC ρ=  from the fixed point 
to the centre of mass (a quantity of the nature of an energy). H. Poincaré showed thus 
that, in case of a small parameter ν and of some arbitrary initial conditions, it is 
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necessary that the ellipsoid of inertia at the fixed point be of rotation so that a fourth 
algebraic first integral does exist. In several papers at the beginning of XXth century 
(including his doctor thesis from 1906), Ed. Husson showed that this result remains 
valid for an arbitrary parameter ν ; moreover, if the ellipsoid of inertia corresponding to 
the fixed point is not of rotation, then, for arbitrary initial conditions, it exist a new 
algebraic first integral of the problem only if 0ν =  (hence, if 0ρ =  or 0M = , 
neglecting the own weight of the rigid solid). We may state 
Theorem 15.1.7 (Husson)  In the problem of the heavy rigid solid with a fixed point O, 
governed by the geometric equations (14.1.54) and by the dynamic equations (15.1.21), 
in case of arbitrary initial conditions (15.1.19), (15.1.19'), besides the three first 
integrals (15.1.42–15.1.44), there exists a fourth first integral, algebraic function of 

1 2 3 1 2 3, , , , ,ω ω ω α α α , which does not depend explicitly on t, if and only if the fixed 

point O is just the centre of mass C (O C≡ , hence 0ρ = , the Euler-Poinsot case) or 
if the ellipsoid of inertia is of rotation ( 1 2I I=  and 1 2 0ρ ρ= = , the Lagrange-
Poisson case; 1 2 32I I I= =  and 3 0ρ = , the Sonya-Kovalevsky case). 

If there exists an algebraic first integral in the hypothesis 1 2I I= , then – as it has 
been shown by R. Liouville – there exists also a first integral in the form of a 
homogeneous polynomial of first degree in 1 2 3, ,ω ω ω  and of second degree in 

1 2 3, ,α α α ; consequently, in the considered case, any algebraic first integral is an 
algebraic combination of homogeneous polynomials. Using this result, P. Burgatti gave 
an elementary demonstration to Husson’s theorem. 

As it can be easily seen, the Euler-Poinsot case differs somewhat from the other two 
cases of integrability. Indeed, in this case Euler’s equations are of the form (15.1.21'), 
so that the moment of momentum C C′ = ωK I  is constant with respect to the inertial 
frame of reference ′R , its magnitude being conserved with respect to the inertial 
frame R  too; we can write the first integral 

( )( ) ( )( ) ( )( )2 2 22 2 2 2 2
1 2 31 2 3

C C C
C CI I I Kω ω ω ′= + + =ωI , 

 

(15.1.45) 

to which we associate the first integral (15.1.43') in the form 

( ) ( ) ( )2 2 2
1 2 31 2 3 2C C CI I I hω ω ω+ + = . 

 

(15.1.43'') 

Thus, the integration of the system of differential equations (15.1.21') (and, 
analogously, the integration of the system (15.1.40)) is reduced to a quadrature, so that 
this system may be separately considered. We pass then to the integration of the 
differential system (14.1.54) in the form 

4 5 6

54 6

d ddx xx
X X X

= = , 
 

(15.1.41''') 

where we know the variable coefficients ( )i i tω ω= , 1,2, 3i = , and for which we 
have at our disposal  only the first integral (15.1.44). We cannot apply the theory of the 
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last multiplier because the time appears explicitly in the functions 54 6, ,X X X ; but we 
can write other two first integrals, starting from the conservation of the moment of 
momentum with respect to a fixed frame of reference. One can show that the integration 
of the system of equations (14.1.15), which gives Euler’s angles, is reduced to the 
integration of an equation of Riccati type; to integrate this equation (by reducing to 
quadratures) one can determine two particular integrals, which can be considered to be 
the searched first integrals. 

If we give up the generality concerning the initial conditions and if we allow some 
particular initial conditions, then we can get also other cases of integrability (by 
quadratures), e.g.: the Hess’s case, the Goryachev-Chaplygin case, the Bobylev-Steklov 
case etc. 

15.1.2 The Euler-Poinsot case 

L. Euler considered in 1758 the case in which the moment of the given external forces 
with respect to the fixed pole vanishes ( O =M 0 ) (e.g., the case in which the given 
external forces are reduced to a vanishing resultant or to a resultant passing through the 
fixed point); the case mentioned above (the case in which the rigid solid is fixed at the 
centre of mass (O C≡ ), being acted upon only by its own weight) is thus a particular 
case of that with which we will deal in what follows. 

One can imagine also other cases of loading of the rigid solid leading to the same 
system of differential equations. Let us suppose, for instance, that each point of position 
vector r and of mass dm of the rigid solid S  is acted upon by a system of elastic forces 

(it is attracted or repulsed by a discrete mechanical system S  of p fixed particles of 
masses jm  and of position vectors jr , 1,2,...,j p= , the magnitudes of the attractive 
or repulsive forces being in direct proportion to the masses and to the distances, 
respectively); hence, these forces are of the form (the coefficient of proportionality K is 
positive for attraction and negative for repulsion) 

( ) ( )
1

d d
p

j j
j

K m m K M m
=

− = −∑ ρr r r , 
 

where M  is the mass of the system S , while ρ  is the position vector of the mass 

centre C  (the influence of the system S  is replaced by the influence of the mass 
centre C , at which the mass M  is considered to be concentrated). The resultant of 
these forces is ( ( )μ r  is the density of the rigid solid of volume V) 

( ) ( )( ) d
V

K M V K MMμ= − = −∫ ρ ρ ρR r r .  

In particular, if O C≡ , then we have K MM= − ρR . As well, the moment of the 
respective forces with respect to the fixed point is given by 

( )( ) d ( ) dO V V
K M V K M V K MMμ μ= ⋅ − = − ⋅ = − ⋅∫ ∫ρ ρ ρ ρM r r r r r .  
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In the same case we have C =M 0  and we are in the Euler case. Analogously, if 

O C≡  we are in the same case ( C =M 0 , even if the point C is mobile with respect 
to an inertial frame of reference); in case of forces of attraction ( 0K > ), the mass 
centre C describes an ellipse of centre C  (e.g., the case of the elliptic oscillator), the 
motion of rotation about this centre being governed by Euler’s equations. 

In 1834, L. Poinsot has made a profound synthetic study of the case considered by 
Euler, obtaining a particularly elegant geometric representation of the motion; this case 
of integrability (considered to be the Ist case of integrability) is thus called the Euler-
Poinsot case. If O C≡ , then the motion corresponding to this case is an inertial one, 
because – as we have seen in Sect. 14.1.1.9 – it takes place (excepting the translation) 
also in the case of the free rigid solid for which the given forces are in equilibrium 
(their torsor vanishes at any point of the space) if 0 ≠ω 0 . If =R 0 , then the motion 
remains inertial about a point O distinct from C too. Introducing the elliptic functions, 
C.G.J. Jacobi gave a final form to the solution of this problem, expressing the direction 
cosines of the axes of the frame of reference R  with respect to the frame ′R  as 
uniform functions of time, while – in 1883 – Ch. Hermite reduced the determination of 
these cosines to the integration of an equation of Lamé, determining analytically all the 
elements of Poinsot’s solution. 

After a general study of motion of the rigid solid with a fixed point in the considered 
case, one passes to the determination of its position with respect to the fixed frame of 
reference ′R ; the geometric study of the motion made by Poinsot and MacCullagh is 
then presented, as well as some complementary results. 

15.1.2.1 Kinematic Solution of the Motion 

We begin the study of the motion by the dynamical equations (15.1.40), corresponding 
to an arbitrary fixed point O, which specify the motion of the rigid solid fixed at the 
above mentioned point (the angular velocity ω about this fixed point); the principal axes 
of inertia of the rigid solid at O have been chosen as co-ordinate axes of the non-inertial 
frame of reference R. 

We notice that, multiplying the first equation (15.1.40) by 1 1I ω , the second one by 

2 2I ω  and the third one by 3 3I ω  and summing, we obtain a first integral of the form 
(15.1.45); analogously, multiplying the first equation (15.1.40) by 1ω , the second one 
by 2ω  and the third one by 3ω  and summing, it results a first integral of the form 
(15.1.43''). The theorem of kinetic energy (15.1.12) leads to d /d 0T t′ = , hence to 

constT h′ = =  (the elementary work of the given forces vanishes); one obtains a new 
interpretation of the first integral of the mechanical energy, which becomes a first 
integral of the kinetic energy. The constants OK ′  and T ′  which intervene in these first 
integrals, are, obviously, positive; we agree to denote them in the form OK IΩ′ = , 

22T IΩ′ = , where I is a quantity of the nature of a moment of inertia, while Ω is a 
quantity of the nature of an angular velocity (we have 2 /2OI K T′ ′= , 2 / OT KΩ ′ ′= ). 
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Because the moment of momentum O O′ = ωK I  is constant with respect to the fixed 
frame of reference ′R , it results that its direction is constant in time with respect to 
this frame. Taking into account the relation (15.1.8), we notice that 

( )2 cos ,O O OT K ω′ ′ ′ ′= ⋅ =ω ωK K , hence 

( )cos ,OΩ ω ′= ωK , (15.1.46) 

and we can state 
Theorem 15.1.8 (Lagrange, Poinsot) In the Euler-Poinsot motion, the projection of the 
instantaneous angular velocity on the invariant direction of the moment of momentum 
is constant in time. 

As a matter of fact, one obtains thus an interesting interpretation for the constant Ω. 

The relation (15.1.8''), where we have introduced the instantaneous axis of rotation Δ 
too, allows to write 2 2I IΔΩ ω= , so that 

( )2cos ,OI IΔ ′= ωK . (15.1.46') 

One obtains thus a relation which gives a remarkable interpretation for the constant I 
and puts in evidence the variation of the moment of inertia IΔ . Using the vector OJ  
associated to the moment of inertia tensor OI  and defined by (15.1.17), one gets the 

relation 2
OI J=  too. Obviously, the constants I and Ω are specified by the initial 

conditions. 
In this case, the motion is governed by the dynamical system 

2 2 2 2 2 2 2 2
1 1 2 2 3 3I I I Iω ω ω Ω+ + = , 

2 2 2 2
1 1 2 2 3 3I I I Iω ω ω Ω+ + = , 

 
(15.1.47) 

( )2 2 1 3 1 3 0I I Iω ω ω+ − = , (15.1.47') 

the equation (15.1.47') being one of the three equations (15.1.40). We associate the last 
three initial conditions (15.1.19) to these equations. The ratio of the two finite relations 
(15.1.47) is written in the form 

2 2 2 2 2 2
1 1 2 2 3 3

2 2 2
1 1 2 2 3 3

I I I
I

I I I
ω ω ω
ω ω ω

+ +
=

+ +
. 

 
(15.1.48) 

Assuming that the principal moments of inertia are ordered in the form 1 2 3I I I≥ ≥  
and noting that 

1 1 2 1 2 3 2 3 3

1 1 2 1 2 3 2 3 3

a a a a a a a a a
b b b b b b b b b

+ + + +
≥ ≥ ≥ ≥

+ + + +
  

if 
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1 2 3

1 2 3

a a a
b b b

≥ ≥ ,   , 0i ia b > ,   1,2,3i = ,  

we can write also 

2 2 2 2 2 2 2 2
1 1 2 2 2 2 3 3

1 32 2 2 2
1 1 2 2 2 2 3 3

I I I I
I I I

I I I I
ω ω ω ω
ω ω ω ω

+ +
≥ ≥ ≥ ≥

+ +
. 

 
(15.1.48') 

In this subsection, we assume – at the beginning – that I differs from the principal 
moments of inertia and that the ellipsoid of inertia is not of rotation ( 1I I> , 2 3I I> , 

2I I≠ ). In this case, from the relations (15.1.47) it results 

( )
( ) ( )2 2 32 2 2

1 2 2
1 1 3

I I I
I I I

ω β ω
−

= −
−

,   
( )
( )

32 2
2

2 2 3

I I I
I I I

β Ω
−

=
−

, 

( )
( ) ( )2 1 22 2 2

3 2 2
3 1 3

I I I
I I I

ω β ω
−

= −
−

,   
( )
( )

12 2
2

2 1 2

I I I
I I I

β Ω
−

=
−

. 

 
 

(15.1.49) 

The differential equation (15.1.47') becomes 

( ) ( ) ( ) ( )1 2 2 32 2 2 2 2
2 2 2 2 2

1 3

I I I I
I I

ω β ω β ω
− −

= − − , 
 

(15.1.50) 

hence a differential equation of first order for the unknown function 2 2 ( )tω ω= . We 
notice that 

( ) ( )
( ) ( )

1 3 22 2 2
2 2

2 2 3 1 2

I I I I I
I I I I I

β β Ω
− −

− =
− −

, 
 

so that ( ) ( ) ( )2 2
2 2 2 2 2sign sign sign I Iβ β β β− = − = − , where we assume that 

2 2, 0β β >  too. 
To fix the ideas, we suppose that 2I I< ; it results 2 2β β< , while the relation 

(15.1.49) allows to state that 2 2ω β≤ , inequality which holds during the motion. We 
also point out that 1 0ω =  for 2 2ω β= ± , while 3ω  preserves a constant sign (because 

2
3 0ω > ). We denote (we take into account that 1 2 3I I I< + ; see the relation (3.1.24) 

too) 

( )
( )

( )
( )

2 2 3 32 2 2 2
1 2 2

1 1 3 1 1 3

I I I I I I
I I I I I I

β β Ω β
− −

= = <
− −

, 

( )
( )

( )
( )

2 1 2 12 2 2 2
3 2 2

3 1 3 3 1 3

I I I I I I
I I I I I I

β β Ω β
− −

= = <
− −

. 

 
 

(15.1.49') 

In this case, the relations (15.1.49) correspond to two ellipses in the plane 1 2Oω ω  and 
in the plane 3 2Oω ω , respectively, of equations ( 1 2 20 β β β< < < , 3 20 β β< < ) 
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2 2
1 2
2 2
1 2

1
ω ω
β β

+ = ,   
2 2
3 2
2 2
3 2

1
ω ω
β β

+ =  
 

(15.1.49'') 

and to a hyperbola in the plane 3 1Oω ω , of equation ( 3 30 β β< < , 1 20 β β< < ) 

2 2
3 1
2 2
3 1

1
ω ω
β β

− = ,   
( )
( )

22 2
1

1 1 2

I I I
I I I

β Ω
−

=
−

,   
( )
( )

22 2
3

3 2 3

I I I
I I I

β Ω
−

=
−

. 
 

(15.1.49''') 

 
Fig. 15.5  The ellipse  1E  (a), the ellipse 

 3E  (b) and the hyperbola 
 2H  (c)  

in the motion of a rigid solid with a fixed point 

We assume that at the initial moment 0t t=  we have 0
2 2 0ω ω= ≥ ; to make a choice, 

we suppose, as well, that, at this moment, 1 0ω <  and 3 0ω >  (if 2ω  begins to grow, 
starting from the initial moment, we have 2 0ω >  and the equation (15.1.47') shows 
that 1 3 0ω ω < ). The point ( )

 1 1 2,ω ωP  describes the whole ellipse 
 1E , the interior 

remaining at the right (Fig. 15.5a), because, from the first equation (15.1.40), it results 
that 1 0ω >  if 2 3 0ω ω > ; correspondingly, the point ( )

 3 3 2,ω ωP  describes only an 
arc of the ellipse 

 3E  (Fig. 15.5b), because 2 2 2ω β β≤ < , while the point 
( )

 2 3 1,ω ωP  describes also an arc of the hyperbola 
 2H  (Fig. 15.5c), because 

1 1ω β≤ , 3 3ω β≤  (for 2I I=  the hyperbola degenerates into its asymptotes, the 
point ( )3 1,β β  being situated on one of them). By separation of variables, from 
(15.1.50), one obtains 

( ) ( )
2 2

0
22

/
0 2 2 2/

1 d
1 1

zt t
p z k z

ω β

ω β
− =

− −∫ , 
 

(15.1.51) 

where we have denoted 
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( ) ( )2 3 12 2

1 2 3

I I I I I
p

I I I
Ω

− −
= ,   

( ) ( )
( ) ( )

2
2 1 3 1 22

1 2 32

I I I I
k

I I I I
β
β

− −⎛ ⎞= =⎜ ⎟ − −⎝ ⎠
. 

 
(15.1.52) 

Denoting 2 2 sinω β κ=  and introducing the elliptic integral of the first kind 

( ),F kκ , given by (7.1.41), where κ is the amplitude, while k is the modulus of the 
integral, we may write the relation (15.1.51) in the form 

( ) ( )[ ]0
0

1 , ,t t F k F k
p

κ κ= + − , 
 

(15.1.51') 

where 0 0
2 2sin /κ ω β= . Denoting ( )0u p t t= − , we can write 

( ) ( )0, ,u F k F kκ κ= −  
 

(15.1.51'') 

too. Without any loss of generality, we assume that 0
2 0ω =  (the points 

 

0
1P  and 

 

0
3P  

are at the extremities of the minor diameters of the ellipses 
 1E  and 

 3E , respectively). It 
results, ( )0 0 , 0F kκ κ= = , so that 

( ),u F kκ= , (15.1.51''') 

where argu κ= , amuκ = . Let us introduce Jacobi’s elliptic functions: the sinus 
amplitude ( sn sinu κ= ), the cosinus amplitude ( cn cosu κ= ) and the delta 
amplitude ( 2 2dn 1 sinu k κ= − ); the signs of cnu and dnu are chosen so that 
cn dn 1u u= =  for 0u = . One can introduce the tangent amplitude 
( tanam sn /cnu u u= ) too. We mention also the differential relations 

d sn cn dn
d

u u u
u

= ,   d cn sn dn
d

u u u
u

= − ,   2d dn sn cn
d

u k u u
u

= − .  

We can express the components of the rotation angular velocity vector in the form (we 
notice that 0

1 1ω β= − , 0
2 0ω = , 0

3 3ω β= ) 

( )1 1 0( ) cnt p t tω β= − − ,   ( )2 2 0( ) snt p t tω β= − ,   ( )3 3 0( ) dnt p t tω β= − , 
 (15.1.53) 

where we took into account the relations (15.1.49'') and the second notation (15.1.52). 
To /2κ π=  corresponds 2 2ω β=  and we denote 

( ) ( ) ( )
1

2 2 20

d( ) ,
2 1 1

zT K k F k
z k z

π= = =
− −∫ , 

 
(15.1.54) 

305 



www.manaraa.com

 MECHANICAL SYSTEMS, CLASSICAL MODELS 

where ( )K k  is the complete elliptic integral of the first kind. The component 1ω  varies 

between 1β−  and 1β  with the period 4T/p ( 0cn0 cos 1κ= = , 
( )cn cos /2 0pT π= = ), while the component 2ω  varies between 2β  and 2β−  with 

the same period ( 0sn0 sin 0κ= = , ( )sn sin /2 1pT π= = ); the component 3ω  is 

varying between the limits 3β  and ( ) ( )2 2
3 2 2 2 2 3 2 3/ /I I I I I Iβ β β β Ω− = − −  

with the period 2T/p ( dn0 1= , 2d n 1pT k k ′= − = , where k ′  is the 
complementary modulus). 

If 2I I> , then we have 2 2β β>  too; an analogous study, in which we assume also 
that 0 0t =  and 0

2 0ω = , leads to 

( )1 1 0( ) dnt p t tω β= − − ,   ( )2 2 0( ) snt p t tω β= − ,   ( )3 3 0( ) cnt p t tω β= − , 
 (15.1.55) 

with 

( ) ( )1 2 32 2

1 2 3

I I I I I
p

I I I
Ω

− −
= ,   

( ) ( )
( ) ( )

1 2 32
2

3 1 2

1 I I I I
k

I I I Ik
− −

= =
− −

. 
 

(15.1.55') 

The component 1ω  varies between 1β−  and 2 2
1 2 2 2/β β β β− −  

( ) ( )2 1 1 2/I I I I I I Ω= − − −  with the period 2 /T p ; the component 2ω  varies 
between 2β  and 2β−  with the period 4 /T p , while the component 3ω  varies 
between 3β  and 3β−  with the same period. In this case ( )T K k= . 

If we associate the relation 

2 2 2 2
1 2 3ω ω ω ω+ + =  (15.1.47'') 

to the first integrals (15.1.47), then we can calculate the components of the vector ω as 
functions of ω in the form (the determinant of the coefficients is of Vandermonde type) 

( ) ( ) ( )2 32 2 2
1 1

1 2 1 3

I I
I I I I

ω ω γ= −
− −

, 

( ) ( ) ( )3 12 2 2
2 2

2 3 2 1

I I
I I I I

ω ω γ= −
− −

, 

( ) ( ) ( )1 22 2 2
3 3

3 1 3 2

I I
I I I I

ω ω γ= −
− −

, 

 
 
 

(15.1.56) 

where we have introduced the notations 

( )2 32 2
1

2 3

I I I I
I I

γ Ω
+ −

= ,   
( )3 12 2

2
3 1

I I I I
I I

γ Ω
+ −

= ,   
( )1 22 2

3
1 2

I I I I
I I

γ Ω
+ −

= . 

 (15.1.56') 
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Multiplying the first equation (15.1.40) by 1 1/ Iω , the second one by 2 2/ Iω  and the 
third one by 3 3/ Iω  and summing, it results 

2 3 3 1 1 2
1 1 2 2 3 3 1 2 3

1 2 3

I I I I I I
I I I

ω ω ω ω ω ω ω ω ω
− − −⎛ ⎞+ + = + +⎜ ⎟

⎝ ⎠
 

 

or 

( ) ( ) ( )1 2 2 3 1 3
1 2 3

1 2 3

I I I I I I
I I I

ωω ω ω ω
− − −

= . 
 

(15.1.57) 

Taking into account (15.1.56), we obtain, finally, 

( ) ( ) ( ) ( )
2

2 2 2 2 2 2
1 2 3

d
2 2

dt
ω

ωω ω γ ω γ ω γ= = ± − − − , 
 

(15.1.57') 

where we take the sign + or the sign − as 2ω  increases or decreases in time. The 
magnitude of the angular velocity vector ω can be thus expressed by means of 
Weierstrass’s elliptic function ( )tP , having thus a real period; we notice that 2ω  has 
values contained between ( )2 2

1 3min ,γ γ  and 2
2γ . Unlike F. Lindemann, who uses 

Jacobi’s functions, J. Haug presents thus another approach (with a certain symmetry 
character) of Euler’s problem for the rigid solid with a fixed point, which – obviously – 
leads to the same results. 

15.1.2.2 Determination of the Position of the Rigid Solid 

To specify the position of the movable frame of reference R  (hence, of the rigid solid) 
with respect to the fixed frame ′R  it is sufficient to determine Euler’s angles ψ, θ and 

ϕ. We notice that, during the motion, the moment of momentum with respect to the 

pole O, in the inertial frame of reference, is conserved in time ( constO′ =K ); without 
any loss of generality, we can choose the 3Ox ′ -axis along the direction of this vector, so 
that 3O OK′ ′ ′=K i . The direction cosines of the unit vector 3′i  with respect to the frame 
R  are thus /i Oi OK Kα ′ ′= , 1,2,3i = ; taking into account the relations (5.2.36) and 
the relations 1 11OK I ω′ = , 2 22OK I ω′ = , 3 33OK I ω′ = , OK IΩ′ = , we may write 

1 1 sin sinI Iω Ω θ ϕ= , 

2 2 sin cosI Iω Ω θ ϕ= , 

3 3 cosI Iω Ω θ= . 

 
 

(15.1.58) 

The angles θ and ϕ are obtained easily, being given by 

2 2 2 2
1 1 2 2

3 3
tan

I I
I

ω ω
θ

ω
+

= ,   1 1

2 2
tan

I
I

ω
ϕ

ω
= . 

 
(15.1.59) 
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To calculate the angle of precession ψ, we use the first relation (14.1.15); taking into 
account the previous relations, we can write 

2 22 2
1 2 1 1 2 2

2
1 2

sin cos sin cos
sin sin

I I
I

I I I
ω ϕ ω ϕ ω ωϕ ϕ

ψ Ω
θ Ω θ

+ +⎛ ⎞= = + =⎜ ⎟
⎝ ⎠

 
 

( ) ( ) ( )2 2 2 2 2
1 1 2 2 3 3 3

2 2 2 2 2 2 2 2 2 2 2 2
31 1 2 2 3 3 3 3

1 0
I I I I I I I I II

II I I I I I

Ω ω ω Ω Ω ω ΩΩ
ω ω Ω ω Ω ω

+ − −⎡ ⎤= = = − >⎢ ⎥+ − −⎣ ⎦
  (15.1.59') 

and the angle ψ is obtained by a quadrature. 
Assuming that 2I I< , we use the solution (15.1.53); there result G.R. Kirchhoff’s 

formulae 

( )
( )

( )3 1
0

1 3
cos dn

I I I
p t t

I I I
θ

−
= −

−
,   

( )
( )

( )
( )

1 2 3 0

2 1 3 0

cn
tan

sn
I I I p t t
I I I p t t

ϕ
− −

= −
− −

, 

( ) ( )[ ]
( ) ( ) ( )

2
2 3 1 2 0

2
1 2 3 3 1 2 0

sn
sn

I I I I I p t t
I I I I I I p t t

ψ Ω
− + − −

=
− + − −

             (15.1.59'') 

( ) ( )
( ) ( ) ( )

1 3 2 3
2

3 1 2 3 3 1 2 0
1 0

sn
I I I II

I I I I I I I p t t
Ω − −⎡ ⎤= − >⎢ ⎥− + − −⎣ ⎦

. 

To be precise, we notice that cosθ  is varying between the inferior limit 
( ) ( )3 1 1 3/k I I I I I I′ − − ( ) ( )3 2 2 3/I I I I I I= − −  and the superior one 

( ) ( )3 1 1 3/I I I I I I− −  (obviously, both subunitary), tanϕ  varies on the whole 
real axis, while ψ  is varying between the inferior limit 1/I IΩ  and the superior one 

2/I IΩ . Such considerations are due to N. Lindskog and W. von Tannenberg. From the 
second relation (14.1.15), we get 

( ) ( )1 2 1 2 1 2 1 2
2 2 2 2
1 1 2 2

sin
I I I I

I I I

ω ω ω ω
θ

Ω θ ω ω

− −
= − = −

+
. 

 

Hence, ( )1 2sign signθ ω ω= −  and ( 4 ) ( )t T tθ θ+ = . It results thus that 

( 4 ) ( ) constt T tθ θ+ = + ; but cosθ  is a periodic function of time, of period 2T (the 

period of the function dnpt), which never vanishes ( dn 0pt ≠ ). Hence, the angle of 
nutation is periodic too ( ( 2 ) ( )t T tθ θ+ = ). In what concerns the function tanϕ , this 

one is periodic with respect to time, of period 4T (the period of the functions cnpt and 

snpt), and can take the value zero too; from (15.1.58) it results that ( )tϕ  can vary by 

±2π. But, from the third relation (14.1.15) we obtain 
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( ) ( ) ( )[ ]2 2 2 2
1 1 2 2 1 1 2 1 2 2 3 2 3

3 2 2 2 2
1 1 2 2

cot
0

sin
I I I I I I I I

I I I
ω ω θ ω ω ω

ϕ ω
Ω θ ω ω

+ − + −
= − = >

+
; 

 

hence, 3sign signϕ ω= ; we have ( 4 ) ( )t T tϕ ϕ+ = , wherefrom 
( 4 ) ( ) 2t T tϕ ϕ π+ = +  (because 3 0ω > , the function ( )tϕ  is an increasing one), 

the angle of proper rotation growing continuously with 2π. In what concerns the angle 
of precession, we notice that ( 2 ) ( )t T tψ ψ+ = , so that 0( 2 ) ( ) 0t T tψ ψ ψ+ − = > , 

0 constψ =  ( 0ψ > , hence ψ is an increasing function); the angle of precession is no 
more a periodic function of time (as a matter of fact, as well as the angle of proper 
rotation). 

 
Fig. 15.6  Euler’s angles on a unit sphere of centre O 

Let Q be the trace of the 3Ox -axis on a sphere of centre O and unit radius (to fix the 

ideas); if 1 2Ox x′ ′  is the equatorial plane, then the angle θ is the colatitude, while the 
angle /2ψ π−  is the longitude with respect to the meridian plane 1 3Ox x′ ′  (Fig. 15.6). 

During the motion of the rigid solid, the point Q (hence, the axis 3Ox ) has a motion of 

nutation, coming back on the same parallel circle, after a period 4T, as well as a motion 

of precession, which brings no more Q on the same meridian (after a period 2T or 4T). 
On the other hand, the motion of proper rotation about the 3Ox -axis contributes to the 

growing of the corresponding angle by 2π. Finally, we see that after the period 4T 
(which is period for all the three components iω , 1,2,3i = , with respect to the 
movable frame of reference) the rotation angular velocity vector ω takes the same 
position with respect to the rigid solid (with respect to the movable frame R ), but not with 
respect to the fixed frame ′R , because neither the frame R  (hence neither the rigid 
solid) does not come back at the same position with respect to the frame ′R . 
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We may put in evidence the poles of the function ψ  in the form (15.1.59''), 
introducing a constant argument ic, i 1= − , c ∈ , specified by one of the 
equivalent relations 

( )
( )

1 2 32

3 1 2
sn i

I I I
c

I I I
−

= −
−

,   
( )
( )

2 1 32

3 1 2
cn i

I I I
c

I I I
−

=
−

,   
( )
( )
1 32

3 1
dn i

I I I
c

I I I
−

=
−

. 
 

Taking into account the notation (15.1.52), we obtain (we can choose the sign of the 
argument ic so that to take the sign + in the right member) 

( ) ( )
( )

1 3 2 3

3 3 1 2
i sn i cn i dn i

I I I IIc c c
pI I I I

Ω − −
=

−
. 

 

It results (we denote ptτ = ) 

2 2
3

d i sn i cn i dn i
d sn i sn

I c c c
pI c

ψ Ω
τ τ

= +
−

. 
 

To can integrate this equation with separate variables, we introduce the theta functions 
( ),j j vϑ ϑ χ= , 1,2,3, 4j = , as solutions of the partial differential equations 

2

2 4j j

v
∂ ϑ ∂ϑ

π
∂χ∂

= ,   1,2, 3, 4j = , 
 

(15.1.60) 

in the form 

( ) ( ) ( ) ( )
22 1 / 41

1
1

, 2 1 sin 2 1nn

n
v q n vϑ χ π

∞
−−

=
= − −∑ , 

( ) ( ) ( )
22 1 / 4

2
1

, 2 sin 2 1n

n
v q n vϑ χ π

∞
−

=
= −∑ , 

( )
2

3
1

, 1 2 cos2n

n
v q n vϑ χ π

∞

=
= + ∑ , 

( ) ( )
2

4
1

, 1 2 1 cos2nn

n
v q n vϑ χ π

∞

=
= + −∑ , 

 
 
 
 

(15.1.60') 

where eq πχ−= , while /K Kχ ′= , ( )K k  being the complete elliptic integral of first 

kind (15.1.54) and ( ) ( )K k K k′ ′= , 21k k′ = − . We notice that ( )kχ χ= , being 

thus constant for a fixed k; in this case, ( )i i vϑ ϑ= , 1,2,3, 4i = . We introduce also 
the functions 

4( ) ( )u vΘ ϑ= ,  1( ) ( )H u vϑ= ,  1 3( ) ( )u vΘ ϑ= ,  1 2( ) ( )H u vϑ= ,  /2v u K= ; 
 (15.1.60'') 
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( )1sn
( )

H u
u

uk Θ
= ,   1 ( )

cn
( )

H uku
k uΘ
′

= ,   1 ( )
dn

( )
u

u k
u

Θ
Θ

′= . 
 

(15.1.60''') 

One can show that 

( ) ( )
( ) ( )

2
1 2 1 22 2

1 2 2 2
1 2

(0)
sn sn

H u u H u u
u u

k u u
Θ

Θ Θ
− +

− = . 
 

Calculating the logarithmic derivative with respect to 1u , we can write 

1 1 1
2 2

1 2

sn cn dn
2

sn sn
u u u
u u− ( )

( )1

1 1

d2
d

u
u u

Θ
Θ

= −
( )

( )1 2

1 2 1

d1
d

H u u
H u u u

−
+

−
 

( )
( )1 2

1 2 1

d1
d

H u u
H u u u

+
+

+
. 

Putting 1 iu c= , 2u τ= , introducing the real constant 

3

d (i )i
d(i )

cI
pI uc

ΘΩ
λ

Θ
= −  

 

(15.1.61) 

and integrating with respect to τ (we assume that the axes are chosen so that 
( )0 0ψ = ), we obtain the angle of precession in the form ( ( )0p t tτ = − ) 

( ) ( )( )
( )( )

0
0

0

ii( ) ln
2 i

H p t t c
t p t t

H p t t c
ψ λ

− +
= − +

− −
. 

 

(15.1.61') 

The position of the rigid solid with respect to the inertial (fixed) frame of reference 
′R  is thus entirely specified by Euler’s angles ψ, θ and ϕ. The sines and the cosines of 

these angles are uniform functions of time or square roots of such functions; e.g., 

( )( ) ( )( )0 0sin i i
( )
v H p t t c H p t t c
pt

θ
Θ

= − + − − . 
 

(15.1.61'') 

These results have been obtained by O.I. Somov in a form appropriate to that above. 
Jacobi calculated the direction cosines of the axes of the non-inertial frame of reference 
R  with respect to the inertial frame ′R  as uniform functions of time. Other results 
have been given by A. Cayley and A.G. Greenhill. 

We calculate, after R. Grammel, the mean values of Euler’s angles, as well as their 
variations around these values. Thus, the second relation (15.1.59'') can be written in 
the form (we denote 2 2 2 2

2 2 1 1/I Iβ β β= ) 

( )
( )

( )
( )

( )
( )

( )( )
( )( )

0

1 0

2 1 3 0 0

1 1 3 0 0

sn sn
cot

cn cn
H p t t
H p t t

I I I p t t p t t
I I I p t t p t t k

β
ϕ β

−
−

− − −
= − = − = − ′− − −

, 

in this case, we have 
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( ) ( ) ( )
( ) ( ) ( )

2 6
0 0 0

2 6
0 0 0

sin sin 3 sin 5 ...
cot

cos cos 3 cos5 ...
t t q t t q t t

k t t q t t q t t
ϕ ϕ ϕ

ϕ ϕ ϕ

ω ω ωβ
ϕ

ω ω ω
− − − + − −

= − ′ − + − + − +
, 

with /2p Kϕω π= ; neglecting the powers of q, we obtain the approximate formula 

( )0cot tan t t
k ϕ
β

ϕ ω= − −′ . 
 

By differentiation, we get ( ) ( )[ ]2 2
01 cot / 1 tank t tϕ ϕϕ ϕ ω β ω′+ = + − , 

wherefrom 

2 ( )k R t
kϕ

β
ϕ ω

β
′

= ′ +
, 

( )[ ] ( ) ( )1
0 0

1
( ) 1 cos2 1 1 cos 2n nn

n
R t t t t tϕ ϕε ω ε ω

∞
−

=
= + − = + − −∑ , 

 

because 1ε < , ( ) ( )/k kε β β′ ′= − + ; using the formulae 

( )[ ]
1

2 1 2
2 1

0
cos 2 cos 2 1

n
jn n
n

j
C n jα α

−
− −

−
=

= − −∑ , 

( )
1

2 1 2
2 2

0

1cos 2 cos2
2

n
jn n n

n n
j

C C n jα α
−

−

=

⎡ ⎤
= + −⎢ ⎥

⎣ ⎦
∑ , 

 

where the symbol p
mC  represents the number of combinations of m things p at a time, 

we obtain 

( ) ( ) ( )
0

0 0 0
1

1( )d 1 sin 2
2

t n
n

t n
R A t t A n t tϕ

ϕ
τ τ ω

ω

∞

=
= − + − −∑∫ ,  

the coefficients of the expansion into a series being given by 

2
0 22

0

1
2

A C ν ν
νν

ν
ε

∞

=
= ∑ ,   2

21 2
0

1 1
2 2

n
n nnA C

n
ν ν

νν
ν

ε
∞

+
+−

=
= ∑ ,   0n > .  

For the first coefficients it results 

0 2

1
21
kA

k
β
βε

′ += =
′−

,   ( )1 0
2 1A A
ε

= − ,   2 1 0
1A A A
ε

= − , 
 

so that one can use a recurrence formula for the other coefficients. Finally, the proper 
rotation is given by 

( )0 0( ) ( )t t t tϕϕ ϕ ω ϕ= + − + ,   ( ) ( )0
1

( ) 1 sin 2n
n

n

kt A n t t
k ϕ

β
ϕ ω

β

∞

=

′
= − −′ + ∑ , 

so that 

 (15.1.62) 
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where ϕω  is the mean value of the proper rotation angular velocity, while ( )tϕ  

represents the oscillation of period 2K/p around the mean value ( )0 0t tϕϕ ω+ − . 
Starting from (15.1.59'), we can write 

( )
2

1 2 1 2 2
1 2

1 tan
2 1 tan
I I I I I
I I

ϕΩ
ψ

ϕ
−⎡ ⎤= + + −⎢ ⎥+⎣ ⎦

 

( )
( ) ( )
( ) ( )

2 2
0 0

1 2 1 2 2 2
1 2 0 0

cos sin
2 cos sin

k t t t tI I I I I
I I k t t t t

ϕ ϕ

ϕ ϕ

ω β ωΩ
ω β ω

′ − − −⎡ ⎤= + − −⎢ ⎥′ − + −⎣ ⎦
 

( )1 2 1 2 2 2
1 2

4 ( )
2
I k kI I I I R t
I I k k
Ω β β

β β
′ ′+⎧ ⎫⎡ ⎤= + − − −⎨ ⎬⎢ ⎥′ − ′ −⎩ ⎭⎣ ⎦

, 

 

in the frame of the order of approximation considered above; by integration, we obtain 
the precession in the form 

( )0 0( ) ( )t t t tψψ ψ ω ψ= + − + , 

1 2

1 I Ik
I Ikψω β Ω

β
⎡ ⎤′= +⎢ ⎥′ + ⎣ ⎦

, 

( )
( ) ( )1 2

02 2
1 2 1

( ) 1 sin 2n
n

k

I I I kt A n t t
I I k

ϕ
ϕ

β Ω
ψ ω

ωβ

∞

=

′−
= − −

′ − ∑ , 

 
 
 

(15.1.62') 

where ψω  is the mean value of the angular velocity of precession, while ( )tψ  is the 

oscillation of period 2K/p around the mean value ( )0 0t tψψ ω+ − . 

Noting that ( ) ( ) 0
3 1 1 3 3 3 0/ / cosI I I I I I I Iω Ω θ− − = = , corresponding to the 

initial moment 0t , the first formula (15.1.59'') and the last formula (15.1.60''') lead to 

( )
( )

0
0

0

1 2 cos2
cos cos

1 2 cos2
q t t

k
q t t

ϕ

ϕ

ω
γ θ θ

ω
+ −′= =
− −

, 
 

where we have retained only the first power of q in the expansion into series (15.1.60'), in 
conformity to the notations (15.1.60''). Expanding the above ratio into a power series and 
proceeding as in the preceding cases, we can represent the nutation in the form 

0cos ( ) ( )t tθ γ γ= + , 

( )2
0 01 4 cosq kγ θ′= + , 

 
 

(15.1.62'') 

( ) ( )2 1
0 0 0

1
( ) 4 cos 3 cos2 cos2n

n
t q k q t t q n t tϕ ϕγ θ ω ω

∞
−

=

⎡ ⎤′= − + −⎢ ⎥⎣ ⎦
∑ , 

where 0γ  is a mean value, while ( )tγ  represents the oscillation of period 2K/p 
around this mean value. 
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We have seen in Sect. 14.1.1.3 that the position of the rigid solid with respect to the
fixed frame of reference ′R  can be specified also by means of the Cayley-Klein 
parameters α, β, γ β= − , δ α=  (the upperlining indicates the complex conjugate); 

15.1.2.3 Geometric representation of the motion after Poinsot 

Setting up the ellipsoid of inertia E  (Poinsot’s ellipsoid) at the point O, one obtains a 
geometric representation of the motion of the rigid solid with a fixed point; the position 
vector of a point P of the ellipsoid is situated along the angular velocity vector ω at this 

point, being specified by the formula (15.1.15). The plane Π tangent to the  ellipsoid  at  

 
Fig. 15.7  The motion of rolling and pivoting without sliding of  

Poinsot’s ellipsoid on one of Laplace’s planes 

the point P, called pole, is normal to the moment of momentum O′K  at the pole O. The 

distance | |h OQ=  from the point O to this plane is given by (15.1.16), being constant 
in time (Fig. 15.7) (these results hold for any motion of the rigid solid with a fixed point; 
see Sect. 15.1.1.2 too). But, in the considered Euler-Poinsot case, the vector O′K  is 

constant in time with respect to the fixed frame of reference ′R , so that the plane Π is 

of constant normal, being situated at a constant distance from the point O; hence, the 

plane Π is fixed with respect to the frame ′R . The instantaneous rotation axis pierces 
Poinsot’s ellipsoid at a second point P  and the support of O′K  is normal also to the 
plane Π  tangent at P  to the ellipsoid. Projecting the constant vector O′K  on the 
normal to a given plane, one obtains a constant; the planes parallel to this plane are 
called Laplace planes. The planes Π and Π  belong to a family of invariable planes of 

Laplace. The point P of contact is on the instantaneous axis of rotation, having thus a 
null velocity; we can state 

F. Klein showed that in the Euler-Poinsot case these parameters are elliptic functions 
of second kind which, both at the numerator and at the denominator, have only one 
theta function. 
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Theorem 15.1.9 (Poinsot)  In the Euler-Poinsot case, the rigid solid with a fixed point 
is moving so that Poinsot’s ellipsoid E  corresponding to the fixed point has a 
slidingless rolling and pivoting motion on one of Laplace’s planes. The magnitude ω of 
the rotation instantaneous angular velocity is in direct proportion to the magnitude of 
the position vector of the point P at which the instantaneous axis of rotation pierces the 
ellipsoid. 

We can express the distance h also in the remarkable form 

0

K Kh
JI

= = , 
 

(15.1.16') 

which allows an interesting interpretation of the constant I; as well, we have 

( ) vers
2 cos ,O

I h hOP h
T Ω

= = =′ ′K
ω ω ω

ω
. 

 
(15.1.15') 

Because | |OP  is contained between the semi-minor axis 1/K I  and the semi-major 
axis 3/K I ,  we get ( )2

3 1cos ,OI I I IΔ ′< = <K ω , justifying once more the 

inequality 3I I≥ . On the other hand, | |h OP≤  and 1/h K I≥  (because the point 

Q is exterior to the ellipsoid or at the most on it), so that 

1 3/ / /K I K I K I≤ ≤ ; finally, it results 3 1I I I≤ ≤ . 
 We have used, in the above exposition, the ellipsoid of inertia E, represented with 

respect to the principal axes of inertia taken as axes of the non-inertial frame of 
reference R  in the form 

2 2 2 2 2
1 1 2 2 3 3I x I x I x K Ih+ + = = , (15.1.63) 

where 0K >  is a constant which specifies the units (K has the dimensional equation 

[ ] 1/2 2K M L= ) and is conveniently determined (see Chap. 3, Sect. 1.2.6 too). Giving 
various values to the constant K, one can use different ellipsoids of Poinsot; for 
instance, one can take 1K =  (in this case, the unit has dimension), the respective 
ellipsoid being obtained from (15.1.63) by a similitude with the ratio K . One can use 
also the second equation (15.1.47), with 2 2K IΩ= ; in this case, the position vector of 
the pole P is just ω. The equation of the tangent plane to the ellipsoid E  at the pole P 
( / 2iK Tω ′ , 1,2,3i = ) is given by 

1 1 1 2 2 2 3 3 3 2I x I x I x K T K I I hω ω ω Ω Ω′+ + = = = , (15.1.63') 

where 1 2 3, ,x x x  are the co-ordinates of a point of the Π-plane. 
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Starting from the ellipsoid of gyration ′E  (the ellipsoid reciprocal to the ellipsoid of 
inertia), introduced in Chap. 3, Sect. 1.2.6 and used in Sect. 14.1.1.6, J. Mac Cullagh 
succeeded to give, in 1840, another intuitive image of the motion of the rigid solid with 
a fixed point. We will use the equation (3.1.105) of the ellipsoid of gyration, with 
respect to the principal axes of inertia, in the movable frame of reference R, in the 
form 

2 2 2
1 2 3

1 2 3

1x x x
I I I M

+ + = , 
 

(15.1.64) 

where we take 2K R M=  (a point P ′ ∈ ′E  is the inverse of the point Q Π∈  from 
the preceding subsection, with respect to the sphere ( ),O R ); we put thus in evidence 
the principal moments of inertia, which is more convenient in the following 
calculations. 

Noting that 1 11OK I ω′ = , 2 22OK I ω′ = , 3 33OK I ω′ = , the equations of the support 
D  of the vector O′K , fixed with respect to the frame of reference ′R , are 

2 2 2
1 2 3 1 2 3

2 2 2 2 2 21 1 2 2 3 3 1 1 2 2 3 3

x x x x x x
I I I I I Iω ω ω ω ω ω

+ +
= = =

+ +
. 

 
(15.1.65) 

Assuming that K
ix , 1,2,3i = , are the co-ordinates of one of the points KP ′ , 

KP ′ ≡ ∩ ′D E  and eliminating these co-ordinates between the equations (15.1.64), 
(15.1.65), we obtain 

2 2 2
21 1 2 2 3 3

2 2 2 2 2 2
1 1 2 2 3 3

1
K

I I I
OP

MI I I
ω ω ω
ω ω ω

+ + ′ =
+ +

, 
 

wherefrom 

| | O
K

JIOP i
M M

′ = = = , 
 

(15.1.65') 

i being a constant quantity of the nature of a radius of gyration, corresponding to the 

constant quantity I. We notice that | |KOP ′  is contained between the semi-minor axis 
and the semi-major axis of the ellipsoid ′E , so that 3 1i i i≤ ≤  (so as 3 1I I I≤ ≤ ), 
justifying thus once more both inequalities established before. Hence, the points KP ′  
and KP ′ , situated on the invariable axis D  and diametrically opposed in the ellipsoid of 
gyration ′E , are fixed with respect to the frame of reference ′R  

(| | | | constK KOP OP′ ′= = ) (Fig. 15.8); to fix the ideas, the position vector of the point 

KP ′  will be /OJ M , of components 1 1 1 /K
O Ox J I K Mω ′= , 

15.1.2.4 Geometric representation of the motion after Mac Cullagh 
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2 2 2 /K
O Ox J I K Mω ′= , 3 3 3 /K

O Ox J I K Mω ′= . The equation of the plane Π ′ , 
tangent to the ellipsoid ′E  at the point KP ′ , is given by 

1 1 2 2 3 3
O

O

K
x x x

J M
ω ω ω

′
+ + = , 

 

(15.1.64') 

the normal OQ ′  to this plane having the direction parameters iω , 1,2,3i = ; hence, 
the angular velocity vector ω is normal to this plane. Moreover, the distance h ′  from 
the point O to this plane is given by 

2 2 2
1 2 3

O O

OO

K K
h

J MJ M ωω ω ω

′ ′
′ = =

+ +
. 

 
(15.1.64'') 

 
Fig. 15.8  The inertial motion of the rigid solid with  a fixed point  

in Mac Cullagh’s geometric representation 

Hence, we can state 
Theorem 15.1.10 (J. Mac Cullagh) The inertial motion of a rigid solid about a fixed 
point O of it, in the Euler-Poinsot case, takes place so that the ellipsoid of gyration ′E  
corresponding to this point passes through the fixed points KP ′  and KP ′ , situated on the 
invariable axis D. The rotation angular velocity ω is normal to the plane tangent to the 
ellipsoid of gyration ′E  at one of the fixed points, while its magnitude ω is in inverse 

proportion to the distance h ′  from the fixed point O to the plane Π ′ . 

15.1.2.5 The Polhode 

The locus of the point P at which the instantaneous axis of rotation pierces the ellipsoid 
of inertia E  (rigidly linked to the rigid solid S ) is a curve P  called polhode, 
intersection of the ellipsoid with the polhodic cone pC  (the locus of the instantaneous 
axes of rotation with respect to the frame of reference R ), hence a directrix of this 
cone. Analogously, the locus of the point P on the fixed plane Π, tangent to the 
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ellipsoid E  at this point, is a curve H, called herpolhode, intersection of the plane Π 
with the herpolhodic cone hC  (the locus of the instantaneous axes of rotation with 
respect to the frame ′R ) (in Fig. 15.9 we represent the polhode and the herpolhode 
corresponding to the point P and the plane Π; for the point P ′  and the plane Π ′  one 
obtains analogous results). Obviously, the two curves are tangent one to the other, 
measuring equal lengths between corresponding points, because of the slidingless 
rolling of the polhodic cone over the herpolhodic one (and of the polhode over the 
herpolhode). 

 
Fig. 15.9  The polhode P  and the herpolhode H  in the motion  

of a rigid solid with a fixed point 

If we eliminate 2Ω  between the first integrals (15.1.47), then we find 

( ) ( ) ( )2 2 2
1 1 1 2 2 2 3 3 3 0I I I I I I I I Iω ω ω− + − + − = . (15.1.66) 

Assuming that 1 2 3I I I> > , one cannot have 1I I>  or 3I I< , because the left 
member would be strictly negative or strictly positive, the cone being imaginary; hence, 

3 1I I I≤ ≤ , result previously obtained. Taking into account (15.1.15'), the equation of 
the instantaneous axis is written in the form 1 1 2 2 3 3/ / / /x x x hω ω ω Ω= = =  in the 
frame of reference R, the equation of the polhodic cone ( in the same frame) being 

( ) ( ) ( )2 2 2
1 1 1 2 2 2 3 3 3 0I I I x I I I x I I I x− + − + − = . (15.1.66') 

Because  pP ≡ ∩E C , the polhode will have the equations (15.1.63), (15.1.66); hence, 
this is an algebraic curve of the fourth degree with two distinct closed branches and 
with properties of central symmetry (with respect to the co-ordinate planes too), the 
polhodic cone having the same axes of symmetry as the ellipsoid E. Multiplying the 
equation (15.1.63) by I and summing with the equation (15.1.66'), we obtain the 
equation of an ellipsoid  kE , called kinetic ellipsoid (due to the signification of the first 
integral (15.1.47)), 
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2 2 2 2 2 2 2 2 2
1 1 2 2 3 3I x I x I x I h IK+ + = = . (15.1.67) 

The ellipsoid  kE  is coaxial with the ellipsoid E, the two ellipsoids having as 
intersection the polhodic curve. 

 
Fig. 15.10  Polhodes drawn on the ellipsoid of inertia E 

Concerning the polhodic cone, we notice that the first coefficient of the equation 
(15.1.66) is always positive, while the last one is always negative; in what concerns the 
second coefficient, this one is positive or negative as 2I I<  or 2I I> , respectively, 
depending thus on the initial conditions. In the first case, 2h K I>  and the polhodic 
cone contains the 3Ox -axis; in the second case, 2h K I<  and the polhodic cone 
contains the 1Ox -axis. If 2I I= , hence if 2/h K I= , then the polhodic cone 
degenerates in two planes (we use the notations (14.1.49') and notice that 

2 2β β Ω= = ) 

( )
( )

3 2 3 1
1 3 3

31 1 2

I I I
x x x

I I I
β
β

−
= ± = ±

−
, 

 
(15.1.68) 

which pass through the mean axis (the axis 2 2A A′ ) of the ellipsoid E, the corresponding 

polhode being constituted of two ellipses (ε and ε ′ ) for which this axis is a common 
one (Fig. 15.10) (the only case in which the two branches of the polhode have common 
points). If 1I I=  or 3I I=  we have 2 3 0x x= =  or 1 2 0x x= = , respectively, the 
polhode being reduced to the points 1A  and 1A′  (extremities of the minor axis of the 
ellipsoid) or to the points 3A  and 3A′  (extremities of the major axis of the ellipsoid), 
respectively. If 2 1I I I< < , then the polhode is formed of two closed curves 1γ  and 
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1γ ′ , which surround the points 1A  and 1A′ , respectively; as well, if 3 2I I I< < , then 
the polhode is formed of two closed curves 3γ  and 3γ ′ , which surround the points 3A  
and 3A′ , respectively (Fig. 15.10). In the hypothesis considered in Sect. 15.1.2.1 

( ( ) 0
2 0 2 0tω ω= > , ( )1 0 0tω < , ( )3 0 0tω > ), the pole P travels through the 

polhodes in the sense indicated in Fig. 15.10 (on the curves on which the sense has not 
been indicated, that one is obtained by symmetry). To have a clearer image of the 
polhode, we consider also its projection on the three planes of co-ordinates, in the frame 
of reference R. Thus, projecting on the plane 1 2Ox x  (we eliminate 3x  between the 

equations (15.1.63) and (15.1.66')) for various values of I (hence, for various initial 
conditions), we obtain a family of coaxial ellipses of equations (cylinders of elliptic 
section which pierce the ellipsoid of inertia after polhodes) 

( ) ( ) ( )2 2 2
1 1 3 1 2 2 3 3 3I I I x I I I x I I I h− + − = − .  

Taking into account the notations (15.1.49), (15.1.49'), we can write these equations 
also in the form 

2 2 2 2
1 2
2 2 2 2
1 2

x x h K
Iβ β Ω Ω

+ = = . 
 

(15.1.68') 

Moreover, starting from the first equation (15.1.49'') and using the relation (15.1.15'), 
we find again these equations, the respective ellipses being equivalent. We notice that 
for 2I I>  one obtains arcs of ellipse, bounded by the ellipse of inertia 

2 2 2
1 1 2 2I x I x K+ = , while for 2I I≤  there result complete ellipses (Fig. 15.11a). 

Projecting the polhode on the plane 2 3Ox x  (we eliminate 1x  between the equations 
(15.1.63) and (15.1.66')) and using the same notations, we get – analogously – a family 
of coaxial ellipses (cylinders of elliptic section, which pierce the ellipsoid of inertia 
after polhodes) 

2 2 2 2
2 3
2 2 2 2
2 3

x x h K
Iβ β Ω Ω

+ = = . 
 

(15.1.68'') 

Taking into account the relation (15.1.15'), one observes that these ellipses are 
equivalent with the second ellipse (15.1.49''). For 2I I<  there result arcs of ellipse, 
bounded by the ellipse of inertia 2 2 2

2 2 3 3I x I x K+ = , while for 2I I≥  there result 
complete ellipses (Fig. 15.11b). Finally, the projection of the polhode on the plane 

3 1Ox x  (one eliminates 2x  between the equations (15.1.63) and (15.1.66')), with the 
same notations, leads to two conjugate coaxial hyperbolae (cylinders of hyperbolic 
section, the traces of which on the ellipsoid of inertia are the polhodes) 

2 2 2 2
3 1
2 2 2 2

13

x x h K
Iβ Ω Ωβ

− = = , 
 

(15.1.68''') 
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which degenerate in two straight lines, specified by the equations (15.1.68), for 2I I= . 
If 2I I< , then the polhode is formed of two arcs of hyperbola, the real axis of which is 
the axis 1 1A A′ (Fig. 15.11c). Taking into account the relation (15.1.15'), one observes 
that these hyperbolae are equivalent to the hyperbola (15.1.49'''). 

 
Fig. 15.11  Projections of a polhode on the planes 1 2Ox x  (a), 2 3Ox x  (b) and 3 1Ox x  (c) 

Concluding, there are two families of polhodes, separated by the singular polhode 
corresponding to the case 2I I=  (ε and ε ′ ); a family of polhodes ( 1γ  and 1γ ′ ) 
surround the extremities of the minor axis of the ellipsoid of inertia, while the other 
family of polhodes ( 3γ  and 3γ ′ ) surround the extremities of the major axis of this 
ellipsoid. Through each point of the ellipsoid passes a polhode and only one. The 
polhodes being plotted on the ellipsoid, to can determine that one which corresponds to 
given initial conditions it is sufficient to know the piercing point 0P  of the support of 
the angular velocity vector ω on the ellipsoid of inertia at the initial moment; the 
searched polhode is that which passes through 0P , while the plane tangent to the 

ellipsoid at 0P  is the plane Π. 
 
 

15.1.2.6 The Herpolhode 

Studies to determine the herpolhode have been made by W. Hess, Sparre, G. Darboux, 
A.G. Greenhill, G. Halphen, J.N. Franke, A. Mannheim, A. de St. Germain, A.H. Résal, 
P. Barbarin, E. Lacour, A. Petrus etc. In what follows, we use polar co-ordinates in the 
plane Π, taking as pole of reference the point Q, projection of the fixed point O on the 

fixed plane Π (Fig. 15.9). The vector radius is given by 
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2 2 2 2 2 2h KQP OP h
I

ρ ω Ω ω Ω
Ω Ω

= = − = − = − . 
 

(15.1.69) 

 
Fig. 15.12  The herpolhode drawn in a circular annulus 

Taking into account that 1 3/ | | /K I OP K I≤ ≤ , it results that ρ is inferior and 
superior bounded, so that the herpolhode is a curve contained in a circular annulus  C  
( maxminρ ρ ρ≤ ≤ ) (Fig. 15.12). We get 

2
2 2 2

2I
K
ρ

ω Ω Ω= +  
 

(15.1.69') 

from (15.1.69), while by replacing in (15.1.57') we may write 

( )
( )[ ] ( ) ( )[ ]

2
2 2 2 2 2 2

1 2 2 3 2
d

2 sign sign
d

I I I I I
t K

ρ Ω
ρ δ δ ρ ρ δ= ± − − − − − , 

 (15.1.70) 

where we have introduced the notations 

( )2 32 2
1

2 3

| |I I I I
K

I I I
δ

− −
= , 

( ) ( )3 12 2
2

3 1

I I I I
K

I I I
δ

− −
= , 

( )1 22
3

1 2

| |I I I I
I I I

δ
− −

= . 

 (15.1.70') 

If 2I I< , then we have min 1ρ δ= , while if 2I I> , then we have min 3ρ δ= ; in both 
cases, max 2ρ δ= . Integrating the differential equation (15.1.70), one can express the 

vector radius ρ by means of elliptic functions. 

We get the same result noting that 22 2 2 2 2 2
1 2 3OP h x x x hρ = − = + + − ; using the 

equations of the cylinders (15.1.68')–(15.1.68''') and eliminating the variables 2x  and 

3x  or the variables 1x  and 2x , we obtain 
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( ) ( ) ( ) ( )[ ]2 2 2
1 2 1 3 1 2 3

2 3

1 I I I I x I I I I h
I I

ρ = − − + − −  

( ) ( ) ( ) ( )[ ]2 2
1 3 2 3 3 1 2

1 2

1 I I I I x I I I I h
I I

= − − + − − . 

 

Considering the ellipse 1 2 1 2A A A A′ ′  (Fig. 15.11a), which is entirely travelled through for 

2I I< , we see that minρ  corresponds to the points 2A  and 2A′  ( 1 0x = ), while maxρ  
to the points 1A  and 1A′  ( ( ) ( )2

1 3 1 1 3/x h I I I I I I= − − ); as well, noting that the 
ellipse 2 3 2 3A A A A′ ′  (Fig. 15.11b) is entirely travelled through for 2I I> , we find that 

minρ  corresponds to the points 2A  and 2A′  ( 3 0x = ), while maxρ  to the points 3A  and 

3A′  ( ( ) ( )2
3 1 3 1 3/x h I I I I I I= − − ). Hence, the arc of helpolhode maxminP QP  

corresponds to a quarter of the ellipse 1 2 1 2A A A A′ ′  or of the ellipse 2 3 2 3A A A A′ ′ , as 

2I I<  or 2I I> , respectively. To a complete travelling through of the polhode P  by 

the point P corresponds on the herpolhode H  an arc of curve of length maxmin4P QP  
(between corresponding points one has equal lengths on the curves P  and H ), while 

the angle described by the radius vector QP is maxmin4P QP . If the measure in radians 

of the angle maxminP QP  is not commensurable with π, then the herpolhode is an open 

curve; the pole P does not take again the same position, at the same moment, on the 

ellipsoid E  and on the plane Π. If, in particular, the measure in radians of the angle is 

commensurable with π, then the herpolhode is a closed curve. 
Taking into account the formula (5.1.16') (see Chap. 5, Sect. 1.1.4 too), we can state 

that the double of the areal velocity of the point P in the plane Π is equal to the 
projection on the fixed direction of the moment of momentum O′K  of the moment with 

respect to the fixed point O of the velocity of the point P (calculated with respect to the 

same point O), that is the moment of this velocity with respect to the OQ-axis, given by 
(we take into account the formula (15.1.15') and the notations previously introduced) 

( ) ( ) ( )
1 1 2 2 3 32 2

1 2 32 2 3

1 2 3

,O
O

O O

I I I
h h h K

K K I

ω ω ω
ω ω ω

Ω Ω Ω Ω
ω ω ω

′ ⎡ ⎤ ′⋅ × = , =⎢ ⎥′ ⎣ ⎦ ′
K

Kω ω ω ω . 

 

Consequently, we can write 
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( )[ ] ( )[ ] ( )[ ]

1 1 2 2 3 32
2

1 2 32 3

2 3 1 2 3 3 1 2 3 1 1 2 3 1 2/ / /

I I I
K

I
I I I I I I I I I

ω ω ω
ρ κ ω ω ω

Ω
ω ω ω ω ω ω

=

− − −

 

in polar co-ordinates ρ, κ, where we have used Euler’s equations (15.1.40). Developing 
the determinant after the last line, it results 

( ) ( ) ( )2 2 22
2 3 3 1 1 22 2 2 2 2 2 2

2 3 3 1 1 22 3
1 2 3

I I I I I IK
I I II

ρ κ ω ω ω ω ω ω
Ω

− − −⎡ ⎤= + +⎢ ⎥
⎣ ⎦

. 
 

Taking into account (15.1.56), we can write 

( ) ( ) ( ) ( )1 2 32 2 2 2 2 2
2 32 3

1 2 1 3

1I I I
K

I I I II
ρ κ γ ω ω γ

Ω
⎡= − −⎢ − −⎣

 

( ) ( ) ( ) ( )2 2 2 2
3 1

2 3 1 2

1
I I I I

ω γ ω γ+ − −
− −

 

( ) ( ) ( ) ( )2 2 2 2
1 2

1 3 2 3

1
I I I I

ω γ γ ω ⎤+ − − ⎥− − ⎦
, 

 

while, by means of the relation (15.1.69'), we have 

( ) ( ) ( )
( ) ( ) ( )[ ]{1 2 32 2 2 2 2

2 3 2 3 22
2 3 1 3 1 2

sign
I I I

I I I I
K I I I I I I

Ω
ρ κ δ ρ ρ δ= − − − −

− − −
( ) ( )[ ] ( )[ ]2 2 2 2

1 3 3 2 1 2sign signI I I I I Iρ δ ρ δ+ − − − − −  

( ) ( )[ ] ( )}2 2 2 2
1 2 1 2 2signI I I Iρ δ δ ρ+ − − − − . 

Effecting the calculations, we obtain the differential equation 

( )[ ]2 2 2
2sign I Iρ κ Ω ρ δ= + − , 

 

(15.1.71) 

where 

( ) ( )1 3 22 2

1 2 3

I I I I I I
K

I I I I
δ

− − −
= , 

 

(15.1.71') 

which determines the angle κ. We notice that ( )2
2sign 0I Iδ − >  for 2I I> ; if 

2I I<  one finds 2 2 2
min 1ρ δ δ= > . Hence, 0κ > , the angle κ being thus increasing in 

time; the herpolhode surrounds thus the point Q always in the same sense, attaining 
successively the internal and the external circles of the annulus C. 
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Eliminating the time between the equations (15.1.70) and (15.1.71), we can write the 
differential equation of the herpolhode in the form 

( )[ ]
( )[ ] ( ) ( )[ ]

2 2
2

2 2 2 2 2 2
1 2 2 3 2

sign d1d d
sign sign

I II
K h I I I I

ρ δ ρ
κ κ

ρ ρ δ δ ρ ρ δ

+ −
= = ±

− − − − −
. 

 (15.1.72) 

One observes thus that between the constants which intervene in this equation take 
place the relations 

2 2 2 2
1 2 3

1 2 3
1 1 1I I I

I I I
δ δ δ δ⎛ ⎞ ⎛ ⎞= − = − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. 

 

(15.1.72') 

The equation (15.1.72) is with separate variables and can be integrated by a quadrature 
with the aid of elliptic functions. The angle α made by the radius vector QP with the 
tangent to the herpolhode (Fig. 15.12) is given by tan d /dα ρ κ ρ= . We notice that 
for minρ ρ=  or for maxρ ρ= , hence at the points minP  and maxP , respectively, this 
tangent tends to infinity; hence, the herpolhode is tangent to the circles which form the 
annulus C. The curvature at a point P is given by 

( )

( )

32 2 2

3/222

2d /d d /d d /d

1 d /d

κ ρ ρ κ ρ ρ κ ρ

ρ κ ρ

+ +

⎡ + ⎤⎣ ⎦
, 

 

in polar co-ordinates. We study the sign of the numerator of this expression or, which is 
equivalent, the sign of the function (we take into account that d /d 0κ ρ ≠ ) 

( )
2

2
2
2 1 d d dln

d d d
f κ κ

ρ
ρ ρ ρ ρρ

⎛ ⎞= + + ⎜ ⎟
⎝ ⎠

, 
 

because the denominator is always positive. Taking into account the equation (15.1.72), 
the notations (15.1.70'), (15.1.71') and the relations (15.1.72'), we can write 

( )
( )

( )
( ) ( ) ( )

1 2 3 12
2 2 2 2

1 2 1 32 1 2

2 1
sign sign

I I I I
f

I I I II I I I
ρ

ρ δ ρ δ
+ −

= +
− −+ − − −

 

( )
( ) ( )

( )
( ) ( ) ( )

2 3 1 2 3 1 2 3
2 2 2 2

2 3 1 2 1 3 2 32 3 2

1 1
sign

I I I I I I I I
I I I I I I I I I Iδ ρ ρ δ

+ − + −
+ +

− − − −− − −
. 

 

By reduction to a common denominator, one finds that the numerator is a polynomial of 
second degree in 2ρ  (the coefficient of 6ρ  vanishes), which has two real zeros (we 
notice that ( )0 0f = ). Because 2 2 2

maxminρ ρ ρ< <  (excepting the points of tangency 
with the circular annulus, for which we have equality), where 2 2

min 1ρ δ=  for 2I I<  
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(we have 2 2
1δ δ<  too, in conformity to the formula (15.1.72'), while 

( )2sign 1I I− = − ) and 2 2
min 3ρ δ=  for 2I I>  (we have ( )2sign 1I I− =  too), 

while 2 2
max 2ρ δ= , it results that ( )2 0f ρ >  for any point of the herpolhode; in 

conclusion, this curve has always the concavity directed towards the fixed point Q 
(hence without points of inflection, as it has been stated by Poinsot in his memories). 

15.1.2.7 Permanent Rotations 

We notice that the system (15.1.40) has three obvious systems of particular solutions 
0

i iω ω= ,  0 constiω = ,  0j kω ω= = ,  i j k i≠ ≠ ≠ , , , 1,2,3i j k = , 
 

(15.1.73) 

which must correspond to the initial conditions. If, e.g., we consider the solution 
0

1 1ω ω= , 2 3 0ω ω= = , this one must verify the system (15.1.40) at any moment t, 
hence also at the initial moment; thus, the initial conditions must be of the same form. 
In this case, the theorem of existence and uniqueness ensures that the motion of the 
rigid solid is a uniform (finite) rotation about the 1Ox -axis ( 1 constω= =iω ); 
because the derivative with respect to time of the vector ω is the same in the two frames 
of reference ( ′R  and R ), it results that the vector ω is constant also with respect to 
the inertial frame (the direction of the 1Ox -axis remains constant with respect to this 
frame too). Analogously, 2ω= iω  and 3ω= iω , respectively, can represent uniform 
rotations about the corresponding axes if the initial conditions are compatible with these 
solutions. The respective axes of rotation are called permanent axes of rotation, the 
corresponding rotations being permanent rotations. This result corresponds to the 
Theorem 14.2.1, obtained as a particular case of motion of the rigid solid about a fixed 
axis. 

We consider now the permanent rotations as limit cases of the general results 
obtained above, corresponding to the situation in which the inequalities concerning the 
position of the constant I with respect to the principal moments of inertia (not equal one 
to the others) become equalities. Thus, if 3I I= , then the relation (15.1.66) leads to 

1 2( ) ( ) 0t tω ω= = , because 1I I≠  and 2I I≠ , while the second relation (15.1.49) 
shows that 3 ( ) consttω Ω= = ; moreover, the relations (15.1.48') lead to the same 
result (the last relations can take place only if 2 0ω = , while the first relations lead to 

1 0ω = ). We are thus in the case (15.1.73) for 3i = , 1j =  and 2k = . As we have 
seen, the 3Ox -axis is fixed with respect to the rigid solid (hence with respect to the 
frame of reference R  too) and with respect to the fixed frame ′R . From (15.1.58) it 
results sin sin sin cos 0θ ϕ θ ϕ= = , cos 1θ = , hence 0θ = ; the angle ϕ, as well as 

the angle ψ given by (15.1.59'), will be arbitrary (the planes 1 2Ox x′ ′  and 1 2Ox x  are 
superposed). Thus, the 3Ox -axis coincides with the 3Ox ′ -axis, the support of the 
moment of momentum O′K ; the formula (15.1.46) leads to the same result if we make 

3ω ω Ω= = , noting that ω and O′K  have the same direction (including the same 
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sense). We can choose the angle ψ arbitrarily ( ( ) consttψ = , eventually 0ψ = ), the 
angle ( )0 0( )t t tϕ Ω ϕ= − +  corresponding to a uniform rotation about the fixed axis 
(Fig. 15.13a). We have seen that, in this case, the polhode is reduced to the points 3A  
and 3A′  at which the polhodic cone, degenerated into a straight line along the major 
axis of the ellipsoid of inertia pierces this ellipsoid. Because we are in the case 2I I< , 
it results that min 1 0ρ δ= = , max 2 0ρ δ= = , so that the herpolhode is reduced to the 

point 3A  (or to the point 3A′ ), the plane Π being tangent to the ellipsoid at this point. 

 
Fig. 15.13  Permanent rotations about the fixed axis 3Ox ′  if it coincides with the  

3Ox -axis (a), the 1Ox -axis (b) or the 2Ox -axis (c) 

If 1I I= , then the relation (15.1.66) leads to 2 3( ) ( ) 0t tω ω= = , because 2I I≠  
and 3I I≠ ; we obtain, analogously, 1 ( ) consttω Ω= = . We find thus again the case 
(15.1.73) for 1i = , 2j = , 3k = . The 1Ox -axis coincides with the fixed axis 3Ox ′ , 
because sin sin 1θ ϕ = , sin cos cos 0θ ϕ θ= =  (so that /2θ ϕ π= = ), the angular 
velocity vector ω being along the moment of momentum O′K  too (in direction and, 
obviously, sense). Using the relation (15.1.59'), we notice that the uniform rotation 
about the fixed axis specified by the angle of precession ( )0 0( )t t tψ Ω ψ= − + , 
corresponding to the initial conditions too (Fig. 15.13b). The polhodic cone is reduced 
to a straight line along the minor axis of the ellipsoid of inertia and pierces this ellipsoid 
at the extremities 1A  and 1A′  of the respective axis; the polhode is thus formed by the 
points 1A  and 1A′ . Being in the case 2I I> , we have min 3 0ρ ρ= = , 

max 2 0ρ ρ= = , the herpolhode being reduced to the point 1A  (or to the point 1A′ ) and 

the plane Π being tangent to the ellipsoid at this point. 
Finally, if 2I I= , then the notations (15.1.56') lead to 2 2 2

1 3γ γ Ω= = , 
( )2 2

2 2 3 1 2 3 1/I I I I I Iγ Ω= + − , while the equation (15.1.57') becomes 

( ) ( )
2

2 2 2 2
2

d
2

dt
ω

ω Ω γ Ω= ± − − , 
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so that 2 2 2
2Ω ω γ≤ ≤ . We denote 2 2 2 2 2

2cos sinω Ω χ γ χ= + , 0 χ π≤ ≤  (as a 
matter of fact, 0χ χ π≤ ≤ , 0 0χ ≥ ); it results (we have taken the sign + before the 
radical, corresponding to an increasing of 2ω ) 

d
d

sin
t

χ
λ

χ
= ,   

( ) ( )1 2 2 32 2
2

1 3

I I I I
I I

λ γ Ω Ω
− −

= − = . 
 

By integration, we have 

ln tan ( )
2

t
χ

λ τ= + ,   0
0

1 ln tan
2

t
χ

τ
λ

= − ,  

wherefrom 

( )tan e
2

tλ τχ += ,   ( )2 2 2 2 2
2 2 tanh ( )tω γ γ Ω λ τ= − − + . 

 

(15.1.74) 

Then, the relations (15.1.56) lead to 

2
12

1 2cosh ( )t
β

ω
λ τ

=
+

,   2 2 2
2 tanh ( )tω Ω λ τ= + ,   

2
32

3 2cosh ( )t
β

ω
λ τ

=
+

, 

 (15.1.74') 

where we took into account (15.1.49') and we noticed that 2 2β β Ω= = . In the 
hypothesis in Sect. 15.1.2.1 ( ( )2 0 0tω > , ( )1 0 0tω < , ( )3 0 0tω > ) we have 

1
1 ( )

cosh ( )
t

t
β

ω
λ τ

= −
+

,   2 ( ) tanh ( )t tω Ω λ τ= + ,   3
3 ( )

cosh ( )
t

t
β

ω
λ τ

=
+

, 

 (15.1.74'') 

observing that the pole P travels through an arc of ellipse in an infinite time 
( 1lim 0 0

t
ω

→∞
= − , 3lim 0 0

t
ω

→∞
= + , 2lim 0

t
ω Ω

→∞
= − ), stopping at the point 2A . 

Starting from (15.1.51) and making p λ= , 1k = , 2β Ω= , it results 

2

0
2

2/
0 2/

1 d
1

zt t
z

ω Ω

ω Ωλ
− =

−∫ , 
 

wherefrom, by a change of variable tanhz κ= , we find again the above results (we 
use the relations (15.1.49'') too). We notice that, for t → ∞ , the relations (15.1.58), 
(15.1.59') lead to sin sin 0θ ϕ → , sin cos 1θ ϕ → , ψ Ω→ , wherefrom /2θ π→ , 

0ϕ → , ( )0 0t tψ Ω ψ→ − +  (we have put in evidence the initial conditions too); 
thus, the 2Ox -axis tends to the fixed axis 3Ox ′  (being thus also a fixed axis), the 
rotation taking place about the moment of momentum O′K  (Fig. 15.13c). If the initial 
conditions correspond to the motion determined for t → ∞ , then we obtain a 
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permanent rotation of the form (15.1.73) about the mean axis of the ellipsoid E  (the 
mean principal axis of rotation) for 2i = , 3j = , 1k = . 

 
Fig. 15.14  The double spiral of a herpolhode in the limit case in which  

the circular annulus is reduced to a circle 

We have seen, in this case, that the polhode is formed by two ellipses (ε and ε ′ ), 
contained in the planes (15.1.68) in which degenerates the polhodic cone; as a matter of 
fact, the case which corresponds to the formulae (15.1.74'') leads to an arc of ellipse ε, 
the sense of travelling through towards the point 2A  being that indicated in Fig. 15.10. 
In what concerns the herpolhode, we notice that min 1 3 0ρ δ δ= = = , while 

( ) ( )max 2 1 2 2 3 1 2 3/K I I I I I I Iρ δ= = − − , hence the circular annulus is reduced 
to a circle. The equation (15.1.72) of the herpolhode becomes (we have 0δ = ) 

2 2
max

d
d

hκ
ρ ρ ρ ρ

= ±
−

. 
 

By integration, we get 

( )( )max max
0cosh

h
ρ ρ

κ κ
ρ

= ± − , 
 

(15.1.75) 
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hence a double spiral, with an axis of symmetry, which tends asymptotically towards 
the point Q (the vertex V corresponds to maxρ , being the only point of tangency with 
the circle) (Fig. 15.14). 

As a matter of fact, the point P travels through only an arc of spiral, from the point 
0P  (corresponding to the initial position) till the asymptotic point Q (to which the pole 

arrives in an infinite time, although the length of the spiral is finite), through which 
passes the rotation axis. 

In conclusion, in the particular case in which the rigid solid begins to rotate about a 
principal axis of inertia, corresponding to the fixed point, this motion continues 
indefinitely; the axis of rotation is fixed in the solid and in the space (with respect to the 
frames of reference R  and ′R , respectively). Assuming now that /iω ω , 1,2,3i = , 

are the constant direction cosines of an arbitrary permanent axis of rotation Δ with 
respect to the frame of reference R, the formula (15.1.47'') shows that constω = , so 
that the components iω , 1,2,3i = , must be constant too; Euler’s equations (15.1.40) 
become 

( )2 3 2 3 0I I ω ω− = ,   ( )3 1 3 1 0I I ω ω− = ,   ( )1 2 1 2 0I I ω ω− = ,  

and hold only if two of the components of the vector ω vanish (if the principal moments 
of inertia are distinct). Hence, the principal axes of inertia are the only instantaneous 
axes of rotation which remain fixed in the rigid solid (as well as in space – the frame of 
reference ′R ). Analogously, imposing the condition constω =  (hence 0ω = ), the 
relation (15.1.57') shows that we can have only 1ω γ= , or 2ω γ=  or 3ω γ= , while 
from (15.1.56) it results that we have 1 0ω =  or 2 0ω =  or 3 0ω =  (as a matter of 
fact, to this conclusion leads also the relation (15.1.57)). The equations (15.1.40) show 
then that the only axes of uniform rotation are the principal axes of inertia. 

Poinsot’s geometric representation allows also an intuitive study of the stability of 
the three possible permanent axes of rotation. The quantity I of the nature of a moment 
of inertia depends on the initial conditions (15.1.19) for the angular velocity ω. Taking 
into account (15.1.48), we have 

( ) ( ) ( )
( ) ( ) ( )

2 2 22 0 2 0 2 0
1 1 2 2 3 3

2 2 20 0 0
1 1 2 2 3 3

I I I
I

I I I

ω ω ω

ω ω ω

+ +
=

+ +
, 

 
(15.1.76) 

so that I depends continuously on the initial conditions; if 0 =ω 0 , then we are in the 

case of equilibrium, while I is non-determinate (it is a quantity of dynamic character). 
Let us assume that 0

1 0ω > , 0 0
2 3 0ω ω= = ; in this case 1I I= , the polhode reducing 

to the point 1A  (if 0
1 0ω < , then there corresponds the point 1A′ ) on the ellipsoid E. 

By an arbitrary variation of the initial conditions, the point P moves away from the 

point 1A  (because I will vary with respect to 1I ), describing a polhode  (closed curve) 

around this point. The plane tangent at P to the ellipsoid of inertia will have a variation 
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with respect to the plane Π tangent to the same ellipsoid at the vertex 1A , while the 
herpolhode will be contained in a circular annulus of non-zero radii. All these variations 
are of the same order of magnitude, as it can easily verified (as a matter of fact, as the 
polhodic and herpolhodic cones). If we assume that 0

3 0ω > , 0 0
1 2 0ω ω= = , then we 

have 3I I= , the polhode being reduced to the point 3A  on the ellipsoid E ; in case of 
an arbitrary variation of the initial conditions we can make analogous considerations. 
But if 0

2 0ω > , 0 0
3 1 0ω ω= = , then we have 2I I= , while the polhode is reduced to 

the point 2A  (intersection of the ellipses ε and ε ′ ) on the ellipsoid of inertia. To an 

arbitrary variation of the initial conditions, the quantity I will vary with respect to 2I , 

while the pole P describes a polhode around one of the points 3A  and 3A′  (or 1A  and 

1A′ ), which leads to a corresponding herpolhode; obviously, the variations 
corresponding to the polhode and to the herpolhode are no more of the order of 
magnitude of the variations of the initial conditions. In conclusion, we can state 
Theorem 15.1.11 A permanent rotation about the major or of the minor axis of the 
ellipsoid of inertia corresponding to the fixed point represents a stable motion, while a 
permanent rotation about the mean axis of this ellipsoid constitutes a labile motion. 

We notice that the ellipses ε and ε ′  (which pierce at the points 2A  and 2A′ ) divide 
the ellipsoid in four zones, each one of them containing one of the points 1 1 3, ,A A A′  or 

3A′ . After Bour, one can take as measure of the stability of the rotation about the axis 
1 1A A′ , for instance, the ratio between the area of the zone which contains one of the 

points 1A  or 1A′  and half of the area of the ellipsoid E. One observes that for 1I  close 
to 2I  (hence, for an ellipsoid of inertia close to an ellipsoid of rotation) the area of the 
zone which contains the point 1A  is small with respect to half of the area of the 
ellipsoid, hence the considered measure is small, the stability of the rotation about the 

2Ox -axis being small too. 
Projecting the pole P of the polhode on the plane 2 3Ox x  at 1P  and taking into 

account (15.1.15'), we notice that the angle 1χ  formed by 1OP  with the 2Ox -axis is 
given by 1 3 2tan /χ ω ω=  (Fig. 15.11b); differentiating with respect to time, we obtain 
( ( )2

1 1 1d tan /d 1 tantχ χ χ= + ) 

2 3 3 2
1 2 2

2 3

ω ω ω ω
χ

ω ω
−

=
+

.  

Using the equations (15.1.40) and then the second equation (15.1.49''), we get, finally, 

( )
( )

2
1

1 12 2
2 3 2 3

I I I
I I

Ω
χ ω

ω ω
−

=
+

. 
 

(15.1.77) 

Analogously, if 3P  is the projection of the pole P on the plane 1 2Ox x , we can write 
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( )
( )

2
3

3 32 2
1 2 1 2

I I I
I I

Ω
χ ω

ω ω
−

= −
+

 
 

(15.1.77') 

for the angle 3χ  formed by 3OP  with the 1Ox -axis (Fig. 15.11a). It results that 

1 1sign signχ ω=  and 3 3sign signχ ω= − . Let us suppose firstly that the stationary 
rotation takes place counterclockwise (positive sense) about the 1Ox -axis, so that 

1 0ω > , hence that 1 0χ >  too; in the perturbed motion, the instantaneous axis of 

rotation will be rotated about the 1Ox -axis in the same sense, so that the pole P will 
describe the polhode which surrounds the point 1A  counterclockwise too. If the 
permanent rotation takes place about the 3Ox -axis, counterclockwise (positive sense) 
too, so that 3 0ω > , hence 3 0χ > , then, in the perturbed motion, the instantaneous 
axis of rotation will rotate about the 3Ox -axis clockwise (negative sense). Obviously, 
we obtain similar results if we take 1 0ω <  or 3 0ω <  (see Fig. 15.10 too). Hence, we 
can state 
Theorem 15.1.12 The permanent rotations about the minor axis and about the major 
axis, respectively, of the ellipsoid of inertia corresponding to the fixed point are 
different because, in the perturbed motion, the pole of the instantaneous axis of rotation 
describes a polhode in the same sense as the rotation of the rigid solid, in the first case, 
and in the opposite sense with respect to the rotation of the rigid solid, in the second 
case, respectively. 

This result can be easily put in evidence with the aid of Maxwell’s top. 

15.1.2.8 Case of an Ellipsoid of Inertia of Rotation 

In case of an ellipsoid of inertia of rotation (we suppose that the axis of rotation is the 
major axis of the ellipsoid, 1 2 3I I J I I= = > > ), of equation 

( )2 2 2 2
1 2 3 3J x x I x K+ + = , (15.1.78) 

the system of equations (15.1.40) is reduced to (we suppose that 0
3 0ω > ) 

1 2 0pω ω− = ,   2 1 0pω ω− = ,   0
3 3ω ω= ,   0

3 constω = ,   ( )3 0
31

I
p

J
ω= − . 

 (15.1.79) 

We get thus 

2
1 1 0pω ω+ = ,   2

2 2 0pω ω+ = . (15.1.79') 

It results (we are in the case 2I I< , while 0k = , the elliptic functions becoming 
circular ones) 

( ) ( )0 0
1 1 0 2 0( ) cos sint p t t p t tω ω ω= − + − , 

( ) ( )0 0
2 2 0 1 0( ) cos sint p t t p t tω ω ω= − − − , 

 
(15.1.79'') 
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as well as 2 2
0( ) consttω ω= = , 2

i iω ω ω= , 2 0 0
0 i iω ω ω= ; 0

iω , 1,2,3i = , are the 
components of the rotation angular velocity vector at the initial moment 0t t= . 

As a matter of fact, the first integrals (15.1.47) take the form 

( )2 2 2 2 2 2 2
1 2 3 3J I Iω ω ω Ω+ + = , 

( )2 2 2
1 2 3 3J I Iω ω ω Ω+ + = , 

 

wherefrom 

( )
( ) ( ) ( )2 232 2 2 2 0 0

1 2 1 1 2
3

I I I
J J I

ω ω Ω β ω ω
−

+ = = = +
−

, 

( )
( ) ( )22 2 2 0

3 3 3
3 3

I J I
I J I

ω Ω β ω
−= = =
−

. 

 
 

(15.1.79''') 

We are thus led to the same result. We can write 

( ) ( )3

3

J I J IIp
J I I

Ω
− −

=  
 

(15.1.79iv) 

in this case; we have 0k =  too, so that the elliptic functions in (15.1.53) become 
circular functions ( dn 1pt = , 2 2cn sn 1pt pt+ = ). We notice also that 

( )32 2 2 2 2
1 2 0

3
( )

J I I
t I

JI
ω Ω γ γ ω

+ −
= = = = , 

( ) ( )
( ) ( )

0
3 3

3
3 3 0

cos , constJ J I
J I J I I

ω ω
ω ω

−= = = =
− + −

ωi ; 

 

hence, the instantaneous angular velocity ω is constant in magnitude and makes a 
constant angle with the axis of symmetry 3Ox  of the ellipsoid of inertia relative to the 

fixed point O. As well, assuming that the 3Ox ′ -axis is along the fixed direction of the 
moment of momentum O′K , the formula (15.1.46) shows that the angle formed by the 
vector ω with the fixed axis 3Ox ′  is constant too. Hence, the polhodic cone  pC  is a 
cone of rotation of equation 

( ) ( ) ( )2 2 2
1 2 3 3 3J J I x x I I I x− + = − , 

 

(15.1.78') 

the axis of symmetry being 3Ox , while the herpolhodic cone hC  is a cone of rotation 
too, for which the axis of symmetry is 3Ox ′  (Fig. 15.15a). As a consequence, the 
polhodes are circles, intersections of the cone (15.1.78') by the planes 3 constx = . As 
well, the herpolhodes are circles too, specified by the radius (we notice that 

max min 1 2ρ ρ δ δ= = = , the circular annulus being reduced to a circle, which is just the 
herpolhode) ( ) ( )3 3/K J I I I IJIρ = − − . From (15.1.72') one observes that 

1δ δ< , constδ = , while the formula (15.1.71) leads to 
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( )2 2 2/ / constI Jκ Ω ρ δ ρ Ω= − = = , so that the motion of the pole P on the 

herpolhode is uniform; obviously, the motion of the pole P on the polhode has the same 
property, because the polhode rolls without sliding over the herpolhode. 

 
Fig. 15.15  The polhodic and herpolhodic exterior tangent cones (a).  

The canonical decomposition of the vector ω 

The relations (15.1.58) become 

( ) ( )[ ]0 0
1 1 0 2 0cos sin sin sinJ J p t t p t t Iω ω ω Ω θ ϕ= − + − = , 

( ) ( )[ ]0 0
2 2 0 1 0cos sin sin cosJ J p t t p t t Iω ω ω Ω θ ϕ= − − − = , 

0
3 3 3 3 cosI I Iω ω Ω θ= = . 

 

Hence, it results 

( )
( )

0
3 3 3

0
3

cos ( ) cos
I I J I

t
I I J I
ω

θ θ
Ω

−
= = =

−
, 

 
(15.1.80) 

the angle of nutation θ between the axes of the two cones being thus constant 

( 0( )tθ θ= ). Because the plane which passes through OP and is tangent to the two 

cones is normal to the meridian planes formed by OP with the 3Ox ′ -axis and with the 

3Ox -axis, respectively, it results that these meridian planes coincide; consequently, in 
its motion, the 3Ox -axis describes a cone having as axis the support of the vector O′K  
(Fig. 15.15a). 

Using the notations 

( ) ( )2 20 0 0
1 1 2 1sin sinω ω ω γ β γ= + = , 

( ) ( )2 20 0 0
2 1 2 1cos cosω ω ω γ β γ= + = ,   

0
1
0
2

tan
ω

γ
ω

= , 

 
 

(15.1.81) 
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we get ( )( )0tan tan p t tϕ γ= − + , wherefrom 

( )0 0( )t p t tϕ ϕ= − + ,   
0
1

0 0
2

arctan
ω

ϕ
ω

= , 
 

(15.1.81') 

the motion of proper rotation (about the 3Ox -axis) being uniform. If we make 

1 2I I J= =  in (15.1.59'), then we obtain /I Jψ Ω= ; we notice that ψ κ= , which 
was to be expected. We are thus led to 

( )0 0( ) It t t
J

ψ Ω ψ= − + , 
 

(15.1.81'') 

corresponding to the uniform motion of precession (about the 3Ox ′ -axis), called also 
regular precession. These results allow the canonical decomposition of the angular 
velocity vector ω in the form (we use another notation, different from that 
corresponding to the decomposition in the frames of reference ′R  and R  and we 
notice that 0θ = ; as a matter of fact, the relations 3 cosω ω ω θ′= + , 

3 cosω ω ω θ′ ′= + ) 

3 3 3 3ω ω ψ ϕ′ ′ ′ ′= + = + = +ω ω ω i i i i , 
 

(15.1.81''') 

where the vector ′ω  is constant, while the vector ω  is constant only in magnitude (Fig. 
15.15b). If we make 1 2I I J= =  in the formulae (15.1.62)–(15.1.62''), then we find 

0k = , 1k β′ = = , hence 0ε = , /2K π= , so that pϕω = , 0q = ; in this case, the 
proper rotation, the precession and the nutation are reduced to their mean values, which 
correspond to the values given by (15.1.80), (15.1.81'), (15.1.81''). As closer we are 
from the case of symmetry considered above (or as the motion of the rigid solid is 
closer to a stable rotation about the 3Ox ′ -axis) as quicker tends to zero the parameter q 
(hence, as better is the approximation made by deducing the formulae (15.1.62)–
(15.1.62'')). In exchange, the error growth as we are closer to the particular case 1k = , 
hence as the motion is closer to a (labile) rotation about the mean principal axis of 
inertia. In the case considered by us, the ellipsoid of rotation is a prolate spheroid (the 
major axis of the ellipsoid is axis of symmetry); we notice that, in this case, 0pϕ = >  
and 0ψ > , the polhodic and the herpolhodic cones being exterior tangent. The sense 
of motion of the pole P on the polhode is indicated by the relation (15.1.77'), which 
leads to 3 pχ ϕ= − = −  (result which had to be expected), while the sense of the 
motion of the same pole on the herpolhode is specified by the relation ψ κ=  (Fig. 
15.15a). 
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Fig. 15.16  Permanent rotation about the stable major axis 3Ox  and about an arbitrary 

principal axis in the equatorial plane (b) of the prolate spheroid 

If 3I I J= < , then we obtain 0
3ω Ω= , ( )3 /p J I JΩ= − , 0 0

1 2 0ω ω= = , so 
that 1 2( ) ( ) 0t tω ω= = , 3 ( ) ( )t tω ω Ω= = ; then, cos 1θ = , hence 0θ =  and the 

axes 3Ox  and 3Ox ′  coincide. The angle ϕ is non-determinate (it can be taken equal to 
zero), while the angle of precession is given by ( )0 3 0( ) /t I t t Jψ ψ Ω− = − , the 
precession being uniform. The polhode and the herpolhode are reduced to the point 3A  
(we have 0ρ = ). The motion is a permanent rotation about the major axis 3Ox  of the 
prolate spheroid, which is a stable axis of rotation (Fig. 15.16a); this is the case of the 
gyroscope, which will be studied in the next chapter. If 3I J I= > , then we get 

0
3 0ω = , ( ) ( )2 20 0 2 2

1 2 0ω ω ω Ω+ = =  and 0p = ; as well, 0
1 0sinω Ω ϕ= , 

0
2 0cosω Ω ϕ=  and 0ϕ ϕ= . Then, ( )0 0( )t t tψ Ω ψ= − + , the precession being 

uniform; we notice that cos 0θ = , hence /2θ π= , as well as 0p =  too. The motion 
is a permanent rotation about an arbitrary principal axis in the equatorial plane of the 
prolate spheroid, which coincides with the 3Ox ′ -axis, being thus fixed in space 

(Fig. 15.16b); the polhode and the herpolhode are reduced to a point A on the equator 

of the prolate spheroid and in the plane Π tangent to the ellipsoid at this point. At a 
small perturbation of the position of the instantaneous axis of rotation, the herpolhode 
will be a curve in the vicinity of the point A with maxρ  of the same order of magnitude; 
in exchange, the polhode will be a circle parallel to the equatorial circle and close to 
this one. Because, in the rigid solid, the axis moves much away from the initial position, 
it results that this one is a labile axis of rotation. 

In the case in which 1 2 3I I I I J> > = = , the axis of symmetry of the ellipsoid 
being its minor axis, the latter one is an oblate spheroid of equation 

( )2 2 2 2
1 1 2 3I x J x x K+ + = . 

 

(15.1.82) 

We can make a study analogue to that above, obtaining 
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( )
( )

0
1 1

1 1
( ) I I Jt

I I J
ω ω Ω

−= =
−

,  ( ) ( ) ( )
( )

2 2 12 2 0 0 2
2 3 2 3

1
( ) ( )

I I I
t t

J I J
ω ω ω ω Ω

−
+ = + =

−
 

 (15.1.82') 

and also 

( ) ( )0 0
2 2 0 3 0( ) cos sint p t t p t tω ω ω= − − − , 

( ) ( )0 0
3 3 0 2 0( ) cos sint p t t p t tω ω ω= − + − , 

 
(15.1.82'') 

where 

( ) ( )1 10
1

1

I J I J I JIp
J J I I

ω Ω
− − −

= = . 
 

(15.1.82''') 

 
Fig. 15.17 The polhodic and herpolhodic interior tangent cones (a).  

The canonical decomposition of the vector ω 

The 1Ox -axis is an axis of symmetry for the polhodic cone, while the 3Ox ′ -axis is an 
axis of symmetry for the herpolhodic cone (Fig. 15.17,a); the fixed angle made by the 
two axes is given by ( ) 0

3 1 1 1cos , sin cos /I Iθ ϕ ω Ω′ = =i i ( ) ( )1 1/I I J I I J= − − . 
The angular velocity vector ω is decomposed in the form (Fig. 15.17b) 

3 1 3 1k pω ω′ ′ ′ ′= + = + = −ω ω ω i i i i , (15.1.83) 

where / 0I Jκ Ω= > , and, if we take into account (15.1.77), then 1 0p χ= > ; thus, 

the motion of the point P on the herpolhode and on the polhode is specified 
(Fig. 15.17a). From (15.1.82), (15.1.82'), it results ( )2 2

1 1( ) /t I I J I I Jω Ω= + −  
2
0ω= . The relation (15.1.46) allows to write ( )3 0cos , / / constΩ ω Ω ω′ = = =ω i ; as 

well, we have ( ) 0
1 1 1 0cos , / / constω ω ω ω′ = = =ω i . Noting that 0

1ω Ω< , it results 
( ) ( )1 3cos , cos , ′<ω ωi i , wherefrom ( ) ( )1 3, , ′>ω ωi i . In conclusion, the 
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herpolhodic cone and the polhodic cone are interior tangent, the first one being interior 
to the second one. The minor axis of the spheroid (axis of symmetry) is stable in case of 
a permanent rotation about it; in exchange, the axes in the equatorial plane are labile 
axes of rotation. 

If 1 2 3I I I I J= = = = , then the ellipsoid of inertia is a sphere, any axis of it 
being a principal axis of inertia, as well as an indifferent axis of rotation. 

15.1.2.9 Another Geometric Representation of the Motion after Poinsot 
The geometric interpretation given by Poinsot to the problem of Euler is remarkable by 
its simplicity and clarity, as well because it is an intuitive method; in exchange, this 
interpretation does not put time in evidence, and there is no one element to vary in 
direct proportion to the variable t. To eliminate partially this lack, Poinsot imagines a 
new geometric representation, starting from the decomposition of the angular velocity 
vector ω in two components: ω  along the direction of the moment of momentum O′K  
and ⊥ω  along a direction normal to this one; the vector ω and its components are 

contained in a plane specified by the Ox-axis, normal to this plane (Fig. 15.18). We 

notice that const=ω  (we have Ω=ω  too), while ⊥ω  varies both in direction 

and in modulus, being contained, for any t, in the fixed plane hΠ , normal to the vector 

O′K  (its locus with respect to the frame of reference ′R ), which will be called 
herpolhodic plane (degenerate herpolhodic cone). With respect to the frame R, the 
locus of the component ⊥ω  will be a second polhodic cone  p

⊥C  of Poinsot. 

 
Fig. 15.18  The herpolhodic plane 

Let D be a point on the support of the vector ω, while A and B are its projections on 
the supports of the vectors ω  and ⊥ω , respectively. We denote the co-ordinates of the 

point B by ix  and the co-ordinates of the point D by iλω , constλ = , 1,2,3i = , with 
respect to the frame of reference R; we notice that the quantities 1 1I ω , 2 2I ω , 3 3I ω  

may be used as direction parameters of the straight line OA, so that we can write 
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( )1 1 1x Iω λ λ ′= + , ( )2 2 2x Iω λ λ ′= + , ( )3 3 3x Iω λ λ ′= + , constλ ′ = . The 
equation of the plane hΠ  is written in the form (orthogonality condition) 

1 1 1 2 2 2 3 3 3 0I x I x I xω ω ω+ + = . (15.1.84) 

Eliminating the co-ordinates 1 2 3, ,x x x  and taking into account (15.1.47), we get 
0Iλ λ ′+ = . Whence, it results ( )1 1 1x I Iλ ω′= − , ( )2 2 2x I Iλ ω′= − , 

( )3 3 3x I Iλ ω′= − ; the relation (15.1.66), which is verified by the components of the 
vector ω, allows now to write the equation of the second polhodic cone  p

⊥C  of Poinsot 
in the form 

1 2 32 2 2
1 2 3

1 2 3
0

I I I
x x x

I I I I I I
+ + =

− − −
, 

 

(15.1.84') 

this one being thus a cone of second degree. In the motion of the rigid solid, the cone 
 p
⊥C  is rolling with sliding on the plane hΠ , because it is rotating together with the 

rigid solid about the 3Ox ′ -axis with the constant velocity Ω; assuming that the plane 

hΠ  has a uniform motion of rotation, of angular velocity Ω, about the 3Ox ′ -axis, the 
rolling of the cone  p

⊥C  is slidingless. 
In this last case, in the motion of the rigid solid, the angle of rotation in the plane 
hΠ  is in direct proportion with the interval of time 0t t− ; associating to the plane hΠ  

a hand along the Ox-axis, we can measure the time by means of the motion of this hand 
on a fixed dial. If, by a clock mechanism, the plane hΠ  would have a uniform rotation 

about the 3Ox ′ -axis (with the angular velocity Ω), transferring a motion to the cone  pC  (by 
friction or by some gearing), the rigid solid (rigidly linked to this cone) would have an 
inertial motion about the fixed point O. The building up of the Darboux-Koenig 
herpolhodograph, which allows to obtain a complete kinematic image of the motion of the 
rigid solid, is based on these considerations. But the practical sensibility of the apparatus is 
relatively small, the ellipsoid of inertia E  being not an arbitrary one, because its semi-axes 
must verify the relations (3.1.96); indeed, one can show that the ratio of the smallest to the 
greatest magnitude of the angular velocity varies thus between 2 /2  and 1. As a matter of 
fact, the magnitude of the angular velocity has thus a certain stability and the herpolhode 
has not points of inflection. 

15.1.2.10 Poinsot Type Motions. The Sylvester Theorems. Volterra’s Problem 

If 2
1 1/b K I= , 2

2 2/b K I= , 2
3 3/b K I=  are the squares of the semi-axes of the 

ellipsoid of inertia, then the equation (15.1.63) reads 
2 2 2
1 2 3

1 2 3
1

x x x
b b b

+ + = , 
 

(15.1.85) 

where 1 2 3b b b< < ; in this case, Euler’s equations (15.1.40) take the form 
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1 1 2 3
3 2

1 1 0b
b b

ω ω ω⎛ ⎞+ − =⎜ ⎟
⎝ ⎠

, 

2 2 3 1
1 3

1 1 0b
b b

ω ω ω⎛ ⎞+ − =⎜ ⎟
⎝ ⎠

, 

3 3 1 2
2 1

1 1 0b
b b

ω ω ω⎛ ⎞+ − =⎜ ⎟
⎝ ⎠

, 

 
 
 

(15.1.86) 

while the two first integrals (15.1.47) read 

22 2 2 2 2 2
1 2 3
2 2 2 2 24
1 2 3

OK I
b b b K bK
ω ω ω Ω Ω′

+ + = = = , 

2 2 2 2 2
1 2 3

2 2
1 2 3

2T I
b b b bK K
ω ω ω Ω Ω′

+ + = = = , 

 
 

(15.1.86') 

where b is the square of the distance from the centre O to the fixed plane Π over which 
is rolling the ellipsoid of inertia E, given by (15.1.16'). The conditions 

1 2 3

1 1 1
b b b

< + ,   
2 3 1

1 1 1
b b b

< + ,   
3 1 2

1 1 1
b b b

< + , 
 

(15.1.86'') 

corresponding to the conditions (3.1.103), must be verified, as well as the condition 
1 3b b b< < ; only two of the three differences 1b b− , 2b b− , 3b b−  can have the same 

sign. We notice that the relation (15.1.15') allows to pass from the equation (15.1.85) to 
the second first integral (15.1.86'). The loci of the point P of tangency of the ellipsoid E  

with the plane Π on the ellipsoid and on the plane are, obviously, the polhode and the 
herpolhode, respectively. 

Let us suppose now that the magnitudes 1b , 2b  and 3b  do not fulfil the conditions 
(15.1.86''), possibly being negative too (the ellipsoid (15.1.85) may be replaced by a 
unparted or by a parted hyperboloid, being, in general, a quadric with centre). In this 
case, the equations (15.1.86) lose their dynamical signification, no more representing 
the inertial motion of the rigid solid; but they keep their kinematical signification, 
corresponding to a motion of the rigid solid, the geometric image of which is 
represented by the rolling without sliding of a quadric Γ with centre over one of its 

tangent planes Π, fixed in space. A  relation of the form OP μ= ω , constμ =  takes 

further place. The polhode P will be the locus of the points which are on the quadric Γ 

and for which the planes Π, tangent to the quadric at various points of this curve, are at 

a constant distance from the centre O of the quadric. Such a motion is called a Poinsot 
type motion; it takes place only if two of the products ( ) ( )2 3b b b b− − , 
( ) ( )3 1b b b b− − , ( ) ( )1 2b b b b− −  are negative, the third one being positive, as it 
results from the above inequalities. One observes that we have introduced the quantities 
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1 2 3, ,b b b  (instead of the semi-axes 1 2 3, ,a a a ) to can pass from Poinsot’s motion to a 
motion of Poinsot type. Considerations in this direction are due to A. Clebsch, E.J. 
Routh and P. Appell. 

Let be two motions of Poinsot type with the same centre and with the same principal 
axes of inertia, characterized by the principal moments of inertia 1 2 3, ,I I I  and 

1 2 3, ,I I I  and by the angular velocities ω and ω , respectively; two such motions for 
which takes place the relation +ω ω = 0  are called conjugate motions in the sense of 
Darboux. Obviously, two such motions have the same polhodes. One can show that to 
any motion of Poinsot type kinetically possible corresponds always a conjugate motion 
in the sense of Darboux, also kinetically possible. 

Assuming that the motion of Poinsot type is a direct motion, we can give a geometric 
interpretation to the inverse motion of Poinsot type, considered as a slidingless motion 
of a movable plane Π over a quadric with centre Γ, fixed in space, to which it is 
tangent, remaining at a constant distance from this centre. Obviously, we can represent 
this motion as a rolling without sliding of the herpolhodic cone hC  (movable now) 
over the polhodic cone  pC  (fixed now). In case of conjugate motions in the Darboux 

sense, the two quadrics Γ and Γ  are pierced along the same polhode. The 
corresponding inverse motions of Poinsot type can be represented by the rolling of the 
herpolhodic cones  hC  and hC , rigidly connected to these quadrics, over the same 
polhodic cone  pC ; the cones  hC  and hC  are tangent to the cone pC  along the same 
generatrix (support of the vector ω), hence they are tangent one to the other. The motion 
of a tangent plane Π with respect to a tangent plane Π  is thus reduced to the rolling of 
the herpolhodic cone  hC  over the herpolhodic cone hC ; the angular velocities of the 

planes Π and Π  with respect to the inertial frame of reference are ω and −ω, 
respectively, so that – in the relative motion of the two planes – the angular velocity 
will be ±2ω. One can state 
Theorem 15.1.13 (J.J. Sylvester)  If at all the points of the polhode P  we take equal 
segments of a line along the normals to the quadric Γ, their extremities will be on a new 

polhode ′P , on another quadric Γ ′ , homofocal and homothetic to Γ and orthogonal 
to the set up normals. 

As a kinetic consequence of this theorem, one can state 
Theorem 15.1.13' (J.J. Sylvester) Let be a rigid solid which has a Poinsot type motion 
and to which has been imparted an angular velocity about the normal to the fixed plane 
Π over which the quadric Γ is rolling; the compound motion will be a motion of 

Poinsot type too, the new plane of rolling Π ′  being parallel to the plane Π. 

The corresponding quadric Γ ′  differs, obviously, from the quadric Γ. 
Another generalization of the Euler-Poinsot problem is due to V. Volterra, which 

considered, in 1895, the system of equations 
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( )1 1 3 2 2 3 3 2 2 3 0I I I c cω ω ω ω ω+ − + − = , 
( )2 2 1 3 3 1 1 3 3 1 0I I I c cω ω ω ω ω+ − + − = , 
( )3 3 2 1 1 2 2 1 1 2 0I I I c cω ω ω ω ω+ − + − = , 

 
 

(15.1.87) 

where 1c , 2c  and 3c  are constant quantities. One obtains the first integrals 

2 2 2
1 1 2 2 3 3 2I I I Tω ω ω ′+ + = , 

( ) ( ) ( )2 2 2 2
1 1 1 2 2 2 3 3 3I c I c I c cω ω ω+ + + + + = , 

 
(15.1.87') 

c being an integration constant. Starting from these results and from one of the 
equations (15.1.87), the integration of this differential system is reduced to quadratures, 
as in Sect. 15.1.2.1. 

As well, in case of a moment OM  along the direction of the moment of momentum 

O′K , so that O Oλ ′=M K , where λ is a constant scalar ( 1 11OM Iλ ω= , 2 22OM Iλ ω= , 

3 33OM Iλ ω= ), A.G. Greenhill and E. Padova performed a change of independent 
variable and of unknown functions of the form ( )ln 1t tλ λ= + , ( )1i itω λ ω= + , 

1,2,3i = , finding again the homogeneous equations of the Euler-Poinsot case for the 
unknown functions ( )i i tω ω= , 1,2,3i = . 

15.2 The Case in which the Ellipsoid of Inertia is of Rotation. 
Other Cases of Integrability 

In what follows, we study the Lagrange-Poisson case of integrability and the Sonya 
Kovalevsky one, for which the ellipsoid of inertia is of rotation (it is a prolate spheroid, 
having 1 2I I J= = ). We consider then also other cases of integrability, corresponding 
to particular initial conditions, as well as other cases of loading in the dynamics of the 
rigid solid with a fixed point. 

15.2.1 The Lagrange-Poisson Case 

Returning to the problem of the rigid solid with a fixed point, subjected to its own 
weight G, we will consider the research made by J.-L. Lagrange in 1788; in this case, 
the ellipsoid of inertia is of rotation, the centre of mass C being situated on its axis of 
symmetry ( 1 2 3I I J I= = > , hence the case of a prolate spheroid, and 1 2 0ρ ρ= = , 

3 0ρ > ). The problem has been considered again, in 1815, by S.-D. Poisson, without 
taking into account the results due to Lagrange and without quoting him; this case of 
integrability (considered to be the IInd case of integrability) is called the Lagrange-
Poisson case. Such a situation is encountered, for instance, in case of a homogeneous 
rigid solid of rotation around the 3Ox -axis; as well, we are situated in such a case if the 
solid is non-homogeneous, having a geometric as well as a mechanical axial symmetry 
(the density is of the form ( )2 2

1 2 3,x x xμ μ= +  with respect to the 3Ox -axis. 
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We present firstly a general study of the motion, determining the rotation angular 
velocity vector and putting stress on the motion of precession; we pass then to a 
geometric representation of the motion, using the results obtained by Poinsot in this 
direction. 

15.2.1.1 Integration of the Equations of Motion 

The motion of the heavy rigid solid with a fixed point is governed by Euler’s equations 
(15.1.21); these equations take the form 

( )1 3 2 3 3 2J I J Mgω ω ω ρ α+ − = , 
( )2 3 3 1 3 1J J I Mgω ω ω ρ α+ − = − , 

3 0ω =  

 
 

(15.2.1) 

in the Lagrange-Poisson case. We obtain 
0

3 3( )tω ω= , 
 

(15.2.1') 

the constant 0
3ω  being called spin, while the first integrals (15.1.42'), (15.1.43') take the 

form 

( ) 0
1 1 2 2 3 3 3 3OJ I Kω α ω α ω α ′′+ + = , 

( ) ( )22 2 0
1 2 3 3 3 32 2J I Mg hω ω ω ρ α+ + = − + . 

 
(15.2.1'') 

The first integrals (15.2.1'), (15.2.1''), together with the first integral (15.1.44), form the 
system of four first integrals necessary in the general theory to solve the problem. 

Unlike the Euler-Poinsot case, the kinetic and the kinematic aspects cannot be 
separated in this case. It is convenient to replace the direction cosines 1 2 3, ,α α α  of the 

3Ox ′ -axis with respect to the frame of reference R  by the relations (5.2.36); it results 

( ) 0
1 2 3 3 3sin cos sin cos OJ I Kω ϕ ω ϕ θ ω θ ′′+ + = , 

( ) ( )22 2 0
1 2 3 3 32 cos 2J I Mg hω ω ω ρ θ+ + = − + . 

 
(15.2.1''') 

Associating the relations (5.2.35) and eliminating the components 1ω  and 2ω , we get 
the system of equations 

2 0
3sin cosaψ θ α ω θ= − , 

2 2sin cosbψ θ θ β θ+ = − , 
0
3cosψ θ ϕ ω+ = , 

 
 

(15.2.2) 

where we have introduced the notations 3 /OK Jα ′′= , ( )20
3 32 /h I Jβ ω⎡ ⎤= −⎣ ⎦ , 

3 / 0a I J= > , 32 / 0b Mg Jρ= > ; we notice that α and β are constants which 

depend on the initial conditions, while the constants a and b are functions only of the 
geometry and the mechanical properties of the rigid solid. 
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The system of differential equations (15.2.2) will determine Euler’s angles 
( )tψ ψ= , ( )tθ θ=  and ( )tϕ ϕ= . Eliminating ψ  between the first two relations, 

we obtain 

( )20 2 2 2
3 cos ( cos )sin sina bα ω θ β θ θ θ θ− = − − .  

Denoting cosu θ= , it results the differential equation 

2 ( )u P u= ,   ( ) ( ) ( )22 0
3( ) 1P u bu u a uβ α ω= − − − − , 

 

(15.2.3) 

wherefrom 

( )0
0

du

u
t t

P
ξ
ξ

= + ∫ , 
 

(15.2.3') 

with 0 0cosu θ= , ( )0 0tθ θ= ; the radical is taken with the same sign as ( )0u t , 
assuming that ( )0 0u t ≠ , ( ( )u t  has a continuous variation, beginning from ( )0u t ). 

 
Fig. 15.19  The graphic ( )P u  vs u. The cases 1 2u u≠  (a) and 01 2u u u= =  (b) 

If 0 0θ ≠  and 0θ π≠ , then we have ( )0 1,1u ∈ − ; we notice that ( ) 0P −∞ < , 
( ) 0P ∞ >  and ( 1) 0P ± < , in the hypothesis in which 0

3aα ω≠ ± , hence 
0

3 33OK I ω′′ ≠ ± . Because the equation (15.2.3) allows a solution only if ( )0 0P u ≥ , it 
results that the polynomial ( )P u  is of the form 

1 2 3( ) ( )( )( )P u b u u u u u u= − − − , (15.2.3'') 

where 1 2 3, ,u u u  are the real zeros of the polynomial of the third degree ( )P u , so that 

1 0 2 31 1u u u u− < ≤ ≤ < < < ∞ ; the graphic of this polynomial is given in 
Fig. 15.19a (to draw this graphic, we assume that 0 /2θ π≤ , hence 0 0u > ) for 

1 2u u≠  and in Fig. 15.19b for 1 2 0u u u= = . Because 1 2u u≤ , it results that 1 2θ θ≥  
(we have 0 θ π≤ ≤ ), so that the nutation [ ]2 1,θ θ θ∈ . We notice that the integral 
(15.2.3), (15.2.3') is of the form (7.1.4) to (7.1.5); following the same reasoning as in 
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Chap. 7, Sect. 1.1.1, we can state that ( )u t  varies periodically between 1u  and 2u , the 
duration of a complete period being 

2

1

d2
( )

u

u

uT
P u

= ∫ . 
 

(15.2.3''') 

Hence, ( ) ( )u t T u t+ =  and ( ) ( )u t T u t+ = ; it results, as well ( ) ( )t T tθ θ+ = . 
By the change of variable /u v c c ′= + , where 3 / 4c b=  and 

( )22 0
3 /3c a bβ ω⎡ ⎤′ = +⎣ ⎦ , we can replace the polynomial ( )P u  by a polynomial of 

the form 3
2 3( ) 4Q v v g v g= − − , 2 3, constg g = ; the relation (15.2.3') becomes 

( )
( )0

0
dv

v
c t t

Q
η
η

− = ∫ , 
 

(15.2.4) 

where ( )0 0v c u c ′= − . Denoting ( )2 3; ,v g gα= P , we introduce the variable α 
through the agency of the elliptic function P  of Weierstrass, corresponding to the 
constants 2g  and 3g ; this function verifies the differential equation 

2
3

2 3
d ( )

4 ( ) ( )
d

g g
α

α α
α

⎡ ⎤ = − −⎢ ⎥⎣ ⎦

P P P , 
 

so that ( )0 0c t tα α− = − , where 0α  is given by ( )0 0 2 3; ,v g gα= P . The function 
( )u t  (and, implicitly, the angle of nutation ( )tθ ) will be given by 

( )( )0 0
1( ) cos ( )u t t c c t t
c

θ α′= = + − +P . 
 

(15.2.4') 

We can introduce a new variable κ by the relation 

( )2 2 2
1 2 1 2 1cos sin sinu u u u u uκ κ κ= + = + −  

( ) 2
2 2 1 cosu u u κ= − − ( ) ( )2 2

3 3 1 1 sinu u u k κ= − − − , 
2 1

3 1
1

u u
k

u u
−

= <
−

. 

 
 

(15.2.5) 

Replacing in (15.2.3'), (15.2.3''), we get 

( )
0

0 2 2

d

1 sin
p t t

k

κ

κ

χ

χ
− =

−∫ ,   
( )3 1

1
2

p
b u u

=
−

, 
 

(15.2.6) 
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where 0κ κ=  corresponds to 0u u= . Denoting sinw κ= , we can write 

( )
( ) ( )0

0 2 2

d

1 1

w

w
p t t

k

ζ

ζ ζ
− =

− −∫  
 

(15.2.6') 

too, with 0 0sinw κ= . By means of the elliptic integral of the first kind ( ),F kκ , 
given by (7.1.41), one can use also the formula (15.1.51'). Introducing Jacobi’s elliptic 
functions, it results, as well, 

( ) ( ) ( ) ( )2 2 2
1 0 2 0 1 2 1 0( ) cn sn snu t u p t t u p t t u u u p t t= − + − = + − −  

( ) ( ) ( ) ( )2 2
2 2 1 0 3 3 1 0cn dnu u u p t t u u u p t t= − − − = − − − .    (15.2.5') 

Taking into account the relation ( 1 2 3, ,e e e  are the zeros of the polynomial ( )Q v ) 

( )
1 3

3 2
1 3 sn ;

e e
e

e e u k
α −⎛ ⎞ = +⎜ ⎟−⎝ ⎠

P , 
 

(15.2.7) 

which links the elliptic function of Weierstrass to the Jacobi elliptic functions, we can 
pass from the formula (15.2.4') to the formulae (15.2.5'). The period (15.2.3''') can be 
expressed by a formula of the form (15.1.54). The motion of nutation is thus put in 
evidence. We can set up two circular cones of common axis 3Ox ′  and angles at the 
vertex 12θ  and 22θ , respectively; the 3Ox -axis describes a cone contained between 
these two cones (Fig. 15.20a). If the two mentioned cones form only one cone 
( ( ) 0P u =  has a double root, hence 1 2θ θ= ), then this cone will be a circular one. The 
other angles of Euler will be given by the equations (15.2.2), in the form 

0
3
21

a u
u

α ω
ψ

−
=

−
,   

( )0
30

3 21
a u u

u
α ω

ϕ ω
−

= −
−

. 
 

(15.2.8) 

It results that ( ) ( )t T tψ ψ+ =  and ( ) ( )t T tϕ ϕ+ = , so that 

0( ) ( )t T tψ ψ Ψ+ = + ,   0( ) ( )t T tϕ ϕ Φ+ = + , (15.2.8') 

where 0Ψ  and 0Φ  are constant in time. 
Research in this direction has been made by C.G.J. Jacobi, E. Lottner, O.I. Somov, 

C. Frenzel, A. Söderblom, J. Chrapan etc. 

15.2.1.2 Motion of Precession. Regular Precession 

As in Sect. 15.1.2.2, to can appreciate easier the motion of the rigid solid and to can 
make easier the determination of its position, we will consider the motion on the unit 
sphere of centre O of the point Q at which the movable 3Ox -axis pierces it 

(Fig.15.20a); the position of the point Q will be specified by the colatitude θ and by the 
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longitude /2ψ π− . The point Q will describe on the sphere a curve Γ of equation 
( )ψ ψ θ= , contained between the parallels 1θ θ=  and 2θ θ= ; taking into account 

(A.1.41') and adapting the notations, the element of arc on the curve will be given by 
the relation 2 2 2 2 2 2d d sin d d ds s sψθθ θ ψ= + = +  (Fig. 15.20b). The angle V made by 

the curve Γ with a meridian circle at the point Q is given by tanV  
d /d sin d /ds sψ θ θ ψ θ= = . Due to cosu θ= , we have d /d sin d /duψ θ θ ψ= −  

sin d /dt uψ θ= − ; taking into account (15.2.3), (15.2.8), we may write 

 

Fig. 15.20 Motion of precession on the unit sphere (a). The curve Γ on a spheric zone (b) 

( )
0
3

2
tan

1 ( )

a u
V

u P u

α ω−
=

−
, 

 
(15.2.9) 

where we have no more mentioned the sign before the radical. Let us denote by 
0 0
3 3 33/ / 1Ou a K Iα ω ω′′ ′= = ≠ ±  (corresponding to the previous hypothesis) the 

value of u which equates to zero tanV ; from (15.2.8) it results that ψ  vanishes for 

u u ′=  too. If [ ]1 2,u u u′ ∈ , hence if u ′  is not a possible value for u, then ψ  has 

always the same sign (it never vanishes), while ψ varies in the same sense (increasing 

or decreasing); the meridian plane is rotating in the same sense and the point Q 

describes the curve Γ (Fig.15.21a).  We notice that for 1u u=  and 2u u=  we have 
/2V π= , the curve being tangent to the parallels 1θ θ=  and 2θ θ= . If 

( )1 2,u u u′ ∈ , then ψ  changes of sign when u passes through the value u ′ ; the angle 
of precession varies in both senses, while the curve forms loops, being tangent to the 
parallels 1θ θ=  and 2θ θ=  (because /2V π= ) and normal to the parallel θ θ ′=  
(which corresponds to u u ′= ), because tan 0V = . Obviously, the double points are 
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on the same parallel and on the meridians which pass through the points of tangency of 
the curve Γ with the parallel u u ′=  (Fig. 15.21b). It remains to consider the case in 
which 1u u′ =  or 2u u′ = ; in this case ( ) 0P u ′ = , while from (15.2.3) it results 

/u bβ′ = . We calculate the derivative ( )P u′  starting from the relation (15.2.3) or 
from the relation (15.2.3''); in the first case, ( ) ( )2

1 11 0P u b u′ = − − <  and 

( ) ( )2
2 21 0P u b u′ = − − < , while in the second case we have 

( ) ( ) ( )1 2 1 3 1 0P u b u u u u′ = − − >  and ( ) ( ) ( )2 2 1 3 2 0P u b u u u u′ = − − − < . 

Hence, we cannot have 1u u′ = , but only 2u u′ = . The corresponding curve Γ is 
tangent to the parallel 1θ θ= . We notice that the difference 0

3a uα ω−  is of the order 
of magnitude of 2u u− , while ( )P u  is of the order of magnitude of 2u u− , so 

that tan 0V →  for 2u u→ , the curve Γ being tangent to the meridian circle on the 
parallel 2θ θ= . On the other hand, from (15.1.95) it results that 

( )0
3sign sign a uψ α ω= − ( )2sign 1u u= − =  for 2u u< , while ( )2 0uψ = ; 

hence, the angle ψ is constantly increasing, the points at which the curve Γ reaches the 
parallel 2θ θ=  being cuspidal points (Fig.  15.21c). 

 

Fig. 15.21 The drawing of the curve Γ on a zone of the unit sphere. The cases [ ]1 2,u u u′ ∈  

(a), 1 2( , )u u u′ ∈  (b) and 1u u′ =  or 2u u′ =  (c) 

In conclusion, the point Q (hence the axis 3Ox  too) has a motion of nutation and a 
motion of precession between the two parallels 1θ θ=  and 2θ θ= , with the velocity 

3sinθ ψ θ ′= +v n i , 2 2 2 2sinv θ ψ θ= + . Taking into account (15.2.8'), we can show 

that the curve Γ is, in general, an open curve, excepting the case in which 0Ψ  is 

commensurable with π. 
It remains to consider also the case in which 0 0

3 3 33/ / 1Ou a K Iα ω ω′′ ′= = = . From 
(15.2.3) we notice that we can write 
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2 2 0 2 2
3( ) ( )(1 ) ( ) ( )P u bu u a u uβ ω ′= − − − − .  

Hence, if 1u ′ = , then we have ( )1 0P = , so that 2 2cos 1u θ= =  and 2 0θ = , while 
the superior parallel 2u u=  is reduced to the piercing point Q  of the 3Ox ′ -axis on the 

unit sphere; the curve Γ has the form drawn in Fig. 15.21c, the point Q  being a 
multiple cuspidal point. Such a situation takes place, for instance, if the 3Ox -axis 
coincides with the 3Ox ′ -axis at the initial moment (hence 0 0θ = ). We cannot have 

1u ′ = −  because, in this case, we would have 1 1u = −  too, hence 1u u′ = , which we 
have seen that it is not possible. 

The first formula (15.1.95) can be written also in the form 

0 0
3 3 3 3

2 2
dd d

1 1 ( )
I Iu u u u ut

J Ju u P u
ω ω

ψ
′ ′− −= =
− −

, 
 

wherefrom 

( ) ( ) ( )
2

1
0 2

3 3 1 2 3

d
1

u

u

J b u u u
I u u u u u u u

Ψ
ω

′ −=
− − − −∫ , 

 
(15.2.10) 

2 1Ψ ψ ψ= −  representing the variation of the precession in the semi-period T/2. 

Projecting the curve Γ on the equatorial plane (normal to the 3Ox ′ -axis), one obtains a 
curve contained in a circular annulus and successively tangent to the limit circles; the 
angle at the centre in this plane, formed by two successive points of tangency, is the 
apsidal angle Ψ (the angle formed by two meridian planes which pass through two 
successive points of tangency to the parallels 1u u=  and 2u u= ). If the above integral 
has a positive value (e.g., if 2u u′ ≥ ), then ( ) 0

2 1 3sign signψ ψ ω− = , while if the 
integral has a negative value (e.g., if 1u u′ < ), then the precession verifies the relation 

( ) 0
2 1 3sign signψ ψ ω− = − . Following a demonstration given by J.B. Diaz and F.T. 

Metcalf in 1962, if ( )1 2,u u u′ ∈ , then we can write 

( ) ( ) ( ) ( ) ( ) ( )
2 2

1 11 2 3 1 2 3

1 d 1 d2
1 1

u u

u u

u u u uJ
u uu u u u u u u u u u u u

′ ′+ −= −
+ +− − − − − −∫ ∫  

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
2

1

1 2

1 2 3 1 2

1 1 d1
1 1 1 1

u

u

u u uu
u u u u u u u u

′ + ++>
+ + + + − −∫  

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
2

1

1 2

1 2 3 1 2

1 1 d1
1 1 1 1

u

u

u u uu
u u u u u u u u

′ − −−−
− − − − − −∫ , 

where we have used the inequalities 3 3 31 1u u u u− < − < + . But from 
(15.1.90'') one observes that 
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( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 20 2 0
3 3

1 2 3
111 1 1

a a uPu u u
b b b

α ω ω ′+ +−+ + + = − = = ; 

analogously, 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 20 2 0
3 3

1 2 3
111 1 1

a a uPu u u
b b b

α ω ω ′− −
− − − = − = = . 

It results thus 

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

2 2

1 1

1 2 1 2
0
3 1 2 1 1 2

1 1 d 1 1 d
2

1 1
u u

u u

u u u u u ubJ
a u u u u u u u u u uω

+ + − −⎡ ⎤> −⎢ ⎥+ − − − − −⎣ ⎦∫ ∫ . 

By the substitution u v= −  we notice that the second integral in the parenthesis is 
equal to the first one. Moreover, by the substitution ( )1/ 1v u= +  we have 

( ) ( ) ( ) ( ) ( ) ( )2
1 2 1 2 1 2

d d
1 1 1 2 1

u v
u u u u u u u v u u v

= −
+ − − − + + + + + −∫ ∫  

( ) ( )
( ) ( )1 2 1 2

2 11 2

2 2 1 11 arc sin
1 1

u u u u v
u uu u

+ + − + +
=

−+ +
, 

so that the two above equal integrals equate π; as a consequence, 0J > . We find thus 
again a proposition obtained in 1895 by J. Hadamard (corresponding to an affirmation 
of Halphen, based on fastidious demonstrations), by using the method of residues of the 
functions of complex variables; we can state 
Theorem 15.2.1 (Halphen-Hadamard) The apsidal angle Ψ has the same sign as the 
spin 0

3ω  ( 0
3sign signΨ ω= ) if 1u u′ >  and an opposite sign ( 0

3sign signΨ ω= − ) if 

1u u′ < . 

We can show also that the sign of Ψ is the same as the sign of dψ for 1u u=  (the 

lowest position of the point Q on the curve Γ). 
Other researches in this direction have been made by A. Métral. Superior and 

inferior limits for the apsidal angle Ψ have been put in evidence by W. Kohn in 1946, 
being found again – using simpler methods – by Diaz and Metcalf in 1964. 

Analogously, the second formula (15.2.8) allows to calculate the variation of the 
angle of proper rotation in the form ( 2 1Φ ϕ ϕ= − ) 

( )
( ) ( ) ( )

2

1

3
0 2
3 1 2 3

d1
1

u

u

I u u ub u
J u u u u u u u

Φ
ω

′ −⎡ ⎤= −⎢ ⎥− − − −⎣ ⎦∫ . 
 

(15.2.10') 

We assumed above that 1 2u u< ; in the case of a double root ( 1 2 0u u u= = , 
Fig. 15.19b) we have 0( )u t u= , hence 0( )tθ θ= . From the relations (15.2.8) it results 
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that ψ  and ϕ  are constant. Hence, the 3Ox -axis (rigidly linked to the rigid solid) 
describes a circular cone around the 3Ox ′ -axis, called cone of precession, with a 
constant angular velocity ψ  (of precession), while the rigid solid is uniformly rotating 
(with the velocity of proper rotation ϕ ) about the 3Ox -axis. This is the case of a 
regular precession (a uniform motion of precession). The double root 0u  must verify 
the relations ( )0 0P u =  and ( )0 0P u′ = ; eliminating the differences 0buβ −  and 

0
3 0a uα ω−  and taking into account the relations (15.2.8) written for the initial moment 

( ( )0 0tψ ψ=  and ( )0 0tϕ ϕ= ), we get the equivalent conditions 

( )0 2 2
3 3 0 0 3 0 0 3 0 0 3cos cosI J I J I Mgω ψ ψ θ ϕ ψ ψ θ ρ− = − − = , 

 

(15.2.11) 

which must be verified by the initial conditions in the case of the regular precession. If, 
in the Euler-Poinsot case, the ellipsoid of inertia would be of rotation, then the motion 
of precession would be always regular; but, in the Lagrange-Poisson case (the ellipsoid 
of inertia being always of rotation), the regular precession takes place only for 
particular initial conditions. If the conditions (15.2.11) are only approximately verified 
(e.g., in the motion of the Earth, when the angle θ is no more constant), then the motion 
is called pseudoregular precession. 

As a matter of fact, we must mention that also other motions for which the imposed 
integrability conditions are only approximately verified have been considered. Thus, A. 
Pignedoli studied a pseudocase Lagrange-Poisson, in which the mass centre C is no 
more on the 3Ox -axis but is very close to this one, the properties of symmetry with 
respect to this axis being, as well, verified only approximately; A. Pignedoli dealt with 
an Euler-Poinsot pseudocase too for a heavy rigid solid, the centre C of which is very 

close to the fixed point O. 

15.2.1.3 Particular Case. Analogy with the Spherical Pendulum 

In the particular case in which the spin vanishes ( 0
3 0ω = ), the rotation angular velocity 

vector is contained, at any moment, in the plane 1 2Ox x  and has no component along 
the 3Ox -axis. The equation (15.2.3) reads 

2 ( )u P u= ,   ( ) ( )2 2( ) 1P u bu uβ α= − − − . 
 

(15.2.12) 

If we denote /u z l= − , where 3/l J Mρ= , then we find again the equation (7.1.62) 

of the spherical pendulum, in its motion on the sphere of centre O and radius l, studied 
in Chap. 7, Sect. 1.3.7; obviously, we must find a convenient interpretation for the 
corresponding constants. In the relation which specifies the change of variable appears 
the sign −, because the Oz-axis is along the descendent vertical, unlike the 3Ox ′ -axis 
taken along the ascendent vertical. 
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We also notice that u ′ → ±∞ , corresponding to the sign of 3OK ′′ , so that we are in 

the case of the curve Γ in Fig. 15.21a, as we have seen in the preceding subsection. The 
formula (15.2.10) is replaced by 

( ) ( ) ( ) ( )
2

1
2

3 1 2 3

d
1

u

uO

J b u
K u u u u u u u

Ψ
′

=′ − − − −∫ . 
 

(15.2.13) 

One observes easily that the apsidal angle Ψ has the same sign as the constant 
component 3OK ′′  of the moment of momentum. As it has been mentioned in Chap. 7, 
Sect. 1.3.7, in conformity with the results given by V. Puiseux in 1842 and by G. 
Halphen in 1885, we have /2π ψ π< < . Results in this direction have been given by 
A. de Saint-Germain, L. Gérard, A. Weinstein and W. Kohn too. Passing from the 
sphere to a surface of rotation, J.L Synge showed that one cannot put in evidence limits 
of the apsidal angle for an arbitrary such surface. 

As well, the variation of the angle of proper rotation is given by 

( ) ( ) ( ) ( )
2

1
2

3 1 2 3

d
1

u

uO

J b u u
K u u u u u u u

Φ
′

= −′ − − − −∫ . 
 

(15.2.13') 

In conclusion, the motion of the point Q on the unit sphere is analogous to the 
motion of a heavy particle constrained to stay all the time on a sphere (case of the 
spherical pendulum). 

15.2.1.4  Problem of the Regular Precession in the General Case of Motion  
of the Rigid Solid with a Fixed Point 

Considering Euler’s equations, written – in the general case – in the form (15.1.11), we 
put the problem to determine the forces which must act on the rigid solid with a fixed 
point, so that its motion be a regular precession, associated by a uniform proper 
rotation. Hence, let be a rigid solid S  with a fixed point O, which has a motion of 
uniform proper rotation about the movable 3Ox -axis, with the angular velocity ω , the 

3Ox -axis having – at its turn – a uniform motion of precession about the fixed axis 

3Ox ′ , with the angular velocity ′ω . The angular velocity vector will be thus specified 
by (Fig. 15.22) 

0 0
3 3ω ω′ ′ ′= + = +ω ω ω i i , (15.2.14) 

where 0
0ω ϕ= , 0

0ω ψ′ =  correspond to the initial moment 0t t= ; in this case, the 
angle of precession and the angle of rotation will be given by 

( )0
0 0( )t t tϕ ω ϕ= − + ,   ( )0

0 0( )t t tψ ω ψ′= − + , (15.2.14') 

0ϕ  and 0ψ  corresponding to the initial moment 0t t= . The angle of nutation 
( ) ( )3 3, ,θ ′ ′= =ω ω i i  is the constant angle formed by the unit vectors of the axes 

3Ox ′  and 3Ox , being given by 
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0( )tθ θ= , (15.2.14'') 

where 0θ  is the nutation at the initial moment 0t t= . In this case, the relations (5.2.35) 
give the components of the vector ω along the axes of the movable frame of reference 
R  in the form 

( )( )0 0
1 0 0 0( ) sin sint t tω ω θ ω ϕ′= − + , 

( )( )0 0
2 0 0 0( ) sin cost t tω ω θ ω ϕ′= − + , 

0 0
3 0( ) costω ω θ ω′= + . 

 
 

(15.2.15) 

Knowing the components of the tensor of inertia OI  with respect to the frame R, the 
formulae (15.1.11') allow to calculate the moment of the given forces with respect to the 
pole O, characterizing thus the loading which leads to the considered motion. 

 
Fig. 15.22  Canonical decomposition of the vector ω in the problem of the regular  

precession in the general motion of a rigid solid with a fixed point 

In the particular case in which the 3Ox -axis is a principal axis of inertia of the rigid 

solid S  with respect to the pole O (if 31 32 0I I= = ), we can assume that the axes 

1Ox  and 2Ox  are the other principal axes of inertia. Replacing the components of the 
vector ω in the relations (15.1.11'') of Euler, we find the components of the moment 

OM  in the form 

( ) ( )[ ]0 0 0
1 2 3 2 3 01 ( ) cosOM t I I I I Iω ω θ ω′ ′= − + − −  

( )( )0
0 0 0sin cos t tθ ω ϕ⋅ − + , 

( ) ( )[ ]0 0 0
2 3 1 1 3 02 ( ) cosOM t I I I I Iω ω θ ω′ ′= − + + − −  

( )( )0
0 0 0sin sin t tθ ω ϕ⋅ − + , 

( ) ( ) ( )( )20 2 0
1 2 0 0 03

1( ) sin sin 2
2OM t I I t tω θ ω ϕ′= − − − + . 

 
 

 
 

(15.2.16) 
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If the ellipsoid of inertia is an ellipsoid of rotation with respect to the 3Ox -axis (a 
prolate spheroid for which 1 2I I J= = ), then we are led to 

( )[ ] ( )( )0 0 0 0
3 3 0 0 0 01 ( ) cos sin cosOM t I J I t tω ω θ ω θ ω ϕ′ ′= − − − + , 

( )[ ] ( )( )0 0 0 0
3 3 0 0 0 02 ( ) cos sin sinOM t I J I t tω ω θ ω θ ω ϕ′ ′= − − − − + ,  

3 ( ) 0OM t = . 

 

(15.2.17) 

In this case, the moment OM  is in the plane 1 2Ox x  (hence, O ⊥ ωM ) and one can 
easily see that 0iO OiM ω⋅ = =ωM  (hence O ⊥ ωM , so that we have O ′⊥ ωM  

too); hence, the moment OM  is directed along the line of nodes ON (Fig. 15.22) and 
we can write 

( )
0

0 0
3 3 0 00( ) cos sinO t I J I ω

θ ω ω θ
ω

′⎡ ⎤ ′= − −⎢ ⎥⎣ ⎦
M n  

( )
0

3 3 00 cosI J I ω
θ

ω
′⎡ ⎤ ′= − − ×⎢ ⎥⎣ ⎦

ω ω . 

 
 
 

(15.2.17') 

If the support of the angular velocity vector ω is close to the 3Ox -axis, it results that – 
in a first approximation – one can neglect the ratio 0 0/ω ω′  with respect to unity. We 
get thus 

3( )O t I ′= ×ω ωM , (15.2.17'') 

a formula useful in various applications; this formula can be used also if 
( )3 3/ 1J I I− << , becoming an exact one if the ellipsoid of inertia is a sphere. 

15.2.1.5 Geometric Representation of the Motion. Jacobi’s Theorem 

The first integrals (15.2.1'), (15.2.1'') which appear in the motion of the rigid solid S  
with a fixed point, in the Lagrange-Poisson case, may be written also in the form 

0
1 1 2 2 3a uω α ω α ω α+ + = ,   2 2

1 2 buω ω β+ = − ,   0
3 3ω ω= , 

 

(15.2.18) 

using the notions previously introduced. Let be, as well, a rigid solid Σ which has a 
motion of constant rotation ( )0 0

3 3ω ω− i , 0 constω = , about the axis of dynamical 

symmetry of the rigid solid S; if ω  is the angular velocity of the rigid solid Σ with 
respect to the inertial frame of reference ′R , then we have 1 1ω ω= , 2 2ω ω= , 

( )0 0 0 0
3 3 3ω ω ω ω ω= + − = . We choose the angular velocity 0

3ω  so as to have 
0 0

3 3 3I Jω ω= ; in these conditions, the first integrals (15.2.18) become 
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0
1 1 2 2 uω α ω α ω α+ + = ,   2 2

1 2 buω ω β+ = − ,   0
3ω ω= , 

 

(15.2.18') 

where we have introduced a new constant ( )20 2
3 32 /h I a Jβ ω⎡ ⎤= −⎣ ⎦ . If, in 

particular, the ellipsoid of inertia at the fixed point, in the Lagrange-Poisson case, is a 
sphere, then we have 1a = , the first integrals (15.2.18), (15.2.18'), corresponding to 
the motion of the rigid solid S  or of the rigid solid Σ, respectively, having the same 
form. 

The motion of the rigid solid Σ, considered independent of the rigid solid S, takes 
place as it would be acted upon by its own weight, its ellipsoid of inertia being a sphere. 
We can thus state that, in general, the motion of a heavy rigid solid with a fixed point, 
in the Lagrange-Poisson case, may be obtained by the composition of the motion of a 
heavy rigid solid for which the ellipsoid of inertia is a sphere with a motion of constant 
rotation about the axis of symmetry of the ellipsoid of inertia of the considered rigid 
solid. Research concerning the geometric representation of the motion is due to C.G.J. 
Jacobi, E. Lottner, J.J. Sylvester, N.B. Delone etc. 

Using the theory of conjugate motions in the sense of Darboux, one can show that 
the motion of a heavy rigid solid Σ with a fixed point, for which the ellipsoid of inertia 
is a sphere, may be obtained by the composition of a motion of Poinsot type with an 
inverse motion of Poinsot type. The demonstration of this theorem is particularly 
arduous; one puts in evidence, in a constructive form, the two motions, with arbitrary 
initial conditions. 

We notice that the motion of rotation of the rigid solid S  with respect to the rigid 
solid Σ may be considered as a motion of rotation about the normal to the fixed rolling 

plane in the motion of Poinsot type, component of the motion of the rigid solid Σ. 
Taking into account Sylvester’s theorem (see Sect. 15.1.2.10), we can show that, by the 
composition of the motion of rotation considered above with a motion of Poinsot type, 
one obtains a motion of Poinsot type too. The previous results allow to state 
Theorem 15.2.2 (Jacobi) In general, the motion of a heavy rigid solid with a fixed 
point, in the Lagrange-Poisson case, can be obtained by the composition of a motion of 
Poinsot type with an inverse motion of Poinsot type. 

Studies in this direction have been made by E. Padova, G.H. Halphen, G. Darboux, 
W. Hess, E.J. Routh, R. Marcolongo, A.G. Greenhill and F. Kötter too. 

15.2.2 The Sonya Kovalevsky Case 

In 1888, a century after Lagrange’s researches of 1788, Sonya Kovalevsky has been 
awarded by the Academy of Sciences of Paris for her studies concerning what we call 
now the Sonya Kovalevsky case (considered as the IIIrd case of integrability). In this 
case, the ellipsoid of inertia is of rotation, the centre of mass C is situated in its 
equatorial plane, the squares of the semi-axes in this plane being half of the square of 
the semi-axis corresponding to the axis of symmetry ( 1 2 32I I I= = , 3 0ρ = , the 
ellipsoid of inertia being a prolate spheroid); without any loss of generality (the axes in 
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the equatorial plane are equivalent from the point of view of the properties of inertia), 
we can assume that 2 0ρ = , the centre C being thus situated on the 1Ox -axis. 

After obtaining the fourth first integral found by Kovalevsky, one passes to the 
systematic determination of the components of the angular velocity vector ω and to the 
specification of the position of the rigid solid with respect to the inertial frame of 
reference. 

15.2.2.1 First Integrals of the Motion 

In the Sonya Kovalevsky case, the equations (15.1.21) read 

1 2 32 0ω ω ω− = ,   2 3 1 32ω ω ω γα+ = ,   3 2ω γα= − , (15.2.19) 

with 1 3/ constMg Iγ ρ= = , while the first integrals (15.1.42)–(15.1.44) take the 
form 

( )1 1 2 2 3 32 2ω α ω α ω α Ω+ + = , 

( ) ( )2 2 2
1 2 3 12 2ω ω ω γα γ+ + = − − , 

2 2 2
1 2 3 1α α α+ + = , 

 
 

(15.2.20) 

where we have introduced the constants 33 /OK IΩ ′′= , 3/h Iγ = . 
Amplifying the second equation (15.2.19) by i 1= −  and summing with the first of 

these equations, we obtain 

( ) ( )1 2 3 1 2 3
d2 i i i i
dt

ω ω ω ω ω γα+ + + = .  

Proceeding analogously with the equations (14.1.54), we may write 

( ) ( ) ( )1 2 3 1 2 3 1 2
d i i i i i
dt

α α ω α α α ω ω+ + + = + .  

If we eliminate 3α  between these relations, then we get 

( ) ( ) ( ) ( )2 2
1 2 1 2 3 1 2 1 2

d i i i i i
dt

ω ω γ α α ω ω ω γ α α+ − + = − + − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦   

or 

( ) ( )2
1 2 1 2 3

d ln i i i
dt

ω ω γ α α ω+ − + = −⎡ ⎤⎣ ⎦ .  

Replacing i by −i, we obtain an analogous relation; eliminating 3ω  between this relation 
and the previous one, it results 

( ) ( ) ( ) ( )2 2
1 2 1 2 1 2 1 2

d ln i i i i 0
dt

ω ω γ α α ω ω γ α α+ − + − − − =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ .  

356 



www.manaraa.com

15 Dynamics of the Rigid Solid with a Fixed Point 

 

Integrating, we get a fourth algebraic first integral (the Kovalevsky integral) 

( ) ( ) ( ) ( )2 2 2
1 2 1 2 1 2 1 2 0i i i iω ω γ α α ω ω γ α α γ+ − + − − − =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ,  0 constγ = , 

 (15.2.21) 

which can be written also in the form (separating the real parts from the imaginary ones 
in the right parentheses, one obtains a product of sum by difference) 

( ) ( )2 22 2 2
1 2 1 1 2 2 02ω ω γα ω ω γα γ− − + − = . 

 

(15.2.21') 

The constants γ, γ  and 0γ  introduced above have the dimension of an angular 

acceleration, while the constant Ω has the dimension of an angular velocity. 

 

Fig. 15.23  The angle χ in the Sonya Kovalevsky case of integrability 

Introducing the notations 

2 2
1 1 2 1λ ω ω γα= − − ,   2 1 2 22λ ω ω γα= − ,   

2
32

3 12
2
ω

λ ω= + , 
 

(15.2.22) 

we can express the first integral of the mechanical energy and the Kovalevsky integral 
in the form 

3 1λ λ γ− = ,   2 2 2
1 2 0λ λ γ+ = . (15.2.22') 

We notice thus that the trajectory of the representative point P of co-ordinates 

1 2 3, ,λ λ λ  is the intersection of a circular cylinder with a plane, hence an ellipse. The 
components of the velocity of this point are 

1 3 2λ ω λ= ,   2 3 1λ ω λ= − ,   3 3 2λ ω λ= , (15.2.22'') 

where we took into account the equations (14.1.54) and (15.2.19); therefore, we obtain 
( )2 2 2

1 2 1 2 3 1 2 0 3λ λ λ λ ω λ λ γ ω− = − + = − . Projecting the point P along the generatrix 

of the cylinder at P ′ , on the plane 1 2Ox x , we introduce the angle χ made by the radius 
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OP ′  with the 1Ox -axis (Fig. 15.23); observing that 2 1tan /χ λ λ=  and differentiating 
with respect to time (we have ( )2d tan /d 1 tantχ χ χ= + ), we get 

3χ ω= − . (15.2.22''') 

Hence, the motion of the point P ′  takes place as this one would be at the end of a rigid 
bar of length a, articulated at the fixed point, in the equatorial plane (considered to be 
perfectly smooth) of the ellipsoid of inertia. The point would participate to the rotations 

1ω  and 2ω , without being involved in the rotation 3ω ; the angular velocity of the bar 
with respect to the rigid solid is thus 3 3ω− i . 

Let N be the extremity of the vector 3γ ′− i  and N ′  the projection of this point on the 

1 2Ox x -plane; in this case, 1 1 2cosλ γα γ χ′+ = , 2 2 2sinλ γα γ χ′+ = , where 

| |N Pγ ′ ′ ′= , while ( )2 1,N P Oxχ ′ ′= . As well, let Q be the extremity of the vector 

ω applied at O and Q ′  its projection on the 1 2Ox x -plane; denoting | |OQω ′ ′=  and 

( )1 1,OQ Oxχ ′= , it results 2
1 2cos2 cosω χ γ χ′ ′= , 2

1 2sin 2 sinω χ γ χ′ ′= . One 

obtains thus 

2ω γ′ ′= ,   1 22χ χ= . (15.2.23) 

The third relation (15.2.22) and the relations (15.2.23) allow to write 

( )2
3 3 22 2 1 cosω λ γ χ′= − + . (15.2.23') 

Using the relations (5.2.35), (5.2.36), we may express the first two first integrals 
(15.2.20) by means of Euler’s angles; we get 

( )22 sin cos cos 2ψ θ ϕ ψ θ θ Ω+ + = , 

( ) ( ) ( )22 22 sin cos 2 sin sinθ ψ θ ϕ ψ θ γ θ ϕ γ+ + + = − − . 

 
(15.2.24) 

As well, the Kovalevsky first integral may be written in the form 

( ) 22 2 2sin cos2 2 sin sin 2 sin sinθ ψ θ ϕ θψ θ ϕ γ θ ϕ− + −⎡ ⎤⎣ ⎦  

( ) 22 2 2 2
02 sin cos2 sin sin 2 sin cosθψ θ ϕ θ ψ θ ϕ γ θ ϕ γ+ − − − =⎡ ⎤⎣ ⎦ , 

 

wherefrom 

( ) ( )22 2 2 2 2 2sin 2 sin sinθ ψ θ γ θ ψ θ ϕ+ + −⎡⎣  
2 2 2

02 sin cos sin sinθψ θ ϕ θ γ θ γ− + =⎤⎦ . 

 
 

(15.2.24') 
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Thus, we have at our disposal three differential equations for the three unknown 
functions (Euler’s angles). 

The system of equations (14.1.54), (15.2.19) contains the time only under the 
differential operator; taking into account the results in Sects. 15.1.1.4 and 15.1.1.5, we 
can affirm that this system, of the form (15.1.22), may be replaced by a system of only 
five differential equations, of the form (15.1.24), for which we know the four first 
integrals (15.2.20), (15.2.21'). Using Jacobi’s last multiplier theory, one obtains the fifth 
first integral. Hence, the complete system of first integrals of the system of equations 
(14.1.54), (15.2.19) is obtained with the aid of two quadratures. Euler’s angles θ and ϕ 
are then given by the relations (5.2.36) in the form 

3arc cosθ α= ,   1

2
arctan

α
ϕ

α
= , 

 

(15.2.25) 

while the angle ψ results from the third relation (5.2.35) (we use the equations (14.1.54) 
and the first first integral (15.2.20)) 

( ) 1 2 2 1
3 3 2 2

3 1 2

1 1
cos

α α α α
ψ ω ϕ ω

θ α α α
−⎛ ⎞= − = −⎜ ⎟+⎝ ⎠

 

( )3 3 31 1 2 2
2 2 2 2
1 2 3

/2 /2 cos
1 sin

Ω ω α Ω ω θα ω α ω
α α α θ

− −+
= = =

+ −
, 

 
 
 
 

(15.2.25') 

by a quadrature. 
The general problem put by Sonya Kovalevsky has been considered again by N.E. 

Jukovskiĭ, G.K. Suslov, F. Kötter, G.V. Kolosov and W. von Tannenberg; the particular 
case 0 0γ =  has been studied by N.B. Delone, G.G. Appelrot and B.K. Mlodzevenski. 
Various researchers hoped that one can use the method introduced by Kovalevsky also 
for other problems, expressing – conveniently – the given conservative forces by means 
of certain potential functions; but E. Padova showed in 1895 that this is not possible, 
the problem being always reduced – from the mathematical point of view – to the 
problem studied by Kovalevsky. 

15.2.2.2 Changes of Variables 

The problem is put to give to the first integrals a convenient form, so that the two 
quadratures which must be effected have a much simpler form. Introducing the complex 
variables 

1 1 2ix ω ω= + ,   2 1 2ix ω ω= − ,   1 1 2iξ λ λ= + ,   2 1 2iξ λ λ= − , (15.2.26) 

Sonya Kovalevsky succeeds to express all the searched quantities by means of some 
hyperelliptic functions of the first kind. Therefore, it results 

1 1 22 x xω = + ,   ( )2 2 12 i x xω = − ,   1 1 22λ ξ ξ= + ,   ( )2 2 12 iλ ξ ξ= − ,  

and the relations (15.2.22) give 
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( )2 2
1 1 2 1 22 x xγα ξ ξ= + − + ,   ( ) ( )2 2

2 2 1 2 12 i ix xγα ξ ξ= − − − .  

Taking into account the first two equations (15.2.19), we find the differential equations 
which are verified by the functions 1 1 ( )x x t=  and 2 2 ( )x x t=  in the form 

1 3 1 32ix xω γα= − ,   2 3 2 32ix xω γα− = − . (15.2.26') 

The first integrals (15.2.20) take the form 

( ) ( )1 2 1 2 1 2 2 1 3 3 2x x x x x xξ ξ γω α γΩ+ − + + = , 

( ) ( )2 2
1 2 1 2 3 2x x ξ ξ ω γ+ − + + = , 

( )2 2 2 2 2 2 2 2
1 2 1 2 2 1 3 0x x x xξ ξ γ α γ γ− + + = − , 

 
 

(15.2.27) 

where we took into account the Kovalevsky integral 

2
1 2 0ξ ξ γ= . (15.2.27') 

We amplify successively the first two equations (15.2.27) by 12x− , 22x− , 
( )1 2x x− +  and by 2 2

1 2 1 2, ,x x x x , respectively; summing then with the third equation 
(15.2.27), we obtain 

( ) ( ) ( )2 2
3 1 3 1 1 1 2x P x x xω γα ξ− = + − , 

( ) ( ) ( )2 2
3 2 3 2 2 1 2x P x x xω γα ξ− = + − , 

( ) ( ) ( )3 1 3 3 2 3 1 2,x x R x xω γα ω γα− − = , 

 
 

(15.2.28) 

where we have denoted 

2( ) 2P x Ax Bx C= + + ,   ( ) ( )1 2 1 2 1 2,R x x Ax x B x x C= + + + , 

( )21 22A x xγ= − + ,   ( )1 2 1 22B x x x xγΩ= − + + , 
2 2 2 2

0 1 2C x xγ γ= − − . 

 
 

(15.2.29) 

Eliminating 1ξ  and 2ξ  between the first two equations (15.2.28) and the equation 
(15.2.27'), we find 

( ) ( ) ( ) ( ) ( )2 2 22
3 1 3 1 3 2 3 2 0 1 2x P x x P x x xω γα ω γα γ− − − − = −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ .  (15.2.28') 

From this equation and the third equation (15.2.28), we can express the binomials 
3 1 3xω γα−  and 3 2 3xω γα−  as functions of 1x  and 2x , finding thus the differential 

equations of first order verified by the functions 1 1 ( )x x t=  and 2 2 ( )x x t= . 
Eliminating the above mentioned binomials between the relations (15.2.28) and taking 
into account (15.2.27'), we find the relation 
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( ) ( ) ( ) ( )22 2
1 2 2 1 0 1 2 1 2,P x P x x x Q x x B ACξ ξ γ+ + − = = − . 

 

(15.2.30) 

The identity 

( ) ( ) ( ) ( ) ( )2 2
1 2 1 2 1 2 1 2, ,P x P x x x Q x x R x x+ − =  (15.2.30') 

holds too. 
The equations (15.2.27') and (15.2.29) may be written also in the form 

( )[ ] ( )[ ] ( ) ( )2 2 22
1 2 2 1 1 2 0 1 2,P x P x Q x x x xξ ξ γ+ = − − ,   1 2 0ξ ξ γ= , 

wherefrom 

( ) ( )[ ] ( )2
1 2 2 1 1 2,P x P x Q x xξ ξ± =  

( ) ( ) ( )22
1 2 0 0 1 22 P x P x x xγ γ± − − . 

We may write 

( ) ( ) ( ) ( )
2

2 1
1 2 1 0 2 0

1 2 1 2

P x P x
w w

x x x x
ξ ξ γ γ⎡ ⎤± = ±⎢ ⎥− −⎣ ⎦

∓  

( ) 2
1 2 0 1 2 0w w w wγ γ= ± − −  

 
 
 

(15.2.31) 

too, where 

( )
( ) ( ) ( )[ ]1,2 1 2 1 22

1 2

1 ,w R x x P x P x
x x

= ±
−

 
 

(15.2.31') 

are the roots of the equation (we take into account also the identity (15.2.30')) 

( )
( )

( )
( )

1 2 1 22
2 2

1 2 1 2

, ,
2 0

R x x Q x x
w w

x x x x
− + =

− −
, 

 

(15.2.31'') 

which has always real roots for 1 2,x x  complex conjugate numbers. 

15.2.2.3 Reduction of the Problem to Ultraelliptic Integrals 

We introduce also the polynomial 

4 2 2 2
0( ) 2 4P x x x xγ γΩ γ γ= − + − + − , (15.2.29') 

which has the properties ( ) ( )j jP x P x= , 1,2j = . Following Weierstrass’s theory 
concerning the elliptic integrals, one can verify the relations 
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( ) ( ) ( )
1 2 1

1 2 1

d d d
2

x x s
P x P x sϕ

− + = , 

( ) ( ) ( )
1 2 2

1 2 2

d d d
2

x x s
P x P x sϕ

+ = , 

 
 

(15.2.32) 

where 

( )2 2 2 2 2( ) 2s s sϕ γ γ γ γ Ω= − + − −⎡ ⎤⎣ ⎦  
 

(15.2.32') 

is the Euler resolvent of the equation ( ) 0P x =  and where we have introduced Sonya 
Kovalevsky’s variables 

1 1s w γ= + ,   2 2s w γ= + . (15.2.32'') 

The zeros 1 2 3, ,e e e  of the polynomial ( )sϕ  can be expressed by means of the zeros 

1 2 3 4, , ,ε ε ε ε  of the polynomial ( )P x  in the form 

( )21 1 2
1
2

e ε ε= + ,   ( )22 1 3
1
2

e ε ε= + ,   ( )23 1 4
1
2

e ε ε= + . 
 

(15.2.33) 

We mention that one may use the Aronhold resolvent too in the form 

3
2 3( ) 4s s g s gψ = − − , 

( )2 2 2
2 0

1
3

g γ γ γ= − − + ,   ( )2 2 2 2 3
3 0

1 1
3 27

g γ γ γ γ Ω γ= − − + − . 

 
(15.2.34) 

Starting from the equations (15.2.31) and using the Kovalevsky variables and the 
notations 

04e γ γ= + ,   5 0e γ γ= − , (15.2.33') 

we obtain 

( ) ( ) ( ) ( ) ( )2
5 51 1 2 1 24 4

1 2
2

P x
s e s e s e s e

x x
ξ = − − + − −

−
, 

( ) ( ) ( ) ( ) ( )1
5 52 1 2 1 24 4

1 2
2

P x
s e s e s e s e

x x
ξ = − − − − −

−
. 

 
 

(15.2.35) 

Noting that 

( ) ( )
( )

( ) ( )2 21 2
1 2 1 22

1 2
4

P x P x
w w s s

x x
= − = −

−
  

and taking into account the relations (15.2.35) and the identities 
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( ) ( ) ( ) ( ) ( ) 22
5 51 2 1 2 1 24 4s s s e s e s e s e− + − − ± − −⎡ ⎤⎣ ⎦  

( ) ( ) ( ) ( ) 2
5 51 1 2 24 4s e s e s e s e= − − ± − −⎡ ⎤⎣ ⎦ , 

 

the relations (15.2.28) allow to write 

( )
( ) ( ) ( ) ( )3 1 3

5 51 1 2 24 4
1 21

1 ,
x

s e s e s e s e
s sP x

ω γα−
= − − + − −⎡ ⎤⎣ ⎦−

( )
( ) ( ) ( ) ( )3 2 3

5 51 1 2 24 4
1 22

1 .
x

s e s e s e s e
s sP x

ω γα−
= − − − − −⎡ ⎤⎣ ⎦−

 

 
 

(15.2.36) 

Taking into account the relations (15.2.26'), (15.2.32) and (15.2.36), we get 

( )
( ) ( )1

51 14
1 21

d i d
2

s
s e s e t

s ssϕ
= − −

−
, 

( )
( ) ( )2

52 24
1 22

d i d
2

s
s e s e t

s ssϕ
= − − −

−
. 

 

Introducing the polynomial of fifth degree 

( ) ( ) ( ) ( ) ( ) ( ) ( )5 51 2 34 4( ) ( )s s e s e s s e s e s e s e s eΦ ϕ= − − = − − − − −  
 (15.2.37) 

and effecting a linear combination, it results 

( ) ( )
1 2

1 2

d d
0

s s
s sΦ Φ

+ = , 

( ) ( )
1 1 2 2

1 2

d d
2id

s s s s
t

s sΦ Φ
+ = . 

 
 

(15.2.37') 

We can apply Jacobi’s theory of the last multiplier to this system of differential 
equations. If 

d( )
( )
sF s
sΦ

= ∫ ,   d( )
( )

s sG s
sΦ

= ∫ , 
 

(15.2.38) 

then we get 

( ) ( )1 2 1F s F s C+ = ,   ( ) ( )1 2 2iG s G s t C+ = − + , (15.2.38') 

where 1C  and 2C  are integration constants. Finally, it results ( )1 1 1 2; ,s s t C C= , 
( )2 2 1 2; ,s s t C C= . 

If an integrand is a rational function of the form ( ), ( )S s sΦ , where ( )sΦ  is a 
polynomial of degree greater than four, the corresponding integral is called, in general, 
hyperelliptic integral; if the degree of the polynomial is five or six, the respective 
integrals are called also ultraelliptic integrals. In the Sonya Kovalevsky case, the 
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problem of the rotation of a heavy rigid solid about a fixed point is reduced thus to the 
inversion of a system of two ultraelliptic integrals. 

If the roots 1 2 3, ,e e e  are distinct and if ( )sϕ ′  is the derivative of the function ( )sϕ , 
then one can calculate the components of the vector ω, contained in the equatorial plane 
of the ellipsoid of inertia, in the form 

3

1
1 3

1

( )

2
( )

e e
P

e
e P
e

γβ
α

αα

α
α

αα

ϕ
ω

ϕ

=

=

′
= −

′

∑

∑
,   2 3

1

i

2
( )
e P
e
α

α
αα

ω

ϕ=

=

′∑
, 

α β γ α≠ ≠ ≠ ,   β γ< ,   , , 1,2,3α β γ = , 

 
 
 
 
 

(15.2.39) 

where we have introduced the functions 

( ) ( )1 2P s e s eα α α= − − ,   1,2, 3α = , 
 

(15.2.39') 

symmetric with respect to 1s  and 2s , hence which can be expressed by means of the 
theta elliptic functions. Analogously, we get 

3

1
3 3

1

( )
2

( )

e P
e
e P
e

α
βγ

αα

α
α

αα

ϕ
ω

ϕ

=

=

′
=

′

∑

∑
,   

3

1
3 3

1

( )1

( )

e e
P

e
e P
e

γβ
βγ

αα

α
α

αα

ϕ
α

γ
ϕ

=

=

′
= −

′

∑

∑
, 

α β γ α≠ ≠ ≠ ,   β γ< ,   , , 1,2,3α β γ = , 

 
 
 
 
 

(15.2.40) 

with 

( )
( ) ( )

( )
( ) ( )

1 2

1 2 1 1 2 2

P P s s
P P

s s s e s e s e s e
γβ

βγ γβ
γ γβ β

Φ Φ⎡ ⎤
= = −⎢ ⎥− − − − −⎣ ⎦

, 

β γ≠ ,   , 1,2, 3β γ = . 

 
 
 

(15.2.40') 

The direction cosines are then given by the first two first integrals (15.2.20). 

15.2.3 Other Cases of Integrability 

The success of Sonya Kovalevsky is due, especially, to a new more general formulation 
of the problem of motion of the rigid solid with a fixed point by means of the concepts 
of the theory of analytic functions of complex variable. The general solution can be 
expressed, in this case, with the aid of the elliptic functions of the time t; the elliptic 

functions are uniform analytic functions for all finite values of t, excepting some points 

in the complex plane t, in which these functions have poles of first order. In this order 
of ideas, Kovalevsky has worked to the problem of finding all the cases in which the 
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general solution, which contains five arbitrary constants, is uniform and has no other 
singularities, excepting the poles, for all the finite values of t, t being a complex 
variable; this solution has been searched in the form of the expansion into a power 
series 

( )

0

1
i

i n
ni n

n
t

t
ω ω

∞

=
= ∑ ,   ( )

0

1
i

i n
ni m

n
t

t
α α

∞

=
= ∑ ,   ,i in m ∈ ,   1,2,3i = , 

 

(15.2.41) 

where the coefficients ( )i
nω  and ( )i

nα  must satisfy some conditions. Sonya Kovalevsky 
has chosen the values 1in =  and 2im = , 1,2,3i = , the problem of uniqueness of 
this system of values remaining open. 

Kovalevsky said that only the three cases of integrability considered above are 
possible, as well as the case of kinetic symmetry in which the ellipsoid of inertia is a 
sphere ( 1 2 3I I I I= = = ). In the latter case, starting from Euler’s equation (15.1.21'') 
and by means of a scalar product by ρ, we may write ( )[ ]d /d 0O t⋅ =ω ρI , 
wherefrom ( ) constO ⋅ω ρ =I ; the tensor OI  being spheric, we have 

j j hω ρ Ω⋅ = =ω ρ ,   , consthΩ = , (15.2.42) 

hence a fourth algebraic first integral. Taking into account that any co-ordinate axis is a 
principal axis of inertia, that case is a Lagrange-Poisson one. These statements have 
been justified, using other methods than those of Sonya Kovalevsky, by A.M. 
Lyapunov and G.G. Appelrot, the general theorems concerning the uniformity of the 
solutions being considered in what follows. 

We will present also the most important particular cases of integrability, as well as 
other cases of loading in the dynamics of the rigid solid with a fixed point. 

15.2.3.1 General Theorems Concerning the Uniformity of the Solution 

We consider that the four cases of integrability mentioned above (the Euler-Poinsot 
case, the Lagrange-Poisson case, the Sonya Kovalevsky case and the case of kinetic 
symmetry) are the classical cases of integrability. In what concerns the uniformity of 
the solution, we can – firstly – state 
Theorem 15.2.3 (S. Kovalevsky) In general, excepting the classical cases of 
integrability, the equations of Euler and Poisson do not allow uniform solutions which 
depend on five arbitrary constants and have not other singularities excepting poles in 
the whole complex plane t. 

We notice that Sonya Kovalevsky did not consider also the case in which the 
solutions can be uniform, having essential singularities besides the poles. Lyapunov 
showed that such solutions cannot be uniform on the whole complex plane t (excepting 
the four mentioned cases) because, by a convenient choice of the initial values, they can 
become multiform functions of the time t. We can thus state 
Theorem 15.2.4 (A.M. Lyapunov) If the principal moments of inertia jI , 1,2, 3j = , 
are real and non-zero quantities and if the co-ordinates iρ , 1,2,3i = , of the centre of 
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mass are real quantities too, then the classical cases of integrability are the only cases 
in which the functions ( )i tω  and ( )i tα , 1,2,3i = , are uniform functions of the time t 
for arbitrary initial values of these unknowns. 

We consider the particular solutions 

i
i

a
t

ω = ,   2
i

i
b
t

α = ,   1,2,3i = , 
 

(15.2.43) 

where the constants ia , ib  are not all zero; replacing in the equations of Euler and 
Poisson, we find the conditions 

( ) ( )1 1 2 3 2 3 3 2 2 3I a I I a a Mg b bρ ρ+ − = − , 
( ) ( )2 2 3 1 3 1 1 3 3 1I a I I a a Mg b bρ ρ+ − = − , 
( ) ( )3 3 1 2 1 2 2 1 1 2I a I I a a Mg b bρ ρ+ − = − , 

 
 

(15.2.43') 

2 0i jijl lb b a+ ∈ = ,   1,2,3i = . (15.2.43'') 

If the ellipsoid of inertia relative to the pole O is not of rotation, one uses the particular 
solution 

( ) ( )
2 3

1
1 2 1 3

i
I I

a
I I I I

= −
− −

,   
( ) ( )

3 1
2

1 2 2 3

I I
a

I I I I
= −

− −
, 

( ) ( )
1 2

3
1 3 2 3

i
I I

a
I I I I

= −
− −

, 

 
 

(15.2.44) 

1 2 3 0b b b= = = . (15.2.44') 

In the case in which the ellipsoid of inertia is of rotation, one of the components 
1 2 3, ,ρ ρ ρ  vanishes and we can use the solution (for 2 0ρ = ) 

1 3 0a a= = ,   2 2ia = ,   
( )

2
1 3

3 1

2 i
i

i
I

b b
Mg ρ ρ

= =
+

,  2 0b = . 
 

(15.2.45) 

If 1 0ρ =  or 3 0ρ = , then one uses analogous solutions. 
To the initial moment 0t t=  correspond the initial conditions 0

i iω ω=  and 
0

i iα α= , 1,2,3i = ; in this case, the general solution of the system (15.1.21), 
(14.1.54) varies continuously with these parameters. At a variation of at least one of 
these parameters correspond variations of the solution, which will be of the form 

i iω δω+ , i iα δα+ , 1,2,3i = . These new solutions must verify the considered 
system of equations; subtracting now the latter system thus obtained, we find the 
conditions which must be verified by the variations iδω  and iδα , 1,2,3i = , in the 
form 

( ) ( ) ( ) ( )1
1 3 2 2 3 3 2 3 2 2 3

d
d

I I I Mg
t
δω

ω δω ω δω ρ δα ρ δα+ − + = − ,  
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( ) ( ) ( ) ( )2
2 1 3 3 1 1 3 1 3 3 1

d
d

I I I Mg
t
δω

ω δω ω δω ρ δα ρ δα+ − + = − , 

( ) ( ) ( ) ( )3
3 2 1 1 2 2 1 2 1 1 2

d
d

I I I Mg
t

δω
ω δω ω δω ρ δα ρ δα+ − + = − , 

(15.2.46) 

( ) ( )d 0
d

i
j jijk k kt

δα
ω δα α δω+ ∈ + = ,   1,2,3i = . 

 

(15.2.46') 

Replacing the particular solutions (15.2.43), we obtain the system 

( ) ( ) ( ) ( )1
1 3 2 2 3 3 2 3 2 2 3

d
d

I t I I a a Mgt
t
δω

δω δω ρ δα ρ δα+ − + = − , 

( ) ( ) ( ) ( )2
2 1 3 3 1 1 3 1 3 3 1

d
d

I t I I a a Mgt
t
δω

δω δω ρ δα ρ δα+ − + = − , 

( ) ( ) ( ) ( )3
3 2 1 1 2 2 1 2 1 1 2

d
d

I t I I a a Mgt
t
δω

δω δω ρ δα ρ δα+ − + = − , 

 
 
 

(15.2.47) 

( ) ( )2 d 0
d

i
j jijk k kt a t b

t
δα

δα δω+ ∈ + = ,   1,2,3i = . 
 

(15.2.47') 

This system allows non-zero solutions of the form k
i ik tδω = , 1

3
k

i ik tδα −
+= , 

1,2,3i =  (the system of six linear equations in ik , 3ik + , 1,2,3i = , has non-trivial 

solutions) if the exponent k is a root of the equation of six degree 

( ) ( )

( ) ( )

( ) ( )

1 3 2 3 3 2 2 3 2

1 3 3 2 1 3 1 3 1

2 1 2 2 1 1 3 2 1

3 2 3 2

3 1 3 1

2 1 2 1

0

0

0
0

0 1

0 1

0 1

I k I I a I I a Mg Mg

I I a I k I I a Mg Mg

I I a I I a I k Mg Mg

b b k a a

b b a k a

b b a a k

ρ ρ

ρ ρ

ρ ρ
Δ

− − −

− − −

− − −
≡ =

− − −

− − −

− − −

. 

 (15.2.48) 

We notice that iω  and iα  are uniform functions if the variations iδω  and iδα  have the 
same property too; in this case, it is necessary and sufficient that the roots of the 
equation (15.2.48) be integers (k ∈ ) and that a multiple root of mth order equates to 

zero all the minors of an order greater than m of the determinant Δ. 
We assume firstly that 1 2 3 0I I I> > > . Using the solution (15.2.44), (15.2.44'), 

the equation (15.2.48) takes the form (product of two minors of third order) 

( ) ( )3 21 4 0k k k− − = . 
 

(15.2.48') 

The roots of this equation are 0,1, 2± ∈ ; on the other hand, all the minors of fourth 
and fifth order must vanish for the triple root 1k = . Thus, the minor of fourth order, 
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obtained by eliminating the second and the third columns and the third and the fourth 
lines, leads to (for 1k = ) 

( )
1 3 2

1 3 3 3 1

3 1

2 1

0

0
0

0 0

0 0

I Mg Mg

I I a Mg Mg

a a

a a

ρ ρ

ρ ρ

−

− −
=

−

−

. 

 

Developing and taking into account (15.2.44), we get 

( ) ( ) ( )1 1 2 3 2 2 3 1 3 3 1 2 0I I I I I I I I Iρ ρ ρ− + − + − = . (15.2.49) 

The middle term being imaginary (we take into account the relation of order of the 
moments of inertia), it results 

2 0ρ = ,   ( ) ( )1 1 2 3 3 3 1 2 0I I I I I Iρ ρ− + − = . (15.2.49') 

This case, which has not been noticed by Kovalevsky and which has been put in 
evidence by Appelrot in 1892, has been found for the first time by W. Hess in 1890. 
Afterwards, N.E. Jukovskiĭ, B.K. Mlodzeevski and P.A. Nekrasov have made studies in 
this direction, the latter one showing that for 1 3, 0ρ ρ ≠  one obtains multiform 

solutions of the time t if one chooses convenient values for the initial conditions. 
Indeed, for 2 0ρ =  and for the solutions (15.2.45), the equation (15.2.48) leads to 

(permuting lines and columns, to can represent Δ as a product of two determinants of 
third order) 

( )

( )

( )
( )

( ) ( )

2 3 1

2

3 1

2

3 1

2 1 3 1

2 2

3 1 3 1

3 21 3
2

1 2i 0
i

2
2i 1

i

2i

2i

2 2 i
1

i i

I k Mg Mg

I
k

Mg
I

k
Mg

I II k Mg

I I I k Mg

I I
k

Mg Mg

ρ ρ

ρ ρ

ρ ρ

ρ

ρ

ρ ρ ρ ρ

−

− =
+

− − −
+

− −

−

− −
+ +

. 

Developing, we obtain 

( ) ( ) ( )[ ] ( ) ( ) ( ) ( )2 1 3 1 2 2 31 2 3 2 1 2 2I k k k k I I k k I I I I⎧ ⎡− + − − + + − −⎨ ⎢⎩ ⎣
 

( ) ( )1 1 3
2 1 3 2 2

1 3

i
2 0I I I

ρ ρ ρ
ρ ρ

+ ⎫⎤− − =⎬⎥+ ⎭⎦
.                        (15.2.50) 

Equating to zero the second right parenthesis, we get k ∈  for 1 3, 0ρ ρ ≠ , in the 
hypothesis made concerning the relation of order of the principal moments of inertia 
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one can have uniform solutions only for 1 2 3 0ρ ρ ρ= = = , hence only in the Euler-
Poinsot case. 

Assuming now that the ellipsoid of inertia relative to the fixed point is of rotation (to 
fix the ideas, let be 1 2I I J= = ), we can take 2 0ρ =  without any loss of generality; 

making 2 0ρ =  in (15.2.48), we find again the equation (15.2.50). The equation in k 
obtained by equating to zero the second right parenthesis has real roots if we have also 

1 3I I=  (case of kinetic symmetry) or if we have 1 0ρ =  too (Lagrange-Poisson case) 
or, finally, if 3 0ρ = ; in this last case, it results ( ) ( )31 2 / 1k k J I+ = − , so that we 
must have 3/J I ∈ . If 3 0ρ = , then the system (15.2.43'), (15.2.43'') allows also the 
solution 

1 2 0a a= = ,   3 2ia = ,   
( )

3
2 1

1 2

2 i
i

i
I

b b
Mg ρ ρ

= =
+

,   3 0b = , 
 

(15.2.45') 

corresponding the equation of second degree in k 

( ) ( ) ( ) ( ) ( )2 2 1
1 2 2 3 1 3 3 1 2 2 2

1 2

i
1 2 2 2 0I I k k I I I I I I I

ρ ρ ρ
ρ ρ

+
+ − − − + − =

+
. 

 (15.2.50') 

If 1 2I I J= = , then this equation is reduced to 

( ) ( )3 32 2
2 1 0

I I
k k

J J
+ − − + = , 

 

(15.2.50'') 

so that we must have 32 /I J ∈  too. These conditions can be fulfilled simultaneously 
only if 3/ 1J I =  (case of kinetic symmetry) or if 3/ 2J I =  (Sonya Kovalevsky 
case). 

From the study made for the three cases of integrability it results that the solutions 
thus obtained are uniform, the above obtained necessary conditions of uniformity being 
sufficient too. The Theorems 15.2.3 and 15.2.4 are thus completely justified. Lyapunov 
showed that these results hold also for arbitrary real initial conditions, as well as in the 
case of initial conditions of the form (15.1.19'), which verify the condition 0 0 1i iα α = . 

A great number of scientists searched for a century (till now) various cases of 
integrability, corresponding to particular initial conditions (restrictions imposed to the 
energy constant h, to the constant 3OK ′′  of the moment of momentum etc.). In a 
unfinished manuscript, S.A. Chaplygin tried to find all these cases of integrability by a 
unique method; as a matter of fact, this was not possible till now. One can say that the 
literature in this direction is one of special cases. 
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W. Hess has considered in 1890 the case in which: (i) the mass centre of the rigid solid 
is on the normal at the fixed point to one of the planes of circular section of the 
ellipsoid of gyration, assuming that the latter one is not of rotation; (ii) at the initial 
moment, the moment of momentum is situated in the respective plane of circular 
section. This case has been studied again by G.G. Appelrot, P.A. Nekrasov, B.K. 
Mlodzeevski, N.E. Jukovskiĭ, S.A. Chaplygin, R. Liouville and others, due to its 
importance. T. Manacorda considered in 1950 the case in which the moment of the 
given external forces with respect to the fixed point is normal to the straight line OC, 
concluding that the moment of momentum O′K  must have the same property (verifying 
the considerations of Hess and Appelrot). 

The equations of the planes of circular section are obtained by the intersection of the 
ellipsoid of gyration (15.1.64) with the sphere 2 2 2

1 2 3 2 /x x x I M+ + =  (the radius of 
which is the mean semi-axis of the ellipsoid of gyration), being thus given by 

2 2
1 3

1 2 3 2

1 1 1 1 0x x
I I I I

⎛ ⎞ ⎛ ⎞− + − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 
 

Let 

( ) ( )1 3 1 2 3 1 2 3 0x I I I x I I I− − − =   

be the equation of one of these planes; putting the condition that the vector ρ be normal 
to this plane (corresponding to the hypothesis i)), we find again the relations (15.2.49'). 

Euler’s equations (15.1.21) become 

( )1 1 3 2 2 3 3 2I I I Mgω ω ω ρ α+ − = , 
( ) ( )2 2 1 3 3 1 1 3 3 1I I I Mgω ω ω ρ α ρ α+ − = − , 

( )3 3 2 1 1 2 1 2I I I Mgω ω ω ρ α+ − = − . 

 
 

(15.2.51) 

Eliminating 2α  between the first and the third equations, it results 

( ) ( )[ ]1 1 1 3 3 3 2 2 3 1 3 1 2 3 1I I I I I Iρ ω ρ ω ω ρ ω ρ ω+ = − + − .  

We notice that the second relation (15.2.49') can be decomposed in the form 

2
1 2 1 1I I CI ρ− = ,   2

2 3 3 3I I CI ρ− = ,   constC =   

being thus led to the differential equation 

( ) ( )1 1 1 3 3 3 1 3 2 1 1 1 3 3 3
d
d

I I C I I
t

ρ ω ρ ω ρ ρ ω ρ ω ρ ω+ = + .  

We obtain a fourth first integral 

1 1 1 3 3 3 0I Iρ ω ρ ω+ =  (15.2.52) 
if we have 

15.2.3.2 The Hess’s Case. The Loxodromic Pendulum 
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0 0
1 1 1 3 3 3 0I Iρ ω ρ ω+ =  (15.2.52') 

at the initial moment 0t t= . The components of the moment of momentum at the initial 
moment 0

O′K  being 0 0 0
1 1 2 2 3 3, ,I I Iω ω ω , we notice that the relation (15.2.52') is 

equivalent to 0 0O′ ⋅ =ρK , corresponding to the hypothesis (ii). 
By particularizing the conditions (15.2.49'), we obtain the Euler-Poinsot case 

( 1 2 3 0ρ ρ ρ= = = ) or the Lagrange-Poisson case ( 1 2I I= , 1 2 0ρ ρ= = ); unlike 
these cases, in which the initial conditions are arbitrary, in Hess’s case the initial 
conditions must verify the relation (15.2.52'), so that one does not obtain a general 
solution for a certain repartition of masses, but only a particular one. 

N.E. Jukovskiĭ gave an interesting geometric interpretation to Hess’s motion. We 
notice that, in the frame of reference ′R , the velocity C′ = ×ω ρv  of the mass centre 
has the components 

2 31Cv ω ρ′ = ,   3 1 1 32Cv ω ρ ω ρ′ = − ,   2 13Cv ω ρ′ = − .  

If 
( ) ( )C

CO M′ ′= ×ρK v ,   1 1 1 2 2 2 3 3 3O I I Iω ω ω′ = + +K i i i , 

( ) 21
2

C
CT Mv′ = ,   ( )2 2 2

1 1 2 2 3 3
1
2

T I I Iω ω ω′ = + + , 

 

where ( )C
O′K  and ( )CT ′  are the moment of momentum with respect to the pole O and 

the kinetic energy of the mass centre, at which we suppose that the whole mass of the 
rigid solid is concentrated, respectively, and if we take into account the second 
condition (15.2.49') and the first integral (15.2.52), then we find the relation 

( ) 2C
OO ε′ ′=K K ,   ( ) 2CT Tε′ ′= ,   

2i
ρ

ε = ,   2
2

I
i

M
= . 

 

(15.2.53) 

Noting that we can write 33 j jρ ρ α′ ′= ⋅ =ρi  in the frame of reference ′R  and 

introducing the polar co-ordinates Cρ ′ , ψ for the projection C ′  of C on the fixed plane 

1 2Ox x′ ′ , we express the first integrals (15.1.42'), (15.1.43') in the form 

2
3C OKρ ψ′ ′′= ,   2

3
1
2 CMv Mg hρ ′′ = − + ,   2

3 3O OK Kε′ ′′ ′= ,   2h hε= ,   2g gε= . 

 (15.2.53') 

Taking into account the results in Chap. 7, Sect. 1.3.7, we see that the centre of mass C 
is moving as a spherical pendulum acted upon by a gravitational field of conventional 
acceleration g . 

To put in evidence the rotation of the rigid solid about the straight line OC, we 
consider the velocity Av  of the extremity 2(0, , 0)A i  of the mean axis of the ellipsoid 
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of gyration, of components 2 31Av i ω= − , 2 0Av = , 2 13Av i ω=  and of magnitude 
given by ( )2 2 2

1 3 2Av iω ω= + . We obtain 

( ) ( )
( )

1 3 1 2 3
2 1

3 2 3
A

I I I I I
v i

I I I
ω

− − +
=

−
,   

( )
1 3

2 1 2 3
sin

I I
I I I I

θ =
− +

, 
 

(15.2.54) 

where θ is the angle made by the velocity Av  with the plane of the circular section 

(given by ( )sin cos , vers vers /A A Avθ = = ⋅ρ ρv v ). We notice that the angle θ is 
constant. Thus, the considered motion is entirely characterized. 

If, in particular, at the initial moment, the moment of momentum O′K  is horizontal, 
then the constant of areas 3OK ′′  vanishes and the centre of mass C moves as a 
mathematical pendulum; the plane of the circular section is rotating about a fixed 
horizontal straight line, normal to the trajectory of the centre C. The trajectory of the 

point A on the sphere 2(0, )i  is a loxodrome (with the characteristic property 

constθ = ). If the mass centre C has an oscillatory motion, then the point A oscillates 

on an arc of the loxodrome and if the centre C has an asymptotic motion, then the 
motion of the rigid solid tends asymptotically to a rotation about the mean axis of 
inertia. The rigid solid is, in this case, a loxodromic pendulum. 

15.2.3.3 The Goryachev-Chaplygin case. The Merkalov case 

D.N. Goryachev considered in 1900 the case in which 1 2 34I I I= = , the centre of mass 

being the plane of equal moments of inertia at O (the plane 1 2Ox x , hence 3 0ρ = ); 
without any loss of generality, we take 2 0ρ =  too. One assumes that the moment of 
momentum O′K  is situated in the horizontal plane 1 2Ox x′ ′ , hence 3 0OK ′′ = , which 
represents a particularization of the initial condition. In 1901, S.A. Chaplygin took back the 
problem, giving a solution which contains an arbitrary fourth constant. Results in this 
direction have given L.N. Sretenskiĭ and Yu.A. Arkhangelskiĭ too. 

Euler’s equations are of the form 

1 2 34 3ω ω ω= ,   2 3 1 34 3 aω ω ω α+ = ,   3 2aω α= − ,   1

3

Mg
a

I
ρ

= . 
 

(15.2.55) 

The first integrals (15.1.42'), (15.1.43') become 

( ) 3
1 1 2 2 3 3

3
4 0OK

I
ω α ω α ω α ′′

+ + = = , 

( )2 2 2
1 2 3 1

3

24 2 ha
I

ω ω ω α+ + = − + . 

 
 

(15.2.55') 
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Multiplying the first equations (15.2.55) by 1ω  and 2ω , respectively, we get 

( )2 2
1 2 2 32d /dt aω ω ω α+ = ; taking into account also the third equation (15.2.55), it 

results 

( )[ ] ( )2 2 2 2
3 1 2 2 1 2 3 2 3

d 1
d 2

a a
t

ω ω ω α ω ω α ω ω+ = − + + .  

Using the equations (15.1.54) and the first equation (15.2.55), we have 
( )3 1d /dtα ω ( )3 2 3 1 1 2 2 13 / 4α ω ω ω α ω α ω= + − , so that 

( )[ ] ( )3 32 2
3 1 2 3 1 2 1 1 2 2

d
d 4

a a
t

ω α
ω ω ω α ω ω ω α ω α+ − = − + + ;  

the first first integral (15.2.55') leads then to the fourth first integral 

( )2 2
3 1 2 3 1a Cω ω ω α ω+ − = ,   constC = . (15.2.55'') 

By convenient changes of variable, the problem can be reduced to the calculation of 
some hyperelliptic integrals. In 1902, R. Marcolongo showed that iω , iα , 1,2,3i = , 
can be expressed by means of theta functions of two arguments, each function being 
linear in the time t. 

Later, in 1946, N.I. Merkalov introduced a new variable η, with 2d /dtη ω= , 
obtaining a fourth first integral in the form 

( ) ( ) 11 32 2 2 2
1 2 1 1 2

1 3

3d 3 d
d 2 d 4

OK
C

I I
ρω

ω ω ω ω ω η
η η

′′
+ − + = − + ,  constC = , 

 

(15.2.56) 

corresponding to the case in which 3 0OK ′′ ≠ . If 3 0OK ′′ = , then we find again the 
first integral (15.2.55'') (we take into account the first equation (15.2.55) and the 
relation ( )2 2

1 2 2 32d /dt aω ω ω ω+ = ). 

15.2.3.4 The Bobylev-Steklov Case 

In this case, which has been – independently – put in evidence by D. Bobylev and 
V.A. Steklov in 1896, one assumes that 1 22I I= , the centre of mass being on the  

1Ox -axis ( 2 3 0ρ ρ= = , 1 0ρ > ). Euler’s system of equations becomes 

( )2 1 2 3 2 32 0I I Iω ω ω− − = , 
( )2 2 2 3 3 1 1 32I I I Mgω ω ω ρ α+ − = , 

3 3 2 1 2 1 2I I Mgω ω ω ρ α− = − . 

 
 

(15.2.57) 

We obtain the particular solutions (we take into account the equations (14.1.54)) 

0
1 1 constω ω= = ,   2 2kω α= ,   3 0ω = ,   1

0
2 1

const
Mg

k
I

ρ
ω

= = . 
 

(15.2.57') 
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In this case, the equations (14.1.54) take the form 

1 2 3kα α α= − ,   0
2 1 3α ω α= ,   ( )0

3 2 1 1kα α α ω= − . (15.2.58) 

We get the first integral 

0 2
1 1 22 k Cω α α+ = ,   constC = , (15.2.58') 

using the first two above equations. Taking into account also (15.1.44), we can write 

( )22 2 2
3 2 21α α λ μα= − − − ,   0

12
C

λ
ω

= ,   0
12

k
μ

ω
=   

and, replacing in the second equation (15.2.58), we are led to the elliptic integral 

( )
2

0
2

0 20 2 2
1

d

1
t t

α

α

ξ

ω ξ λ μξ
= +

− − −
∫ , 

 

(15.2.58'') 

the problem being thus completely solved. 

15.2.3.5 Other cases of integrability of Goryachev, Steklov and Chaplygin 

At the beginning of XXth century, Goryachev, Steklov and Chaplygin have put the 
problem to find new cases of integrability, where the first integrals, independent of 
time, be algebraical, not containing arbitrary constants. Thus, assuming that 

2 3 0ρ ρ= = , Chaplygin searched the conditions in which there exist integrals of the 
form 

1 2 1 2 1 2
nρ α δω ω λω ω− = + ,   1 3 1 3 1 3

nρ α εω ω μω ω− = +  (15.2.59) 

for the equations of Euler and Poisson; the constants δ, ε, λ and μ remain to be 
determined. 

Goryachev considered in 1898 the case in which 0λ =  and 3n = . Assuming that 
( ) ( )1 3 1 2 2 38 2I I I I I I= − − , he put into evidence the existence of the integrals 

(15.2.59), with 

1 23 4
2

I I
δ

−
= − ,   

( ) ( )2 3 2 3

2 3

2 2 2 3I I I I
I I

δ
ε

− −
= − , 

( ) ( )
( )

1 2 3 2 3

1 2 3 2 3

4 3 4 5
16

I I I I I
I I I I

δε
μ

ρ
− −

=
−

, 

 
 

(15.2.60) 

which contain only one arbitrary parameter. 
In 1899, Steklov studied the case in which 0λ μ= = , finding 

( ) ( ) ( ) ( )3 1 2 1 3 1 2 12 2I I I I I I I Iδ ε− = − = − − , (15.2.61) 
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in the hypothesis in which 2 1 32I I I> > . The components 1 2 3, ,ω ω ω  of the vector ω 

are, in this case, in direct proportion to cn tκ , sn tκ  and dn tκ , respectively, where κ 
depends on 1 2 3, ,I I I  and 1ρ . 

Chaplygin assumed in 1904 that 1/3n = −  and that the relation 
( ) ( )1 2 1 3 2 39 2 2 4I I I I I I− − =  takes place, with 3 10.5965 / 0.6000I I< < , 

2 11.5000 / 1.5965I I< < . He showed that the integrals (15.2.59) exist for 

( ) ( ) ( ) ( )3 1 2 1 2 1 3 12 2I I I I I I I Iδ ε− = − = − − , 
( )3 1 2

3 1

3 2
2

I I I
s

I I
λ

−
=

−
,   

( )2 1 3

2 1

3 2
2

I I I
s

I I
μ

−
=

−
, 

 
(15.2.62) 

where s verifies the equation 

( )[ ] ( ) ( )
( ) ( )

2 2
2 1 3 13 3 2

1 2 3 1 1
1 2 1 3

4 2 2
2

9 3 2 3 2
I I I I

I I I I s
I I I I

ρ
− −

+ − =
− −

. 
 

(15.2.62') 

By a transformation of Hermite type, the solution of the problem can be represented 
with the aid of the elliptic integrals. 

Chaplygin showed also that these are the only cases in which one can find integrals 
of the form (15.2.59). 

15.2.3.6 Other Particular Cases of Integrability 

N. Kovalevski considered in 1908 the case in which the mass centre is on the principal 
axis 1Ox  ( 2 3 0ρ ρ= = ), searching all the cases in which 2

2ω  and 2
3ω  can be expressed 

in the form of polynomials of the third degree in 1ω . Thus, he found again the 
particular cases studied by Goryachev, Steklov and Chaplygin (see Sect. 15.2.3.5), as 
well as a new case in which the relation ( ) ( )1 2 3 2 2 39 10 18I I I I I I− = −  takes 
place. Much later, in 1932–1934, J.J. Corliss assumes also that 2 3 0ρ ρ= = , but 
imposes the condition 3 0OK ′′ =  too, limiting thus the generality of the initial 
conditions. A particular case of the above one has been considered by P. Field in the 
same period of time. He deals also with the interesting case in which 2I  is close to 1I , 
while 3I  is small, so that the ratio ( )1 2 3/I I I−  be practically indeterminate. 

P.V. Myasnikov proposed in 1954 a new method to find cases of integrability in a 
unitary mode, assuming that the centre of mass C lies in the characteristic plane, 
determined by the vectors ω and O′K ; in this case, one obtains a fourth first integral of 
the form 

1 1 1 2 2 2 3 3 3 constI I Iρ ω ρ ω ρ ω+ + = . (15.2.63) 

If the point C is situated at the same time in the characteristic plane and on one of the 

principal axes of inertia at O, one obtains again various classical cases previously 
considered (Euler-Poinsot, Lagrange-Poisson, Bobylev-Steklov etc.). 
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In 1950, T. Manacorda and A. Nadile have considered the planar case of motion of a 
rigid solid with a fixed point (after P. Stäckel’s terminology), hence the case in which 
the mass centre is situated in one of the principal planes of inertia; there have been thus 
put in evidence various relations which take place, as well as the cases of integrability 
which can be obtained. 

In 1959, E.I. Harlamova formed a new case of integrability of the equations of Euler 
and Poisson, assuming that 2 0ρ = , 1 0ρ < , 

( ) ( ) ( ) ( ) ( ) ( )1 3 1 1 3 2 3 1 3 3 1 3 1 2 3 12 2 2 2 0I I I I I I I I I I I I I Iρ ρ− − − + − − − =  

and 3 1 22 2I I I> > ; but the last hypothesis is not possible from a physical point of 
view. M.P. Gulyev showed in 1961 that this solution is however possible in the case of 
a body filled up with an incompressible perfect fluid. This is the only case of regular 
precession with respect to a vertical line, dynamically possible. 

The possibility to find linear integrals has been investigated by P.V. Harlamov in 
1962, being stimulated by Chaplygin’s affirmation in conformity to which linear 
integrals other than those known at the respective moment do not exist, but which was 
afterwards contradicted by the discovery of such integrals. 

A.N. Filatov introduced in 1963 the notion of generalized Lie series, which allowed 
the systematic determination of a fourth first integral in various known cases of 
integrability. 

15.2.3.7 Permanent Axes of Rotation 

In 1894, O. Stande and B.K. Mlodzeevski have shown – independently – that the 
equations of Euler and Poisson allow a simple infinity of solutions if no one restriction 
concerning the rotations of the rigid solid about fixed axes in the solid and in the space 
is imposed. Mlodzeevski showed that such permanent axes of rotation can be the 
principal axes of inertia, if these axes are horizontal (the case of the physical pendulum) 
or a family of vertical axes; in the latter case, studied in detail by Stande, the magnitude 
of the instantaneous angular velocity is constant. 

In this order of ideas, we search a constant unit vector 3′i  satisfying these equations. 
We notice that Poisson’s equation is reduced to 3′× =i 0ω  (because 3′ =i 0 ; hence, 

3ω ′= ± iω , (15.2.64) 

so that ω is a constant vector too. The equation (15.1.21'') becomes 

( )2
3 3 3O Mgω ′ ′ ′× = ×i I i i ρ . (15.2.65) 

Hence, if the constant unit vector 3′i  and the constant scalar ω satisfy the equation 

(15.2.65) and the equation 2
3 1′ =i , then 3 const′ =i  and (15.2.64) represents a 

solution of the equations of Euler and Poisson. If – in the above conditions – a rigid 
solid with a fixed point O begins to move with an angular velocity of rotation ω about 
an axis rigidly linked to the rigid solid, specified by the unit vector 3′i  and if this axis is 
situated along the ascendent vertical, then the rigid solid remains in a state of 
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permanent rotation about the respective axis. A scalar product of the equation (15.2.65) 
by 3O ′I i  allows to write 

( )3 3, , 0O ′ ′ =I i i ρ  (15.2.66) 

or, in a scalar form 

( ) ( ) ( )
1 1 2 2 3 3

1 2 3

1 2 3

2 3 1 2 3 3 1 2 3 1 1 2 3 1 2 0;
I I I

I I I I I I
α α α

α α α

ρ ρ ρ

ρ α α ρ α α ρ α α= − + − + − =  

 (15.2.66') 

this is the condition which must be verified by the unit vector 3′i , hence by the direction 
cosines iα , 1,2,3i = . We can thus state that the permanent axis of rotation must be on 

the cone of the mass centres relative to the fixed point O, of equation 

( ) ( ) ( )
1 1 2 2 3 3

1 2 3 2 3 1 2 3 3 1 2 3 1 1 2 3 1 2

1 2 3

0
I x I x I x
x x x I I x x I I x x I I x xρ ρ ρ
ρ ρ ρ

= − + − + − = . 

 (15.2.66'') 

This cone is concentric with the ellipsoid of inertia at O, but is not coaxial with this 
one. If we take an element of the cone, to which we impose a certain sense, then we 
obtain the direction cosines iα , 1,2,3i = , while the formula (15.2.65) allows to 

calculate the quantity ω; we notice that the signs must be chosen (we can have iα± ) so 
that the quantity 2ω  be positive. We still observe that the moment of momentum is 
situated along the axis of direction parameters 1 1I α , 2 2I α , 3 3I α , called secondary axis 
too; hence, the centre of mass lies on a plane determined by the axis of rotation and by 
the secondary one. It can be easily seen that the three principal axes  of  inertia,  the  
OC-axis and the OC ′ -axis, where C ′  is a centre associated to the mass centre, of co-
ordinates in direct proportion to 1 1/ Iρ , 2 2/ Iρ , 3 3/ Iρ ,  are five exceptional axes 
situated on the cone of the mass centres. The intersection of this cone with the unit 
sphere of centre O is called the mass centre curve and plays an important rôle in the 
study of the motion too; considering that iα , 1,2,3i = , are the co-ordinates of a point 
on the sphere, it results that the equations (15.2.66), (15.2.66') are just the equations of 
this curve. 

In the case of an ellipsoid of inertia of rotation ( 1 2 3I I I= >  or 1 2 3I I I> = ) one 
obtains interesting particular results, after the position of the mass centre. If = 0ρ , 
then we are in the Euler-Poinsot case, the corresponding problem being studied in Sect. 
15.1.2.7. 
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15.2.3.8 Other Cases of Loading. The Nadolschi Case 

Euler considered in 1758 the most simple case of loading of the rigid solid with a fixed 
point, i.e. the case in which the resultant moment of the given forces vanishes 
( O =M 0 ). Another case, particular too, is that in which the direction of the moment 

OM  is rigidly connected to the rigid solid ( ( )O OM t=M u , const=u  in the frame 
of reference R ), but is movable with respect to the fixed frame ′R . R. Grammel calls 
autoexcited rigid solid that solid which is acted upon by a moment ( )O tM  resulting 
from internal actions of the respective solid, which does not change in an appreciable 
manner the distribution of masses. One can consider also the case in which the vector 
function ( )t=u u  is given. Firstly was studied the simpler case in which constOM =  
(stationary autoexcitation) and then the case ( )O OM M t=  (non-stationary 
autoexcitation). One obtains different results, as the moment OM  is situated along the 
minor axis, the major axis or the mean axis of the ellipsoid of inertia. We mention also 
that in the phase space one obtains diagrams of the type of those in Figs 7.22 and 7.25. 
In 1952, U.T. Bödewadt considers the case of a symmetric ellipsoid of inertia 
( 1 2I I= ), the rigid solid being stationary autoexcited, with const=u ; realizing a 
partial decoupling of Euler’s equations, he could give a solution by means of some 
Fresnel’s integrals. W. Braunbeck studied in 1953 the case of a symmetric rigid solid 
hanged up at its mass centre C and acted upon by a moment of the form (external 
excitation) 

( )[ ]0 1( )t μ= × −M u H H , (15.2.67) 

generated by a bar of magnetic moment μ, situated along the symmetry axis and 
subjected to the action of a homogeneous magnetic field 0 1= +H H H , where 0H  is a 

constant field, while 1H  is a field which varies periodically with t; the unit vector u is 
situated along the axis of symmetry. If 0=H H  ( 1 =H 0 ), then the motion of the rigid 
solid is identical to that due to the influence of a gravitational field. Interesting results 
have been obtained for 1 0H H  or 1 0⊥H H . 

The case of gravity forces, which has been studied at large, is a conservative case. 
We will consider also the case of arbitrary conservative forces, of potential 

( )1 2 3, ,U U ′ ′ ′= i i i , where j′i , 1,2, 3j = , are the unit vectors of the fixed frame of 
reference ′R ; we assume the presence of a gyrostatic moment gm  (of the nature of a 
moment of momentum) and of some intrinsic cyclic motions (due, e.g., to symmetric 
rotors or to voids completely filled with an incompressible ideal fluid) too. The 
equations of Euler and Poisson are then of the form 

( ) g j jO O L U′+ × = − × − × ∇I I m iω ω ω ω ,   constL = , (15.2.68) 

j j′ ′+ × =i i 0ω ,   1,2,3j = . 
 

(15.2.68') 

Excepting the obvious six first integrals 
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j k jkδ′ ′⋅ =i i ,   , 1,2,3j k = , (15.2.69) 

we mention the first integral of the mechanical energy 

( )1
2 O U h⋅ = +I ω ω ,   consth = . 

 

(15.2.69') 

The problem has been dealt with in detail, in 1986, by H.M. Yehia, in the case in which 
the conservative and the gyroscopic forces allow a common axis of symmetry, which 
passes through the fixed point O. In the symmetric case, F. Brun, in 1907, O.I. 
Bogoyavlenski, in 1984, and H.M. Yehia, in 1986, have put in evidence six cases of 
integrability. Thus, if 1 2 32I I I= = , 3 0 3g I ω=m i , 0 constω = , 3 j jU I ′= ⋅ iγ , jγ , 

1,2, 3j = , being constant vectors in the plane 1 2Ox x ; the dimensions of all these 
quantities are chosen so as to verify the dimensional equations ( 0ω  is an angular 
velocity and jγ  is an angular acceleration). We find the first integral 

( ) ( )[ ]2 22 2
1 2 1 1 2 2 1 2 1 2 2 12j j j j j j j ji i i iω ω γ γ ω ω γ γ′ ′ ′ ′− − + + − +  

( ) ( ) ( )2 2
0 3 0 1 2 0 1 1 2 2 32 4 constj j jiω ω ω ω ω ω ω γ ω γ ′+ − + − + = , 

 
 

(15.2.70) 

where jkγ , jki ′ , , 1,2,3j k = , are the components of the vectors jγ  and j′i , 
respectively, along the kOx -axis. By particularization, one obtains various interesting 
results, among them the first integral of Sonya Kovalevsky. 

In 1944, V.L. Nadolschi studied the case in which the ellipsoid of inertia is 
symmetric ( 1 2I I J= = ), the moment of the given forces being of the form 

( )O O t=M M . Euler’s equations are of the form 

1 2 1
1 1 ( )
( ) OM t

Jf t
ω ω− = , 

2 1 2
1 1 ( )
( ) OM t

Jf t
ω ω+ = , 

3 3
3

1 ( )OM t
I

ω = , 

 
 
 

(15.2.71) 

where ( )22 2
3 3( ) / ( )f t J J I tω= − . Eliminating successively 2ω  and 1ω , 

respectively, we find the equations 

1 1 1 1
1( ) ( ) ( )
2

f t f t tω ω ω Φ+ + = , { }1 2 1
( ) d( ) ( ) ( ) ( )

dO O
f t

t M t M t f t
J t

Φ = + ⎡ ⎤⎣ ⎦ , 

2 2 2 2
1( ) ( ) ( )
2

f t f t tω ω ω Φ+ + = , { }2 1 2
( ) d( ) ( ) ( ) ( )

dO O
f t

t M t M t f t
J t

Φ = + ⎡ ⎤⎣ ⎦ . 

 (15.2.72) 
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The third component of the angular velocity is given by ( ( )0
3 3 0tω ω= ) 

( )
0

0
3 3 3

3

1( ) d
t

Ot
t M t t

I
ω ω= + ∫ . 

 

(15.2.72') 

By a change of independent variable 

( )
0

3
0 3 d

t

t

J I
t t

J
τ τ ω

−
= − ∫ , 

 

(15.2.73) 

we get 

2
1

1 12
d ( )

( ) ( )
d
ω τ

ω τ Φ τ
τ

+ = ,   
2

2
2 22

d ( )
( ) ( )

d
ω τ

ω τ Φ τ
τ

+ = , 
 

wherefrom (we use the method of variation of constants) 

0
1 1 1 2( ) ( )sin( )d cos sinu u u C C

τ

τ
ω τ Φ τ τ τ= − + +∫ , 

0
2 2 1 2( ) ( )sin( )d sin cosu u u C C

τ

τ
ω τ Φ τ τ τ= − + −∫ . 

 
 

(15.2.74) 

We notice also that, using only the function 1 ( )Φ τ , we obtain 

( )0

1
2 1 1 2

3 3

( )
( ) ( )cos( )d sin cos

( )
OM

u u u C C
J I

τ

τ

τ
ω τ Φ τ τ τ

ω τ
= − − + − −

−∫ , 

 (15.2.74') 

1C  and 2C  being, as above, integration constants. Euler’s angles are then obtained by 
quadratures. 
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Chapter 16 

Other Considerations on the Dynamics of the Rigid Solid 

The modelling of a continuum as a rigid solid allows the study of many problems of 
practical interest. In this order of ideas, we consider, in the frame of this chapter, the 
motions of the Earth and make a presentation of the theory of the gyroscope; as well, 
we deal with the model of the rigid solid of variable mass, with applications to the 
motion of the aircraft. 

16.1 Motions of the Earth 
The theory developed in the previous chapters concerning the dynamics of the rigid 
solid may be applied successfully to the study of the motion of the Earth with respect to 
a heliocentric frame of reference ′R , considered to be inertial (fixed) and with respect 
to a geocentric non-inertial (movable) frame R. Modelling the Earth as a rigid solid, 
one can put in evidence the motion of revolution about the Sun, the motion of rotation 
about its axis, as well as the motions of precession and nutation. We mention other 
motions of the Earth too, as: the displacement of the geographic poles of the Earth on 
its surface, the tides (studied in Chap. 10, Sect. 2.2.3), the displacement (drift) of the 
continents etc. 

16.1.1 Euler’s Cycle. The Regular Precession 
In what follows, we give firstly some general results concerning Euler’s cycle, passing 
then to the calculation of the regular precession; we put thus in evidence the 
corresponding secular variations. By analogy, we consider then the Larmor precession.  

16.1.1.1 General Considerations 
In a modelling as a particle, the Earth is attracted by the Sun (modelled as a particle 
too), considered to be fixed, after the law of universal attraction, having a Keplerian 
motion with respect to the latter one; as a matter of fact, this is the motion of the mass 
centre C of the Earth, if we assume that the forces of attraction which act upon it have a 
resultant passing through this point. In reality, the Earth is not a homogeneous sphere or 
is not formed by homogeneous spherical strata, the above condition concerning the 
resultant of the attraction forces being fulfilled only approximately (see Chap. 9, Sect. 
1.2 too); hence, the trajectory of the point C differs from an ellipse, this one being only 

a first approximation of the real one. However, we will assume that the mass centre C 
describes an ellipse, the Sun being situated at one of the foci, as it was shown in Chap. 9,

P.P. Teodorescu, Mechanical Systems, Classical Models,  
© Springer Science+Business Media B.V. 2009 
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Sect. 2.1.4; this approximation is as more acceptable as the perturbations due to the 
presence of other celestial bodies are less important. The respective motion of 
translation is called motion of revolution about the Sun during a sidereal year; it has 
been put in evidence by considerations concerning the aberration of light and the stellar 
parallax. 

 
Fig. 16.1  Non-inertial frames of reference in case of the motions of the Earth 

The motion of rotation of the Earth about the centre C is independent on its motion 
of revolution about the Sun, mentioned above. To study this motion, we will consider a 
non-inertial (movable) frame of reference R, rigidly linked to the Earth and having the 
pole at its centre (O C≡ ); the central principal axes of inertia of the Earth will be 
taken as axes of the frame R. We will assume, in a first approximation, that the Earth is 
an oblate spheroid (ellipsoid of rotation with respect to the minor axis), choosing the 
axis of the poles as 3Ox -axis (directed towards the north pole, putting thus in evidence 
the sense of the diurnal motion of the Earth); the plane 1 2Ox x  will be the equatorial 
plane of the Earth and it results 3 1 2I I I J> = =  (the hypothesis thus made is 
acceptable, because ( ) 6

1 2 3/ 10 /3I I I −− < ). It is convenient to introduce also a 
geocentric frame of reference R  with the axes parallel to the axes of the heliocentric 
frame ′R  and with the pole at the same pole O. We choose as plane 1 2Ox x  the plane 

of the ecliptic (which contains the trajectory of the pole O), the heliocentric frame 
being, as well, an ecliptic heliocentric frame; the sense of the 3Ox -axis will be chosen 
so that the motion of the mass centre on its trajectory have a positive sense with respect 
to this axis. The line of nodes ON will be at the intersection of the ecliptic plane with 
the equatorial plane of the Earth, being directed towards the first point of Aries, which 
indicates the vernal equinox (Fig. 16.1). 

 16.1.1.2 Diurnal Rotation of the Earth. Euler’s Cycle 

By means of the usual notions in the dynamics of the rigid solid, we can write Euler’s 
equations (15.1.11") in the form,  
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( )1 3 2 3 1OJ I J Mω ω ω+ − = , 
( )2 3 3 1 2OJ I J Mω ω ω− − = , 

3 3 3OI Mω = , 

 
 

(16.1.1) 

where OM  is the moment of the given external forces with respect to the centre of the 
mass of the Earth. 

Assuming, in a first approximation, that O =M 0  it results the system of equations 

1 2 0nω ω+ = ,   2 1 0nω ω− = ,   3 0
3 0

I J
n

J
ω

−
= > , 

 

(16.1.2) 

where we took into account that 0
3 3 constω ω= = , 0

3 0ω > . Hence, the Earth has a 
uniform motion of rotation about the 3Ox -axis, with a constant angular velocity 

0
3 rad/h rad/day,0.0000729rad/s 0.0043753rad/min 0.2625161 6.3003876ω = = = =

effecting a complete rotation in a mean solar time 0
32 /ET π ω= 86164.098s=  

23h56min04.098s= 0, equal to a sidereal day. The equatorial velocity of the Earth is, 
in this case, given by 0

3 1 0.0000729 6378246m/s 465.11m/sEv aω= = ⋅ ≅ , where 1a  
is the semi-diameter of the terrestrial spheroid at the equator. This motion of the Earth 
has been put in evidence by various experiments, e.g.: the deviation towards the east 
point in the free falling to the surface of the Earth (see Chap. 10, Sect. 2.2.8), Foucault’s 
pendulum (see Chap. 10, Sect. 2.2.10) etc.; as well, in the last time, direct observations 
in the cosmic space have been made. 

The two differential equations can be written also in a unitary form  

i 0nω ω− = ,   1 2iω ω ω= + ,   i 1= − ,  

wherefrom ien tω κ= , κ ∈ ; we get 

( )0
1 ( ) cost ntω ω γ= − ,   ( )0

2 ( ) sint ntω ω γ= − , (16.1.2') 

where the constants 0ω  and γ may be determined by means of the initial conditions 
0

1 0 1( )tω ω= , 0
2 0 2( )tω ω= , obtaining 

( ) ( )20 0 0
1 2ω ω ω= + ,   

0
2

0 0
1

arctannt
ω

γ
ω

= − . 
 

(16.1.2'') 

As it has been shown in Sect. 15.1.2.8 too, it can be seen that the corresponding motion 
is a regular precession with the period 2 /T nπ= . The instantaneous axis of rotation 

describes the polhodic cone around the 3Ox -axis, with the angular velocity n; 
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taking ( )3 3/ 1/306I J I− = , we find ( )3 / 1/305I J J− ≅ , so that 
0.0207rad/dayn ≅ . We notice that ( ) ( )0

3 32 / /T J I Jπ ω= −  
( )[ ]3/ / 305E ET I J J T= − = ; hence, the polhodic cone will be entirely described’ in 

305 sidereal days (hence in 304 days 4h 49.89s mean solar). This period is known as 
Euler’s cycle. 

 
Fig. 16.2  The motion of precession of the extremity of the vector ω 

The motion of precession of the extremity of the vector ω on a director circle of the 
polhodic cone is put in evidence in Fig. 16.2, taking into account that 

0
1 1 2 2ω ω ω+ =i i , 0

3 3 3ω ω=i , hence const=ω . The intersection of the Earth’s 
oblate spheroid with the polhodic cone will be also a circle, called Euler’s circle. 

Introducing a vector 3n= iΩ  along the 3Ox -axis, so that n=Ω , the system of 
equations (16.1.2) may be written in the vector form ( j jω= iω ) 

= ×ω Ω ω  (16.1.2''') 

too. We find thus the equation of motion of a vector ω of fixed origin and constant 
modulus, which describes a cone around a direction specified by the vector Ω, with an 
angular velocity Ω (in our case nΩ = , corresponding to a regular precession). 

Observations made with the greatest precision, corresponding to a much more 
complex modelling of the Earth (which takes into account the displacement of masses 
of air, the deformability of the Earth, which assumes that it is elastic etc.), show that the 
positions of the poles are not fixed on its surface (the axis of rotation of the Earth does 
not coincide with the axis of the geographic poles). Thus, instead of Euler’s period of 
approximate 10 months, one finds a period of 14 months (Chandler's period). One sees 
that the displacement of a pole on the surface of the Earth can be obtained by the 
composition of this periodic displacement with another displacement having a period of 
one year (due to the displacement of the masses of air at the surface of the Earth, to the 
loading of the continents with masses of snow and to other phenomena, with an annual 
period); the positions of the pole are contained in the interior of a square of 20 m side. 
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Phenomena analogous to those exposed at the preceding subsection take place in the 
microcosmos too. Let thus be a system S  of particles P loaded with electric charges of 
the same sign, which have a finite motion in a central field; we assume that at the centre 
of the field stays a charge considered to be fixed, the motion taking place with respect 
to it. We suppose also that this system is situated in a homogeneous and constant 
exterior magnetic field, characterized by the magnetic induction B. Such a system is, 
e.g., an atom placed in a magnetic field; the fixed charge is the nucleus, the electrons 
being the charges in motion. Assuming that all the particles in motion have the same 
specific charge /e m , e being the electric charge and m the mass, one obtains a motion 
quite simple but particularly important in atomic physics. 

The magnetic moment of the current distribution can be expressed in the 
form( /2 ) Oe m K , where OK  is the moment of momentum of the considered motion, 

of constant modulus, applied at the point O, where we assume that the nucleus of the 
atom (the fixed charge) stays. The magnetic field is uniform, so that the resultant of the 
forces which act upon the system S  vanishes, its moment being given, with a good 
approximation, by 

( ) ( )2 2O O O
e e
m m

× = × = ×K B K B KΩ ,   
2
e
m

= − BΩ .  

The theorem of moment of momentum reads 

OO = ×K KΩ , 
 

(16.1.2iv) 

and is a relation of the form (16.1.2"'). We are thus led to a mechanical-magnetic 
analogy which allows to state that the moment of’ momentum OK  describes a cone 
(analogue to the polhodic cone) with a retrograde regular precession, called the Larmor 
precession; the corresponding angular velocity ( /2 )e m B=Ω  is called the Larmor 
pulsation. Because 0e <  for electrons, the motion of rotation takes place 
counterclockwise about the support of the vector B. 

We notice that the introduction of the moment O× KΩ  is entirely justified in case of 
a permanent magnetic dipole, the magnitude of which is independent on the orientation 
of the system S. The approximation of calculation remains very good even in the 
absence of rigid links, in case of a weak magnetic field ( ≅B 0 ). 

The velocity of precession of the vector OK  can be measured experimentally by 
using the Zeeman effect, resonance methods etc.  

16.1.1.4 Calculation of the Regular Precession. The Secular Variation 
The hypothesis made in the preceding subsection, in conformity to which O =M 0  is 
correct only if the external forces which act upon the Earth are reduced to a resultant 
which passes through the point O. Taking into account that the Earth is an oblate 
spheroid with the minor axis along the 3Ox -axis, one sees that O ≠M 0 . Indeed, 
taking into account only the attraction of the Sun, the two halves in which the Earth is 

16.1.1.3 The Mechanical-Magnetic Analogy. The Larmor Precession 
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bisected by the ecliptic plane have different contributions in the calculation of this 
moment (the half over this plane will be acted upon less than the half under it); the 
resultant moment will be thus non-zero and, qualitatively, will tend to diminish the 
angle of nutation between 3Ox ′  and 3Ox . The components OiM , 1,2,3i = , depend on 
the relative position of the Earth with respect to the Sun, being periodical functions of 
time; they will play the rôle of perturbing terms in the solution of the system (16.1.1), 
considered to be homogeneous. The variations of the angles  ψ (of precession) and θ (of 
nutation) due to some mean values of the moments OiM  are called secular variations; 
expanding these moments into power series, one is led to secular variations of superior 
order. As well, one can obtain variations due to moments OiM  periodic functions of 
time (expressed by means of Fourier series), the mean values of which vanish. 

To establish the secular variations of the trajectory of a planet 1P  due to another 
neighbouring one 2P , one can assume, after Gauss, that the mass of the second planet is 
distributed along its trajectory (Kepler’s ellipse); more precisely, one assumes that on 
two arcs of ellipse traveled through are distributed equal masses in equal times. In the 
case of our interest, we suppose that the mass of the Sun is distributed along its 
trajectory; for the sake of simplicity, we approximate the ellipse (which has a very small 
eccentricity) by a circle of radius Sr , the mass Sm  of the Sun being uniformly 
distributed (a linear density /2S Sm rπ ). In the Euler-Poinsot case concerning the 
motion of the rigid solid with a fixed point, this one intervenes only by its principal mo-
ments of inertia; we can thus vary the distribution of the masses of the solid, if one 
maintains the quantities J and 3I . This property remains valid also in the case of 
moments OiM , 1,2,3i = , due to perturbing forces which act at a sufficiently great 
distance (as it is the distance Earth-Sun with respect to the dimensions of the Earth). 
Indeed, the potential of these forces of attraction is in direct proportion to d /

M
M r∫ , 

( ) ( )i i i ir x xξ ξ= − − , where iξ  are the co-ordinates of the mass centre of the Sun, 

while ix , 1,2,3i = , are the co-ordinates of an element of mass dM of the Earth (all 
the co-ordinates are considered with respect to the frame of reference R ), the integral 
being extended to the whole mass M of it. Expanding the ratio 1/r  after the powers of 
the ratios /i Sx r , 1,2,3i = , and noting that these ratios are very small with respect to 
unity, one obtains a rapidly convergent series. The terms of first degree disappear, 
having as factors the integrals diM

x M∫ , 1,2,3i = , while the terms of second degree 

lead to factors of the nature of principal moments of inertia; neglecting the terms of 
higher degree, we justify the above statement. In this order of ideas, we replace the 
Earth by a system formed by a homogeneous sphere of moment of inertia IΔ  with 

respect to one of its diameters (with a length equal to the mean diameter 2R of the 
Earth) and a homogeneous material equator of mass 0m . In this case, 

2
3 0I I m RΔ= + , 2

0 /2J I m RΔ= + , wherefrom 
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32I J IΔ = − ,   ( )0 32
2m I J

R
= − . 

 

(16.1.3) 

Because of its symmetry, the homogeneous sphere has no one contribution to the 
perturbations due to the Sun, remaining only the material equator. The resultant couple 

OM  tends to diminish the angle θ, hence the inclination of the equatorial plane of the 
Earth on the plane of the ecliptic, being directed along the axis of nodes, in its opposite 
sense (towards the autumnal equinox) (Fig. 16.1). Taking into account the diurnal 
motion of rotation of the Earth, this one behaves as a gyroscope, the effect of the 
moment OM  being, in fact, a gyroscopic effect (this effect will be studied in 
Sect. 16.2.1.4). 

Assuming, with a good approximation, that the axis of rotation of the Earth is just 
the 3Ox -axis, the polhodic cone being reduced to this axis (its vertex angle is very 
small), we can take the moment of momentum OK  along it, with 3 3 3O I I ω= =K iω . 
The rotation angular velocity vector is decomposed in the form (15.2.14) along the axes 

3Ox ′  and 3Ox , the vector components being ω  (corresponding to the proper rotation) 
and ′ω  (corresponding to the motion of precession), respectively; supposing that these 
motions are uniform and that the ratio ( )3 3/I J I−  can be neglected with respect to 
unity (the factor ( )0 0

0/ cosω ω θ′  being subunitary too), we can assume that the 

moment OM  is given by the relation (15.2.17"). Noting that ω ψ′ = , the vector ′ω  
being directed towards the negative sense of the 3Ox ′ - axis, we can write (Fig. 16.1) 

3 sin
O

I
ψ

ω θ
= −

M
. 

 

(16.1.4) 

 
Fig. 16.3  The retrograde annual precession due to the attraction of the Sun 

To calculate the modulus of the moment OM , we will consider the circles ( , )O R  (in 
the terrestrial equatorial plane, corresponding to this equator, of radius approximately 
equal to R, a point P on the circumference being of position vector R) and ( , )SO r  (in 
the plane of the ecliptic, corresponding to the approximate trajectory of the Sun, of 
radius Sr , a point Q of the trajectory being of position vector Sr , so that S= −r r R  

(Fig. 16.3). The potential of the force of reciprocal attraction between the points P and 

Q of masses 0dm  and d Sm , respectively, is 
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0d d Sf m m
r

,   ( )2 2 2 cos ,S S Sr r R r R= + − r R . 
 

(16.1.5) 

Expanding 1/r  after the ratio / SR r , we have (we use the formula of the Newtonian 
binomial) 

{ ( ) ( )[ ]
2

21 1 11 cos , 3cos , 1 ...
2S S

S S S

R R
r r r r

⎫⎛ ⎞= + + − + ⎬⎜ ⎟
⎝ ⎠ ⎭

r R r R . 
 

The ratio / SR r  is very small, so that the power series is rapidly convergent. The 
searched potential is given by 

0d d
S

S
C c

m m
U f

r
= ∫ ∫ , 

 

(16.1.6) 

where the integral is extended to the circles Sc  and C of radii Sr  and R, respectively. 
We notice that  

0 0d d
S

S SC c
m m m m=∫ ∫ ,   ( ) 0cos , d d 0

S
S SC c

m m =∫ ∫ r R ,  

because of symmetry reasons. To calculate the latter integral, we refer to the frame of 
reference R  and we suppose that, in the further calculations, the 1Ox -axis coincides 

with the line of nodes ON. We denote by ε and η the angles made by the position 

vectors Sr  and R, respectively, with the 1Ox -axis; the co-ordinates of the point Q are 

1 cosSrξ ε= , 2 sinSrξ ε= , 3 0ξ = , while the co-ordinates of the point P are written 
in the form 1 cosx R η= , 2 sin cosx R η θ= , 3 sin sinx R η θ= . It results 

( )cos , cos cos sin sin cosj j
S

S

x
Rr

ξ
ε η ε η θ= = +r R , 

1d d
2S Sm m ε

π
= ,   0 0

1 d
2

dm m η
π

= , 

 

so that 

( )
( )

( )
2 20 22

0 2 0 0
cos , d d cos cos sin sin cos d d

2S

S
S Sc C

m m
m m

π π
ε η ε η θ ε η

π
= +∫ ∫ ∫ ∫r R  

( )0 21 cos
4

Sm m
θ= + . 

In this case, 

( )
2

0 211 3cos 1 ...
8

S

S S

fm m RU
r r

θ
⎡ ⎤⎛ ⎞= + − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

. 
 

(16.1.6') 
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Restricting us to these terms in the expansion into a series, one observes that the 
equipotential surfaces are circular cones with the vertex at O, of axis 3Ox . The moment 

OM  which tends to diminish the angle /2θ π<  is given by the forces of attraction 

equal to the gradient of the potential U at an arbitrary point; this gradient is normal to 
the equipotential surface, so that the modulus OM  is obtained by multiplying the 
modulus of the gradient by the distance to the above mentioned point. It results 

2

0 3
3 sin cos
4O S

S

U Rfm m
r

θ θ
θ

∂= =
∂

M . 
 

Finally, the formula (16.1.4) allows to write ( 0
3ω ω= ) 

2
0 3

0 3 0 3
33 3 3

3 3cos cos
4 2

S S
S

S S

m m R mI J
f f

II r r
ψ θ θ

ω ω
−

= − = − . 
 

(16.1.7) 

Taking into account that 8 3 26.673 10 cm /g sf −= ⋅ ⋅ , ( )3 3/ 1/306I J I− = , 
0 5
3 7.29 10 rad/sω −= ⋅ , 331.989 10 gSm = ⋅ , 131.496 10 cmSr = ⋅ , 23 27θ ′= , we 

get 122.4454896 10 rad/sSψ −= − ⋅ 57.7172197 10 rad/year−= − ⋅ , where we took 

into account that 1 sidereal year has 365.2436 mean solar days, 1 mean solar day 

having 86400 mean solar seconds; to 1 radian correspond 180 3600/π⋅  
206264.81′′≅ , so that we obtain 15.917908Sψ ′′= −  in a mean solar year. We may 

thus state that, due to the attraction of the Sun, the Earth has a retrograde annual 
precession of approximate 16′′ . 

To put in evidence the influence of the attraction of the Moon, we make an 
analogous calculation; noting that 257.347 10 gMm = ⋅  and 103.844 10 cmMr = ⋅  and 
taking 23 27θ ′=  too (as a matter of fact, the plane of the trajectory of the Moon does 
not coincide with the plane of the ecliptic, making an angle of 5 09′  with this plane, 
the Moon being in an interval of time over this plane and in another interval under it), 
we find 34.658192Mψ ′′= −  in a mean solar year, hence a retrograde annual pre-
cession, of approximate 34.7 ′′ . Summing the two effects, we get a precession of 
50.5761′′  for a sidereal year. But the above calculations concerning the secular 
variations have an approximate character, due to the mathematical model used (Gauss’s 
hypothesis, the approximation of the ellipse by a circle, the superposition of the effects, 
the non-introduction of other influences etc.). If we compose the Moon-Sun precession 
(the displacement of the equinoctial points along the ecliptic) with the planetary 
precession (along the celestial equator), then we obtain the general precession (in 
longitude), which is now of 50.27 / year′′ . In this case, the line of nodes ON 
describes the whole plane of the ecliptic in 

4360 3600/50.27 2.5780784 10 years⋅ = ⋅ , hence in approximate 26000 years, while 
the axis of the Earth poles describes the cone of precession (a circular cone of 3Ox -axis 
and vertex angle 46 54 ′ ) in the same period of time. 
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16.1.2 Free Nutation. Pseudoregular Precession 
We give some general results and then we calculate the free nutation and the 
pseudoregular precession in the Lagrange-Poisson case; as well, we make some 
considerations concerning the general motions of the Earth. 

16.1.2.1 General Considerations 
We have put in evidence, in the preceding subsection, a polhodic cone, linked to 
Euler’s cycle, which is rolling over a circular herpolhodic cone, the axis of which is the 
axis of the ecliptic; as well, we have considered the cone of precession, which can play 
the rôle of a herpolhodic cone. We mention that it does not exist one mechanical link 
between the polhodic cone with the Eulerian period (for which O =M 0 , 
corresponding to the Euler-Poinsot case, taking place a rolling of the polhodic cone 
over the herpolhodic one) and the precession cone with a 26000 years period (for which 
the constant moment O ≠M 0  corresponds to the secular variation which leads to the 
Lagrange-Poisson case, where a precession cone intervenes only in a particular case). In 
the first case, one obtains an arbitrary nutation (the polhodic cone has a non-
determinate vertex angle), while in the second case the nutation vanishes ( constθ = , 
hence 0θ = ), because we have taken into account only the secular terms of the 
perturbing moment OM ; using the periodic terms too, the nutation would be non-zero 
( 0θ ≠ ), obtaining thus the nutation of the Earth. 

In the Lagrange-Poisson case, the total absence of nutation ( constθ = ) takes place 
only if a condition of the form (15.2.11) is fulfilled, so that the polynomial ( )P u  have 

a multiple solution; if this condition holds only approximately, then the angle θ is no 
more constant, appearing a nutation ( 0θ ≠ ). In case of the Earth (because of the 
secular terms in the expression of the perturbing moment), this nutation is called free 
nutation. The nutation due to the periodic terms is called constraint nutation.  

16.1.2.2 Calculation of the Free Nutation 
To may calculate the free nutation of the Earth, we model the corresponding problem as 
a particular Lagrange-Poisson case (a case which differs very little from that of the 
multiple root of ( )P u ). Let be thus the problem of the rigid solid with a fixed point O 
upon which acts the moment OM , of modulus 

3
3

3 sin 2
4O S

S

I J
fm

r
θ

−
=M , 

 

(16.1.8) 

along the axis of nodes ON, in its negative sense. As in the Lagrange-Poisson case, we 
can use the first integral (15.2.1'), which introduces the spin, as the first integral 
corresponding to the theorem of moment of momentum (15.2.1"'). The theorem of 
kinetic energy reads 

( ) ( ) ( )22 2 0
1 2 3 2 1 2

1 d cos sin
2 d O OJ I

t
ω ω ω ω ϕ ω ϕ⎡ ⎤+ + = ⋅ = − +⎣ ⎦ M Mω ,  
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where we took into account that the vector OM  makes the angles π ϕ− , /2π ϕ− , 
/2π  with the axes of the frame of reference R. The second relation (14.1.15) allows 

to write O O θ⋅ = −M Mω  too, an obvious result, corresponding to the rotation in the 

3 3Ox x -plane (Fig. 16.1). Introducing the modulus of the moment OM  given by 
(16.1.8) and integrating with respect to time, we find a third first integral 

( ) ( )2 32 2 0 2
1 2 3 3 3

3 cos 2
2 S

S

I J
J I fm h

r
ω ω ω θ

−
+ + = + , 

 

(16.1.9) 

where h is the constant of energy. Using the relations (5.2.35) and eliminating the 
components 1ω  and 2ω , we find again the first and the last equation (15.2.2), to which 
we associate 

2 2 2 2sin coscψ θ θ γ θ+ = + , (16.1.10) 

with ( )20
3 32 /h I Jγ ω⎡ ⎤= −⎣ ⎦ , ( ) ( )[ ] 3

33/2 / / 0S Sc f I J J m r= − > ; as in the 

Lagrange-Poisson case, the constants α and β depend on the initial conditions and the 

constants a and b are functions only of the geometry of the considered mechanical 
system, as well as of its mechanical properties. 

Proceeding as in Sect. 15.2.1.1, we eliminate ψ  between the first relation (15.2.2) 
and (16.1.10); thus, we obtain 

( ) ( )20 2 2 2 2
3 cos cos sin sina cα ω θ γ θ θ θ θ− = + − .  

Denoting cosu θ= , it results the differential equation 

2 ( )u Q u= ,   ( ) ( ) ( )22 2 0
3( ) 1Q u cu u a uγ α ω= + − − − , 

 

(16.1.11) 

wherefrom 

( )0
0

du

u
t t

Q
ξ
ξ

− = ∫ , 
 

(16.1.11') 

with 0 0cosu θ= , 0 0( )tθ θ= ; one takes the sign + or − before the radical as, at the 
initial moment, we have an increasing or a decreasing of the motion. The polynomial 

( )Q u  is of fourth degree, hence the integral (16.1.11') is an elliptic one. As in the 
Lagrange-Poisson case, [ ]0 1 2,u u u∈ , ( )1 2, 1,1u u ∈ −  being two roots of the 
polynomial ( )Q u . We obtain thus the free nutation [ ]1 2,θ θ θ∈ , the extreme values 
corresponding to the roots 1u  and 2u . 
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16.1.2.3 Calculation of the Pseudoregular Precession 

Assuming that, at the initial moment 0 0t t= =  (for the sake of simplicity, without any 
loss of generality), the 3Ox -axis is situated along a generatrix of the cone of precession, 
we have 0 23 27 'θ = , 0 0

1 2 0ω ω= = , while the first integrals (15.2.1'''), (16.1.9) lead 
to the relation 0

03 33 cosOK I ω θ′′ = , as well as to 0
3 0cosaα ω θ= , 2

0cos 0cγ θ+ = . 
Let be ( )[ ] ( )3 0

3 3 3(3/2) / / /S Sf I J I m rε ω= − ; it results 0
3c aεω=  and 

0 2
3 0cos 0aγ εω θ+ = . We can write 

( ) ( ) ( ) ( )0 2 0
0 0 03 3( ) 1Q u a u u u u u a u uω ε ω= − + − − −⎡ ⎤⎣ ⎦ , 

 

(16.1.12) 

with the new notations. We notice that 0u u=  is a double zero of the polynomial 
( )Q u  if ( )0 2

0 032 1 0a u uω ε − = , which can be assumed with a good approximation 

(error of the order of magnitude of ε, which is very small because of the denominator 
3
Sr ). 

Denoting by 1 0 2u u u= +  the zero of the square bracket in (16.1.12), we find the 
condition 

( ) ( )2 0
0 0 31 2u u u u a uε ω+ − + −⎡ ⎤⎣ ⎦  

( ) ( )2 2
0 0 00

3 0 0
3 3

1 1 5
... 0

u u u u
a u

a a
ω ε ε

ω ω

− −⎡ ⎤
= − + + =⎢ ⎥

⎣ ⎦
, 

 

where we have neglected the higher-order powers of u ; we can assume the 
approximate value 

( )2 2
0 0 0 00 0

3 3
1 cos sinu u u

a a
ε ε

θ θ
ω ω

= − = , 
 

(16.1.13) 

with an error of the order of magnitude ( ) ( ) ( )20 2 2
0 0 03/ 1 1 5a u u uε ω − − . If 1θ  is the 

value of the angle θ  corresponding to 1u , then we have 01cos cos 2uθ θ= + , 0u > , 
so that 1 0θ θ θ≤ ≤ . Noting that ( )[ ] ( )[ ]1 0 1 0sin /2 sin /2 0uθ θ θ θ− + + =  and 
assuming that the arc ( )1 0 /2θ θ−  is sufficient small in modulus to can approximate 
its sinus, we obtain (as well, we approximate ( )( )1 0 0sin /2 sinθ θ θ+ ≅ )  

0 0 01 0
0 3

2 sin 2
sin

u
a

ε
θ θ θ θ

θ ω
= − = − , 

 

(16.1.13') 

where we have used the approximate relation (16.1.13) too. Because the angle θ is not 
constant, having a variation of amplitude ( )0

0 03/ sin cosaε ω θ θ , it results a 
pseudoregular precession. 
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We can calculate the angle of nutation as a function of t, making, after F. Klein, 

0u u v= + , [ ]0,2v u∈ , in the polynomial ( )Q u  given by (16.1.12). We find thus 

( ) ( )0 2 2 2 0
0 0 0 03 3( ) 2 1 4 1Q u a v u u u v v u a vω ε ε ε ω= − − + − −⎡ ⎤⎣ ⎦ ,  

where we have neglected the higher-order powers of v, which is of the order of 

magnitude of ε; taking into account (16.1.13) and neglecting the higher-order powers 

(the product vε  with respect to ε  or to v), it results 

( )20
3( ) (2 )Q u a v u vω= − . 

 

(16.1.14) 

The formula (16.1.11') allows to calculate 

( )
( )

0
3 0 0

d
arccos

2
v u va t t

uu
ξ

ω
ξ ξ

−− = =
−∫ ,  

wherefrom ( )[ ]0
3 01 cosv u a t tω= − − ; the relation 

( )0 0
0 0 0 0cos cos 2 sin sin sin

2 2
v u u

θ θ θ θ
θ θ θ θ θ

− +
= − = − = − ≅ − −   

gives the angle of free nutation in the form 

( )[ ]0
0 03

0
( ) 1 cos

sin
ut a t tθ θ ω

θ
= − − − ( )[ ]0 0

0 030
3

sin2
1 cos

2
a t t

a
θ

θ ε ω
ω

= − − − , 

 (16.1.15) 

by means of the relation (16.1.13). Hence, the variation of the angle of nutation θ  is 
periodical, with the period ( ) ( )0 0 0

3 3 3 32 / 2 / / 2 / Ea J I Tπ ω π ω π ω= < = , 0
3ω  being 

the angular velocity in the diurnal rotation of the Earth (which is acceptable in the 
frame of the above approximation); hence, the period of variation of the nutation angle 
is a little smaller than a sidereal day ( 305/306  of ET ). 

The angle of precession is given by the first relation (15.2.2) in the form 
( )0 2

3 cos / sinaψ α ω θ θ= − ; taking into account (16.1.15), neglecting the higher 
order powers of ε  and noting that 0cos cos vθ θ= + 0cos θ=  ( )0 0sinθ θ θ− − , we 
can write (we use the same method as above)  

( )[ ] ( )[ ]
0
3 0 0

0 0 03 32
0

1 cos cos 1 cos
sin
a u

a t t a t t
ω

ψ ω ε θ ω
θ

= − − − = − − −  

too. By integration, one obtains the angle of pseudoregular precession (we put the initial 
condition 0 0( )tψ ψ= ) 
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( ) ( )[ ]0 0
0 0 0 03 30

3
( ) cos sint a t t a t t

a
ε

ψ ψ θ ω ω
ω

= − − − − , 
 

(16.1.16) 

 
Fig. 16.4  The elliptic cone described by the 3Ox -axis in the motion of the Earth 

which – unlike the regular precession – is a non-linear function of time. Thus, besides 
the motion of regular precession on the cone of vertex angle 02θ , intervenes a 
supplementary motion given by the additive terms in the formulae (16.1.15), (16.1.16); 
hence, the 3Ox -axis describes also an elliptic cone (Fig. 16.4) of extreme vertex angles 

( )0
03/ cosaε ω θ  and ( )0

03/ sin2aε ω θ  about axes specified by the angle of precession 

( )0 0cost tε θ− −  and by the angle of nutation ( )0
0 03/2 sin2aθ ε ω θ− , respectively. 

The ratio of the extreme vertex angles is equal to 02 sin 2 sin23 27 0.7959θ ′= ≅ ; 
hence, the elliptic cone described by the 3Ox -axis is, approximately, a circular cone 

(the ratio of the axes is approximately equal to 0.8), the period of rotation being equal 
to ( )0

32 / 305/306 Ea Tπ ω = , hence somewhat smaller than a sidereal day. 
The third equation (15.2.2) leads to 0

3 cosϕ ω ψ θ= − ; proceeding as in the case of 
the precession angle and neglecting afterwards 2ε  with respect to ε , we obtain 

( )[ ]0 0 2
0 03 31 cos cosa t tϕ ω ε ω θ= + − − , wherefrom 

( ) ( ) ( )0 2 2 0
0 0 0 0 03 30

3
( ) cos cos sint t t a t t

a
ε

ϕ ϕ ω ε θ θ ω
ω

= + + − − − , 
 

(16.1.17) 

with the condition 0 0( )tϕ ϕ= . 
Once Euler’s angles determined, we can calculate the components jω  and jω , 

1,2, 3j = , of the angular velocity vector ω in the frames of reference R  and R , 
obtaining then the equations of the polhodic and of the herpolhodic cone, respectively. 

16.1.2.4 Other Considerations 
To obtain a much more correct image of the motions of the Earth, one must take into 
account also the periodic terms in the perturbing forces due to the Sun, Moon etc.; one 
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can no more assume that the mass of the Sun, e.g., is uniformly distributed along its 
trajectory. Modelling the Sun as a particle of mass Sm  we can calculate the moment  

OM  in the form 

3
1

dO S PM
fm M

r
= ×∫M r r , 

 

(16.1.18) 

where Pr  is the position vector of a particle P of the Earth, of mass dM (M is the mass 

of the Earth), while PS=r , S being the mass centre of the Sun (Fig. 16.5); in this case 

3
1

djOi S ijk kM
M fm x M

r
ξ= ∈∫ , 

 

(16.1.18') 

where jx  are the co-ordinates of the point P, while kξ  are the co-ordinates of the point 

S, , 1,2, 3j k = , with respect to the frame of reference R. 

 
Fig. 16.5  The influence of perturbing terms in the motion of the Earth 

Noting that the dimensions of the Earth are small with respect to the distances r and 

Sr  ( S P= −r r r ), we can expand the ratio 1/r  into a series after the powers of the 
ratios /i Sx r , 1,2, 3i = ; neglecting the higher-order powers, it results 

3/2

3 3 2 2 3 2
1 1 2 1 1 31 1i i i i i i

S S S S S
x x x x

r r r r r r
ξ ξ

−
⎛ ⎞ ⎛ ⎞= − + ≅ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 
 

Taking into account that O is the centre of the terrestrial oblate spheroid, we can make 
considerations analogous to those in Sect. 16.1.1.3, so that 

d 0iM
x M =∫ ,   d 0j kM

x x M =∫ ,   j k≠ ,   , , 1,2,3i j k = , 

( ) ( )2 2 2 2
1 3 2 3d d

M M
x x M x x M− = −∫ ∫  

( ) ( )2 2 2 2
1 2 2 3 3d d

M M
x x M x x M I J= + − + = −∫ ∫ . 
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It results 

( )3 2 31 53 S
O

S

m
M f I J x x

r
= − ,   ( )3 1 32 53 S

O
S

m
M f I J x x

r
= − − ,   3 0OM = . 

 (16.1.18'') 

Euler’s equations (16.1.1) read 

1 2 3
1 2 3

O

S SS

M x xn
n

J r rr
ω ω

′
+ = = ,   2 1 3

2 1 3
O

S SS

M x xn
n

J r rr
ω ω

′
− = = − , 

3 3
0 0

I J
n

J
ω

−
= > ,   33 0S

I J
n fm

J
−′ = > . 

 
 

(16.1.19) 

These equations may be expressed also by means of Euler’s angles and of other angles 
which specify the position of the Sun with respect to the frame of reference R. 

However, neither the results thus obtained do not coincide with those given by the 
astronomic observations, because of the model of rigid solid assumed for the Earth. In 
reality, the Earth is a deformable solid or, more correct, a mechanical system formed by 
solid and fluid parts; some of them can be even rigid. In the hypothesis of rigid of the 
Earth, its central ellipsoid of inertia being an oblate spheroid, it results that the rotation 
angular velocity about the axis of the poles is constant; but if we take into account a 
modelling of the Earth much closer to the reality, one sees that this velocity is varying, 
resulting difficult problems for the determination of the unit of time (specified by the 
diurnal rotation of the Earth). 

A heavy rigid solid with a fixed point O for which the ellipsoid of inertia corresponding 
to this point is of rotation about the principal axis of inertia 3Ox  ( 1 2I I J= = ), its 
initial motion being a rapid motion about this axis, is called gyroscope. After some 
general results, we present various applications with theoretical or technical character. 

We make firstly some general considerations concerning the motion of regular 
precession of the gyroscope, assuming to be in the Euler-Poisson case; as well, we put 
in evidence the gyroscopic effect which appears if the gyroscope is acted upon by its 
own weight or by an arbitrary force. We introduce then the gyroscopic moment and the 
gyroscopic reactions, calculating also the inertial forces which arise in the motion of 
regular precession of the gyroscope. 

If the moment with respect to the fixed point O, corresponding to all the given external 
forces which act upon the gyroscope, vanishes ( O =M 0 ), then we are in the Euler-
Poinsot case; we can thus use all the results given in Sect. 15.1. 
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16.2 Theory of the Gyroscope 

16.2.1 General Results 

16.2.1.1 The Euler-Poinsot Case. Stability of the Motion 
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If we wish that the symmetry axis of the gyroscope, which is a symmetry axis of the 
motion too, maintains its direction, then we must have =ω ω  and ′ = 0ω , 
corresponding to the decomposition (15.2.14) in Sect. 15.2.1.4; we equate thus to zero 
the motion of regular precession. The formula (15.2.17') shows that this property of the 
motion takes place if O =M 0 , hence in the considered Euler-Poinsot case (Fig. 16.6). 
Hence, a gyroscope to which it was imparted a motion about its axis of symmetry 
maintains unchanged the direction of this axis if the moment of all the external forces 
with respect to the fixed point vanishes. In the case in which the gyroscope is acted 
upon only by its own weight, we fulfill this condition choosing the centre of gravity as 
fixed point. 

 
Fig. 16.6  The gyroscope for which the motion of regular precession is equated to zero 

As it has been shown in Sect. 15.1.2.7, the symmetry axis of the gyroscope, which is 
also an extreme principal axis of inertia, is stable during the motion. Indeed, let us 
suppose that an arbitrary perturbation imparts to the vector ω a direction somewhat 
different from 3Ox , having the components 1 2, 0ω ω ≠ ; these components verify the 
equations (16.1.2), being of the form (16.1.2'), so that 0

1 2,ω ω ω≤ , 0ω  arbitrary. 

We can state that the stability of the axis is as greater as the period 2 /T nπ=  (n 
given by (16.1.2)) is smaller, hence as the proper velocity of rotation of the gyroscope 
is greater. As well, we notice that the stability increases as the moment of inertia 3I  is 

greater than the moment of inertia J (the ellipsoid of inertia corresponding to the fixed 
point is a very oblate spheroid). 

In all these cases, the moment of momentum O′K  is directed along the 3Ox -axis so 
that 3OK I ω′ = . 

One can thus explain a great number of mechanical phenomena: (i) The knife 
thrower throws the knife upwards with one hand and catches it with the other hand; to 
do this, he gives to the knife a motion of rotation about its axis, before throwing it, the 
axis maintaining thus its direction during the motion. (ii) When he jumps from a certain 
height, the skier rotates both arms stretched laterally in the same sense, about the same 
horizontal line; in this case, the skier remains in a vertical position, so that he is falling 
on his feet. (iii) A body with an axis of symmetry becomes a motion of rotation about 
this axis, in a horizontal position, by means of a thread between two rods, being then 
thrown upwards; the axis remains horizontal during the motion and the body can be 
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easily caught on the thread from which it was thrown. This is the diabolo game. (iv) A 
coin with a vertical diameter or a top with a vertical axis of symmetry 3Ox , staying on 
a horizontal plane, can maintain for some time the position of its axis if it becomes a 
motion of rotation about the respective axis 3 3Ox Ox′ ≡  (Fig. 16.7); the interval of time 
is as greater as the rotation angular velocity is greater. (v) The disc of Gervat’s 
gyroscope has the horizontal axis maintained in labile equilibrium on one foot (the 
“equilibrist foot”), formed by a thin metallic tube; giving to the disc a sufficiently rapid 
motion of rotation, the gyroscope remains in equilibrium. 

 
Fig. 16.7  A coin (a) or a top (b) maintains the position of its axis for some time 

16.2.1.2 General Considerations on the Motion of Rotation of the Gyroscope  

In general, the moment of the given external forces with respect to the fixed point O is 
non-zero ( O ≠M 0 ). If the gyroscope is acted upon only by its own weight, then we 
are in the Lagrange-Poisson case, so that one can use the results in Sect. 15.2.1. 

 
Fig. 16.8  The cone of precession  prC  in the motion of rotation of the gyroscope 
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Decomposing the rotation angular velocity vector ω  along the fixed 3Ox ′ -axis, along 

the movable 3Ox -axis and along the line of nodes ON, respectively, we can write 

3 3ω ω θ′ ′= + +i i nω  with ω ϕ= , ω ψ′ = . Assuming that 0θ = , hence constθ = , 
it results that the vector ω  describes the cone of precession  prC  with the 3Ox ′ -axis and 
of vertex angle 2θ  (Fig. 16.8). Further, we suppose that constω =  and constω ′ = ; 
in this case, we have constω =  too, the angles hθ  and pθ  made by the vector ω with 
the 3Ox ′ -axis and the 3Ox -axis, respectively, being also constant. We notice that 

phθ θ θ+ =  too. In this case, the vector ω will describe the herpolhodic cone  hC  of 
axis 3Ox ′  and vertex angle 2 hθ , with respect to the frame of reference ′R , and the 
polhodic cone  pC  of axis 3Ox  and vertex angle 2 pθ , with respect to the frame R, 
respectively. The motion of rotation of the gyroscope will be thus composed by a 
uniform proper rotation of angle ϕ and a proper rotation angular velocity ω , about the 

3Ox -axis and a motion of regular precession of angle ψ and angular velocity of 
precession ω ′  about the 3Ox ′ -axis (Fig. 16.8). By decomposing the vector ω, one 
obtains easily the relations 

2 22 2 cosω ω ω ωω θ′ ′= + + , 

( )1cos cosPθ ω ω θ
ω

′= + , 

( )1cos coshθ ω ω θ
ω

′= + . 

 
 

(16.2.1) 

 
Fig. 16.9  The components of the vectors ω and O′K  in the motion  

of rotation of the gyroscope 

Let be the Oξ -axis normal to 3Ox , in the 3 3Ox x ′ -plane. The components of the 
vectors ω and O′K  will be (Fig. 16.9) 

3 cos cospω ω θ ω ω θ′= = + , 
sin sinpξω ω θ ω θ′= = , 

 

3 33OK I ω′ = ,   OK Jξ ξω′ = . 
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It results 

( )22 2 2 2 2 2 2 2
3 3cos sin cos sinp pOK I J I Jω θ θ ω ω θ ω θ′ ′ ′= + = + + , 

3 3 3 3

sintan tan
cosp

J J J
I I I

ξω ω θ
δ θ

ω ω ω θ
′

= = = ′+
, 

 
 

(16.2.2) 

where δ is the angle made by the moment of momentum O′K  with the 3Ox -axis. This 
vector is situated in the 3 3Ox x ′ -p1ane, hence it is rotating together with this plane about 
the fixed axis 3Ox ′  with the angular velocity ′ω ; this vector describes, as well, a cone of 
axis 3Ox ′  and vertex angle ( )2 θ δ−  (we notice that constδ =  too). 

If / 1ω ω′ , then we can assume, that 0δ ≅ , the moment of momentum O′K  
being directed, with a good approximation, along the 3Ox -axis; hence, 

3 3 3O I I ω′ = =K iω . Noting that, in this case, the velocity of the extremity of the 
vector O′K  is given by 3O O I′ ′ ′ ′= × = ×K Kω ω ω , we find again the formula 
(15.2.17") which gives the moment OM . In a scalar form, we can write 

3 sinOM I ωω θ′= , (16.2.3) 

in the limits of the hypothesis made. In general, we will have ( )sinO OM Kω θ δ′ ′= − , 
wherefrom 

( )3 3 cos sinOM I J I
ω

θ ωω θ
ω

′⎡ ⎤ ′= − −⎢ ⎥⎣ ⎦
, 

 

(16.2.3') 

corresponding to the formula (15.2.17'). In particular, if /2θ π= , hence if 

3 3Ox Ox ′⊥ , then we find again the formula (16.2.3), which is  now an exact formula. 

 
Fig. 16.10  Pohl’s experiment 
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16 Other Considerations on the Dynamics of the Rigid Solid 

To put in evidence the motion – described above – of the gyroscope, we can make –  
together with Pohl – a simple experiment. We fix on the gyroscope axis a disc D on 
which we have put a printed paper (e.g., from a journal) (Fig. 16.10). During the 
rotation of the gyroscope, one cannot distinguish the letters (one can see only a uniform 
gray), excepting the piercing point N of the support of the vector ω, on the disc D (the 

velocity vanishes at the point N, so that the letters in the vicinity of this point are 
practically at rest and can be read). Pohl says that “the axis of rotation and the axis of 
the gyroscope rotate one around the other, as a pair of dancers”. 

If / 0ω ω′ >  (the positive sense of the components of the vector ω is the positive 
sense of the co-ordinate axes 3Ox ′  and 3Ox  respectively, hence if 0 /2θ π≤ < , then 
we obtain 

sintan
cosp

ω θ
θ

ω ω θ
′

= ′+
,   sintan

cosh
ω θ

θ
ω ω θ

= ′ +
, 

 

(16.2.4) 

from (16.2.1). The cones pC  and hC  are exterior (as in Fig. 16.8); the motion of 
precession is progressive and the general motion of the gyroscope is epicycloidal. 

If / 0ω ω′ < , then we have ( ), π θ′ = −ω ω  too, so that phθ θ π θ+ = − , while 

sintan
cosp

ω θ
θ

ω ω θ
′

= − ′+
,   sintan

cosh
ω θ

θ
ω ω θ

= − ′ +
. 

 

(16.2.4') 

 
Fig. 16.11  The motion of the gyroscope: hypocycloidal (a),  

inverse epicycloidal (b) and inverse hypocycloidal (c) 

In this case, the motion of precession is retrograde. We notice that /2π π θ π< − < , 
hence 0 /2 /2π θ π< − < . If /2hθ π> , then it results /2pθ π<  and tan 0pθ > , 
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tan 0hθ < , so that cos / 0θ ω ω′− < < , the cone pC  being interior to the cone  hC  
(Fig. 16.11a); the motion of the gyroscope is hypocycloidal. If /2pθ π<  and 

/2hθ π< , then one can show that tan 0pθ >  and that tan 0hθ > , so that 
1/ cos / cosθ ω ω θ′− < < − , the cone pC  being exterior to the cone  hC  

(Fig. 16.11b); the motion of the gyroscope is inverse epicycloidal. If  /2pθ π> , then it 
results /2hθ π<  and tan 0pθ < , tan 0hθ > , so that / 1/ cosω ω θ′ < − , the cone 

 hC  being interior to the cone pC  (Fig. 16.11c); the motion of the gyroscope is inverse 
hypocycloidal (pericycloidal). 

 
Fig. 16.12  The motion of the gyroscope: the cone pC  is rolling slidingless over the fixed 

plane  hP  (a); the plane pP  is rolling slidingless over the fixed cone  hC  (b) 

The limit case / 0ω ω′ =  has been considered in Sect. 16.2.1.1. If / cosω ω θ′ = − , 
then /2hθ π=  (the component ′ω  is normal to the vector ω), while the cone  hC  is 
reduced to the plane  hP , which passes through the vector ω, being normal to 3Ox ′  
(Fig. 16.12a); the cone  pC  is rolling without sliding over the fixed plane  hP . If 

/ 1/ cosω ω θ′ = − , then /2pθ π=  (the component ω  is normal to the vector ω), 
while the cone  pC  is reduced to the plane pP , which passes through the vector ω, 
being normal to 3Ox  (Fig. 16.12b); this plane is rolling slidingless over the fixed cone 

 hC . 

Let be a gyroscope fixed at its centre of gravity C (O C≡ ) and subjected to the 
action of its own weight G (the Euler-Poinsot case); we assume that to this gyroscope is 
imparted an initial rotation angular velocity 0ω , which makes an angle pθ  with the 

3Ox -axis of the gyroscope (Fig. 16.13). If the fixed axis is 3Ox ′  and 
( )3 3,Ox Oxθ ′= , then we can write ( )/ sin / sin / sinp pω θ ω θ θ ω θ′= − =  
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16 Other Considerations on the Dynamics of the Rigid Solid 

(obviously, 0ω ω= , the magnitude of the angular velocity being constant). Noting 
that O =M 0 , the formula (15.2.17') leads to the relation 

( ) ( )3 3 / cos 0I J I ω ω θ′− − = . Eliminating the ratio /ω ω′ , these results lead to 

3
tan tan p

J
I

θ θ= , 
 

(16.2.5) 

so that we can determine the position of the fixed axis 3Ox ′  in the plane formed by the 

3Ox -axis and the initial angular velocity 0ω . We obtain, as well, 

3 cos p
J I

J
ω ω θ

−
= ,   ( )1/22 2 2 2

3sin cosp pJ I
J
ω

ω θ θ′ = + , 
 

(16.2.5') 

the last relation corresponding to the first relation (16.2.2). Hence, if to a heavy 
gyroscope, hanged at its centre of gravity, one gives an initial rotation about an axis 
inclined with the angle pθ  with respect to its axis, then the gyroscope becomes a motion 
of precession about a fixed axis situated in the plane determined by its initial position 
and by the axis of initial rotation and which makes the angle θ (specified by the formula 
(16.2.5)) with the initial position. We must notice that the fixed axis (the 3Ox ′ -axis) is 
not necessarily vertical. 

 
Fig. 16.13  The motion of the gyroscope acted upon by its own  

weight G and for which O C≡  

The first formula (16.2.2) gives OK ′ , while the second formula leads to 0δ = ; 
hence, the moment of momentum O′K  is directed along the fixed axis 3Ox ′ . Indeed, 
from the theorem of moment of momentum it results O′ =K 0 , hence O′K  has a fixed 
direction in space; but this vector is contained in the 3 3Ox x ′ -plane, which has only one 
fixed direction, i.e. 3Ox ′ . 
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In the particular case in which 0pθ =  it results 0θ = , 0ω ′ = , ω ω= , while the 

3Ox ′ -axis will coincide with the 3Ox -axis; we are in the case considered in Sect. 
16.2.1.1.  

16.2.1.3 The Motion of Regular Precession of a Heavy Gyroscope 

Let be a gyroscope of weight G, having the fixed point O situated on the symmetry axis 

3Ox , subjected to a proper rotation of angular velocity ω . The moment of the given 

external forces is O OC= ×M G , of magnitude sinOM Gl α= , where l OC= , 

while α is the angle made by the 3Ox -axis with the vertical line (Fig. 16.14) (we are in 
the Lagrange-Poisson case). To obtain a motion of regular precession ( constω ′ =  and 

constθ = ), together with a uniform proper rotation ( constω = ), we must have 
constOM = , in conformity to the formula (16.2.3'), wherefrom it results constα = . 

The support of the vector OM  must be, during the motion, normal to the 3 3Ox x ′ -plane 
(along the line of nodes), corresponding to the formula (15.2.17'); it describes a 
horizontal plane, the 3Ox ′ -axis being thus vertical and α θ= . At the initial moment, 
the angular velocities ω  and ω ′  must verify the condition 

( ) 2
3 3 cosI I J Glωω ω θ′ ′+ − = , 

 

(16.2.6) 

 
Fig. 16.14  The motion of the gyroscope with a progressive precession 
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3

Gl
I

ω
ω

′ = , 
 

(16.2.6') 

which specifies the angular velocity ω ′ ; this formula is exact if /2θ π= . If these 
initial conditions do not hold, then a supplementary motion of nutation ( constθ ≠ ) 
appears. In general, 

( ) ( )2 2
3 3 3

3

1 4 cos
2 cos

I I Gl I J
J I

ω ω ω θ
θ
⎡ ⎤′ = ± + −⎣ ⎦−

, 
 

(16.2.6'') 

obtaining two values for the angular velocity ω ′ , with the condition 
( ) ( )3 32/ cosI J I Glω θ> − , if 3J I> ; if 3J I< , then the quantity under the 

radical is always positive (we assume that cos 0θ > ). 
Practically, it is difficult to obtain angular velocities which fulfil the above 

conditions; as well, the frictions and the resistance of the air have an influence on the 
angular velocities ω  and ′ω , which can remain constant only with a certain 
approximation. 

In the case considered in Fig. 16.14 (OC  has the same sense as ω ), the moment 

OM  is directed in the positive sense of the ON-axis, the precession being progressive 
(such a gyroscope can be, e.g., a top, as that in Fig. 16.7b, but with an axis inclined with 
respect to the vertical line). If the fixed point O is on the other part of the mass centre 

C, so that ω  has an inverse sense with respect to OC , then the angular velocity ′ω  is 
directed in a opposite sense with respect to the 3Ox ′ -axis and the moment OM  has a 

sense opposite to that of the ON-axis; thus the precession is retrograde. The gyroscopic 
balance allows to put in evidence this phenomenon. If, on the 3Ox -axis, on one part of 

the fixed point O we have a gyroscope of weight G (the symmetry axis of the 
gyroscope is along 3Ox ) and if on the other part acts a weight P (which can glide along 

the axle), then the centre of gravity C, were acts the force +G P , will be on one part 

or on the other one with respect to the point O; thus, the motion of precession about the 
fixed vertical axis 3Ox ′  can change its sense. 

corresponding to the condition (15.2.11), to can obtain the wanted motion. In the case 
in which / 1ω ω′  or in the case in which ( )3 3/ 1I J I− , we get the 
approximate formula 
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Fig. 16.15  The motion of the gyroscope for which the resultant R is  

applied at Q on the symmetry axis 

More general, if the resultant of the given external forces to which is subjected the 
gyroscope is a force R applied at the point Q on the symmetry axis, inclined by the 

angle α with respect to the 3Ox -axis (Fig. 16.15), then we obtain O OQ= ×M R  and 
sin constOM Rl α= = , where l OQ= . Making the same considerations as in the 

preceding case, we obtain analogous results; thus α θ= , with the only difference that 
the 3Ox ′ -axis is not necessarily vertical, but is parallel to the resultant R. If the angular 
velocity ω  is sufficiently great, the velocity ′ω  is given, with a good approximation, 
by the formula (16.2.6'), the angle being practically constant. For an illustration of these 
results, we present the experiment of Charron. In this case, the 3Ox -axis of the 

gyroscope is formed by a magnet NS, the point O being the pole S (Fig. 16.16). We 

bring close to the pole N a horizontal magnet m with a pole P; if the gyroscope is 

immobile, then to can attract the pole N it is necessary that the pole P be a south pole. If 

we impart to the gyroscope an angular velocity ω  and if we bring near the pole N the 

magnet with the pole P as north pole, then we see that the point N of the gyroscope 
comes close to this one, instead to move away; it seems that, paradoxically, the two 
poles are attracted instead to be repulsed. As a matter of fact, the pole N is repulsed 
with a force F which is composed with the weight G of the gyroscope, giving the 
resultant R, which pierces the 3Ox -axis at the point Q; in conformity with the results 
obtained above, the gyroscope will have a motion of precession about the 3Ox -axis, 

parallel to the resultant R, coming near to the magnet m. As we come closer to the 

gyroscope with the magnet m, as the force F grows in intensity, while the resultant R 

and the 3Ox ′ -axis are inclined more, the point N coming closer to the magnet. If the 

pole P is a south pole, then the gyroscope is moving away from the magnet, giving the 
paradoxical impression that poles of opposite sense are repulsive. 
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Fig. 16.16  Charron’s experiment 

One can establish an interesting analogy between the motion of regular precession of 
the gyroscope and the uniform circular motion of a particle. Thus, to the constant 
velocity v of the particle corresponds a constant angular velocity ω of the gyroscope, to 
the constant force F which acts upon the particle corresponds the constant moment OM  
which acts upon the gyroscope and to ⊥F v  corresponds O ⊥M ω , hence the work 
of the force F vanishes ( 0⋅ =F v ), corresponding 0O ⋅ =M ω  (the work of the mo-

ment OM  is, as well, zero). The momentum vector mv, of constant magnitude, is 
rotating about the fixed point with a constant velocity, while the moment of momentum 
vector O′K , constant in magnitude, rotates with a constant velocity about the fixed axis 

3Ox ′ . If the force F is no more acting, then mv maintains a fixed direction and the 
particle has a uniform and rectilinear motion; if the moment OM  does no more act, 
then the vector O′K  maintains a fixed direction, while the gyroscope has a natural 
regular precession about it.  

16.2.1.4 The Gyroscopic Effect in Case of the Gyroscope Acted  
Upon by its Own Weight 

Let us consider a heavy gyroscope fixed at the point O on its axis of symmetry (the 
Lagrange-Poisson case) (Fig. 16.14). We assume that, in the initial position, determined 
by Euler’s angles 0 0 0, ,ψ θ ϕ , 00 θ π< < , a rapid initial rotation is imparted to the 
gyroscope about its axis ( 0 0 0ψ θ= = , hence 0 0

1 2 0ω ω= = , and 0
0 3 constϕ ω= = , 

the spin 0
3ω  being non-zero); the first integrals (15.2.2) lead to the relations 

0
03 cosaα ω θ= , 0cosbβ θ= . In this case, the relations (15.2.3), (15.2.8) lead to 

( ) ( ) ( ) ( )22 2 0
0 03( ) 1P u u u b u a u uω⎡ ⎤= − − − −⎣ ⎦ , 

 

(16.2.7) 

00
3 21

u u
a

u
ψ ω

−
=

−
,   

( )00 0
3 3 21

u u u
a

u
ϕ ω ω

−
= −

−
, 

 

(16.2.7') 
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Fig. 16.17  The zeros of the polynomial ( )P u : general case (a); particular case (b) 

where 0 0cosu θ=  and where we use the notations in Sect. 15.2.1.1. Following the 
general theory exposed in Sects. 15.2.1.1 and 15.2.1.2, in conformity to which 

1 0 2u u u≤ ≤ , 1 2u u u′< ≤ , one can have only 0 2u u u ′= = , so that 1 0u u u≤ ≤  
(Fig. 16.17a). Hence, the zeros 1u  and 3u  of the polynomial ( )P u  will be given by the 
equation of the second degree 

( )
( )2

0 22 0
3

1bu u u
a ω

− = − . 
 

(16.2.7'') 

But their calculation is not very useful, because we are interested in the behaviour of 
the solution for a great spin 0

3ω . From (16.2.7') it is seen that 0
3sign signψ ω= , so that 

the 3Ox -axis is rotating about the 3Ox ′ -axis (motion of precession) in the same sense as 
that of the initial rotation imparted to the gyroscope (about the 3Ox -axis) (Fig. 16.15). 

From (16.2.7") one observes that 2 0 2
0 1 30 / ( )u u b a ω< − <  , so that, for a great 

spin 0
3ω  or for a very small b (hence, for a fixed point O close to the mass centre C), 

the interval of variation of u is very small; practically, 0u u≅ , wherefrom 0θ θ≅ , the 
motion of nutation being, with a good approximation, negligible. For a more exact 
calculation, we put 0 2

0 3/( )θ θ ε ω= + , where ( )tε ε=  is a small parameter; it results 
thus that 

( ) ( ) ( )
0

0 0 02 2 20 0 0
3 3 3

sin
cos cos cos sin sin cos

ε θε ε
θ θ θ θ

ω ω ω
= − ≅ − ,  

which corresponds to an expansion into a Taylor series. Hence, 
0 2

0 0 3sin /( )u u ε θ ω= − , 0 2
0 3sin /( )u ε θ ω= − ; taking into account (16.2.7) and 

neglecting the terms of higher order, the differential equation (15.2.3) with (16.2.7), 
reads 

( ) ( )22 0 2
03 sinb aε ε ω θ ε= − . 

 

(16.2.8) 

Noting that 0( ) 0tε = , we find the solution 
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( )[ ]0
0 032( ) sin 1 cos

2
b

t a t t
a

ε θ ω= − − , 
 

(16.2.8') 

wherefrom 

( )
( )[ ]0

0 0 0322 0
3

( ) sin 1 cos
2

bt a t t
a

θ θ θ ω
ω

= + − − . 
 

(16.2.9) 

Hence, the nutation is periodical, of period 0 0
3 3 32 / ( / )2 /T a J Iπ ω π ω= = , which 

decreases at the same time with the increasing of the spin 0
3ω  (the nutation is small in 

amplitude, but very rapid). The mean value of the angle of nutation will be 

( ) ( )
3

0 0med 2 22 0 2 033 3 32

gb J
Ia i

ρ
θ θ θ

ω ω
= + = + , 

 

(16.2.9') 

where we have introduced the radius of gyration 3 3 /i I M= . 
From the first formula (16.2.7') it results 

2
0 1 10

3 0 0 02 2 2 2
3 3 3

1 1 10
1 1 1 1
u u ub b ba

a a au u u u
ψ ω

ω ω ω ∗

− −
< < = < <

− − − −
, 

 

with 0 1max( , )u u u∗ = ; hence, the angular velocity ψ  is very small (of the order 

of magnitude of 0
31/ ω  or of b, if the fixed point O is very close to the centre of 

gravity C ), the motion of precession being very slow. The piercing point Q of  the  

3Ox -axis on the unit sphere describes a series of cycloids (we are in the case of 
Fig. 15.21c). Neglecting, as above, the powers of higher order of the small parameter 
ε, we find, analogously,  

( )[ ]0
030 0

03 3
1 cos

sin 2
a b a t t

a
ε

ψ ω
ω θ ω

= = − − ,  

wherefrom 

( )
( ) ( )[ ]0 0

0 0 03 322 0
3

( ) sin
2

b
t a t t a t t

a
ψ ψ ω ω

ω
= + − − − . 

 

(16.2.10) 

The velocity of precession oscillates about the mean value 

3
med 0 2 0

3 3 32
gb

a i
ρ

ψ
ω ω

= = . 
 

(16.2.10') 
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We notice also that the symmetry axis of the gyroscope does not shift in the vertical 
plane (as it would be expected, due to the initial conditions and because the rigid solid 
is acted upon only by its own weight – a vertical force G), but is shifted very slowly in 
a direction normal to this plane (normal to the force G); this effect, which is in 
contradictions with the direct intuition, being due to the spin 0

3ω , is called gyroscopic 
effect. 

The second formula (16.2.7') allows to write 

( ) ( )2
10 10 0

3 3 02 2
3

1
0

1 1

u uu u u b
a

au u
ϕ ω ω

ω

−−
< − < =

− −
 

0 02 2
3 31 1

b u b u
a au uω ω

∗

∗
< <

− −
, 

 

where u∗  has the same significance as above; hence, the angular velocity ϕ  differs 
very little from 0

3ω  (with a magnitude of the order of 0
31/ ω ), so that, from a practical 

point of view, the gyroscope is rotating about its axis with the initial angular velocity. 
Proceeding as above, we find ( )[ ]0 0 0

0 03 3 3( /2 )cos 1 cosb a a t tϕ ω ω θ ω= − − − , 
wherefrom 

( )
( )

( )0 00 0
0 0 03 30 22 03 3

cos cos
( ) sin

2 2

b b
t t t a t t

a a

θ θ
ϕ ϕ ω ω

ω ω

⎛ ⎞= + − − + −⎜ ⎟
⎝ ⎠

, 
 

(16.2.11) 

the mean value of the velocity of proper rotation being 

00 30 0
3 3med 0 2 0

3 3 3

coscos
2

gb
a i

ρ θθ
ϕ ω ω

ω ω
= − = − . 

 

(16.2.11') 

These results are analogue to those in Sect. 16.1.2.3, corresponding to the same 
mechanical phenomenon.  

16.2.1.5 The Sleeping Gyroscope 

In the particular case in which 0 0θ = , hence 0 1u = , we are led to 

( ) ( ) ( )22 2 0
3( ) 1 1P u u b u a ω⎡ ⎤= − + −⎣ ⎦ ; the differential equation (15.2.3) reads  

( ) ( ) ( )22 0
31 1u u b u a ω= − + − . 

 

(16.2.12) 

The Lipschitz condition is fulfilled by the second member in the neighbourhood of 
1u = ; on the basis of the theorem of existence and uniqueness, it results that the only 

solution which satisfies the initial condition 0 1u =  is ( ) 1u t =  (hence, cos 1θ =  and 
0θ = ). As a matter of fact, this result is illustrated in the Fig. 16.17b. The 3Ox -axis of 

the gyroscope remains all the time vertical, while the gyroscope “sleeps”! We obtain 
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thus a configuration called the sleeping gyroscope (the sleeping top). From (16.2.7') one 
obtains 

0
3

1
2
aψ ω= ,   0 0

3 3
1
2
aϕ ω ω= − ,   0

3ψ ϕ ω+ = , 
 

(16.2.13) 

the last relation corresponding to the third kinematic equation (5.2.35) too. 
Putting 0 1u ε= − , 1u η= −  and ( )tη η=  being small parameters, hence giving 

a small perturbation to the vertical position, we obtain  

( ) ( ) ( ) ( )22 0
3( ) 2P u b aη ε η η ω η ε⎡ ⎤= − − − −⎣ ⎦ ;  

neglecting the powers higher to the second one, the equation (15.2.3) reads 

( ) ( ) ( )2 2 22 2 0 2 2 0 2 0 2
3 3 32 2b a b a aη ω η ω εη ω ε⎡ ⎤ ⎡ ⎤= − − − −⎣ ⎦ ⎣ ⎦ .  

Differentiating with respect to time and simplifying by 2η  (if 0η = , then we have 
constη =  and we are led to a stable position of equilibrium), we can write 

( ) ( )2 22 0 2 0
3 32a b a bη ω η ω ε⎡ ⎤ ⎡ ⎤+ − = −⎣ ⎦ ⎣ ⎦ . 

 

(16.2.14) 

If ( )22 0
3 2a bω > , then one obtains a periodic motion of very small amplitude around 

the initial position, the motion being stable; if ( )22 0
3 2a bω ≤ , then it results an 

aperiodic motion, the amplitude of which increases in time, so that the motion is labile. 
Using the notations in Sect. 15.2.1.1, we can state that the motion is stable if

2 0 2
3 3 3( / 4 )( )I JMgρ ω< ; hence, if the centre of gravity of the gyroscope is under the 

fixed point ( )3 0ρ < , then the motion is stable. If the centre of gravity C is situated 

over the fixed point O (see Fig. 16.7b), then the motion of the gyroscope is stable only 
if we impart to it an initial rotation 

0
3 3

3 3

12 J g
I i

ω ρ> . 
 

(16.2.15) 

If, practically, we would have 0
3 3( ) consttω ω= = , then the gyroscope would 

continue to “sleep” for ever. But, because of the resistance of the air and of the friction 
at O, the velocity of proper rotation 0

3ω  decreases in time; the condition of stability 
(16.2.15) does no more hold and the axis of the gyroscope is inclined more and more, 
till this one falls.  

16.2.1.6 The Gyroscopic Effect in Case of a Gyroscope Acted Upon 
by a Concentrated Force. The Gyroscopic Moment 

In the case considered in Sect. 16.2.1.4, the moment of momentum O′K  is directed, at 
the initial moment along the 3Ox -axis of the gyroscope (Fig. 16.18a); we assume that 
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/ 1ω ω′ , to can be in the case of the regular precession, so that ( )O O t′ ′=K K  be at 
any moment along the 3Ox -axis. The action of the own weight G leads to the moment 

OM  applied at O, while the theorem of moment of momentum reads O O′ =K M ; for 

an interval of time Δt we have O O t′Δ = ΔK M . The extremity N of the vector O′K  will 

describe a director circle of the precession cone till the point N  in the time interval Δt. 

Thus, the vector O O ON N ′ ′ ′= Δ = −K K K  will tend at the limit to d O′K , being normal 
to the 3 3Ox x ′ -plane,  which contains also the force G. The moment OM  will be along 
the same direction, the gyroscopic effect being thus put in evidence; this moment is 
given by the formula (15.2.17") or, more exactly, by the formula (15.2.17'). We notice 
also that, on the basis of the principle of action and reaction, the axis of the gyroscope 
will exert upon the exterior with which it comes in contact a gyroscopic moment 

g O= −M M . In this case  

( )3 3( ) cosg t I J I
ω

θ
ω

′⎡ ⎤ ′= − − ×⎢ ⎥⎣ ⎦
M ω ω  

 

(16.2.16) 

or, with a good approximation, 

3( )g t I ′= ×M ω ω . (16.2.16') 

These two formulae are particularly useful in practice. 

 
Fig. 16.18  The gyroscopic effect: the case 3O Ox′K  (a) and the case 3Ox ′F  (b) 

Let us assume now that the moment OM  is due to a concentrated force F, which acts 
normal to the axis of rotation 3Ox ′ , at the point Q  of it; intuitively, we would expect 
that, under the axis of this force, the axis does oscillate in the plane determined by its 
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16 Other Considerations on the Dynamics of the Rigid Solid 

initial position and the force F. But one sees that, due to the gyroscopic effect, the axis 
is rotating in the sense of the vector product 0

3 × Fω . Obviously, also in this case arises 

the gyroscopic- moment g OQ= − ×M F . 
To can study the problem, it  is  convenient  to  take – at the  initial  moment – the  
3Ox -axis in the direction of the 2Ox ′ -axis in its negative sense, the 1Ox -axis along the 

1Ox ′ -axis and the 2Ox -axis along the 3Ox ′ -axis (Fig. 16.18b ). If the force 3F ′= −F i  
is in the negative sense of the 3Ox ′ -axis (we suppose that it maintains all the time its 

direction and its sense) and acts at the point Q on the axis of rotation, then the moment 

( ) ( )2 3 2 3 1O OQ l F Fl Fl′ ′ ′ ′ ′= × = − × − = × =M F i i i i i  is directed  towards the 
positive sense of the 1Ox ′ -axis. If the moment of momentum O′K , situated along the 

3Ox -axis has a variation O′ΔK  parallel to OM  (corresponding to the relation 

O O t′Δ = ΔK M ), in the 1 2Ox x′ ′ -plane, then one obtains a moment of momentum 

O O O′ ′ ′= + ΔK K K  along the new position of the axis of the gyroscope. The gyroscopic 
effect (the displacement-of the 3Ox -axis in the horizontal plane 1 2Ox x′ ′  towards the 

1Ox ′ -axis) is thus justified. The initial conditions (at the moment 0t t= ) are of the 
form 0ψ = , 0 /2θ π= , 0 0ϕ = , 0 0ψ = , 0 0θ = , wherefrom 0 0

1 2 0ω ω= =  and 
0
3 0ω ϕ= . The equations of motion lead to first integrals of the form (15.2.1'''), 

wherefrom, taking into account the initial conditions, it results 3 0OK ′′ = , 

( )20
3 3 2I hω = , obtaining thus 0α = , 0β = . If the spin vanishes ( 0

3 0ω = ), then the 

first integrals (15.2.2) have only the solution ( we replace Mg by F and 3ρ  by l)  

( ) 0tψ = ,   ( ) 0tϕ = ,   2 2 cos 0J Flθ θ+ = . 
 

(16.2.17) 

 
Fig. 16.19  The zeros of the polynomial ( )P u : the case 02 0u u= =  

Hence, the axis of the gyroscope has a pendular oscillation about the fixed point O, in a 
vertical plane. If 0

3 0ω ≠ , then we are led to  

0
3 21

ua
u

ψ ω= −
−

,   3Ia
J

= ,   ( ) ( )2
1 3u bu u u u u= − − − , 

2
1 1 0u λ λ= − + < ,   2

3 1 1u λ λ= + + > , 

 
 
 

(16.2.18) 
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( ) ( )2 22 0 2 0
3 3 3

2 4
a I

b JFl
ω ω

λ = = . 

It results that 1 0u u≤ ≤ , hence ( ) /2tθ π≥  (Fig. 16.19); one obtains 0ψ > , for 

0t t> , the gyroscopic phenomenon being thus put in evidence. By means of Jacobi’s 

elliptic functions, the formulae (15.2.5'), (15.2.6') allow to express u in the form 

( )2
1 0cnu u p t t= − ,   

( )
2

04 32 44 0
3

1 1 1
2 1 1 ...

2 2
b

p b a
a

λ ω
λ ω

⎡ ⎤
= + = + −⎢ ⎥

⎢ ⎥⎣ ⎦
. 

 (16.2.19) 

We can use the results obtained concerning the gyroscopic effect to show the 
stability character of the motion of a gyroscope subjected to an initial rotation about its 
axis of symmetry (corresponding to the initial conditions assumed above). Choosing the 
co-ordinate axes as above, the moment of momentum O′K  will be directed along the 

3Ox -axis (Fig. 16.20). We assume a deviation of angle dψ  of the axis of the gyroscope 
in the horizontal plane 1 2Ox x′ ′ ; in conformity to the previous considerations, intervenes 
the differential d O′K  of the moment of momentum, parallel to the 1Ox -axis, 
corresponding to the moment OM , along this axis. Taking into account the theorem of 
moment of momentum written in a scalar form ( d dO OK M t′ = ), we notice that 

( ) ( )d tan d d / / dO O O OK K M K tψ ψ ′ ′ ′= = = , so that O OM K ψ′= . The moment 

OM  has the tendency to impart to the gyroscope a motion of rotation of angle θ about 
the 1Ox -axis, governed by the equation 1 OI J Kθ θ ψ′= = ; integrating this equation, 

we get OJ Kθ ψ′= , the initial conditions vanishing. To a displacement of angle dθ of 
the gyroscope axis in a vertical plane one obtains a differential d O′K  of the moment of 
momentum, parallel to the 2Ox -axis; it corresponds a moment O′M  of modulus OK θ′  
along this axis, in its negative sense. This moment has the tendency to impart a motion 
of rotation of angle ψ about the 3Ox -axis, in conformity to the equation 

2 OI J Kψ ψ θ′= = − . Eliminating the angle θ, we obtain the equation 
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16 Other Considerations on the Dynamics of the Rigid Solid 

 
Fig. 16.20  The gyroscope effect: the case 3O Ox′K  

( )2
2 0OK

J
ψ ψ

′
+ = , 

 
(16.2.20) 

which leads to an angle ψ as a harmonic function of time; it results that, in the given 
initial conditions, the axis of the gyroscope is a stable axis of rotation. 

16.2.1.7 Prandtl’s Wheel. Tendency of Parallelism of the Axes of Rotation 
The gyroscopic effect can be put in evidence by means of Prandtl’s wheel. This is a 
homogeneous wheel, having a suspension which diminishes the frictions at the centre 
O; through this point passes a horizontal axle (along the symmetry axis of the 
gyroscope), hanged up so as to make possible the rotation about a horizontal axis, 
normal to that one, as well as about a vertical axis (Fig. 16.21). We take the 3Ox -axis 
along the symmetry axis of the gyroscope. Euler’s equations of motion are of the form 
(16.1.1). We give to the wheel a rapid motion of rotation at the initial moment, taking 
the horizontal axle fixed ( 0 0

1 2 0ω ω= = , 0
3 0ω ≠ ); then  we let free the axle, so that 

the wheel does effect a motion about it. 
If the gyroscope is acted upon only by its own weight, the centre of gravity being at 

O, then we have 1 2 3 0O O OM M M= = = . We get 2 2
1 2ω ω+ ( ) ( )2 20 0

1 2ω ω= + 0= , 
from the first two equations (16.1.1), so that 1 2( ) ( ) 0t tω ω= = ; the third equation 
leads to 0

3 3( )tω ω= , the gyroscope continuing its initial motion of rotation about the 

3Ox -axis. Noting that 3 0ρ = , from (15.2.1'') we get ( )20
3 3 2I hω = , so that 0β =  

and 0b = ; the second first integral (15.2.2) gives 2 2 2sin 0ψ θ θ+ = , wherefrom 

0ψ ψ= , 0θ θ= . The third relation (15.2.2) leads then to 0
3ϕ ω= .  Hence, we see that 

the axle of rotation 3Ox  remains fixed during the motion (the 3Ox -axis has the director 
cosines 0 0sin sinθ ψ , 0 0sin cosθ ψ− , 0cos θ  with respect to the fixed frame of 
reference; we can take 0 0 0θ ψ= =  too, because 3 3Ox Ox ′≡  as in Fig. 16.20), the 
wheel having a uniform rotation (we neglect the frictions and the resistance of the air) 
with respect to this axis; as much the velocity of rotation is greater, as much the parasite 
phenomena can be neglected. 
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Fig. 16.21  Prandtl’s wheel 

If at a point O ′ , at the distance l from the fixed point O, acts a force 

1 1 2 2F F= +F i i , normal to the symmetry axis of the gyroscope (Fig. 16.21), then we 
get the moment 2 1 1 2O lF lF= − +M i i . Because the initial angular velocity 0

3ω  is great, 
we can assume, in a first approximation, that 1 0ω ≅ , 2 0ω ≅ , remaining with the 
equations 

( )3 2 3 2J I lFω ω− = ,   ( )3 1 3 1J I lFω ω− = , (16.2.21) 

which determine 1ω  and 2ω . The velocity v of the point O ′  is given by  

3 1 1 2 2 3 3 3 2 1 1 2( ) ( ) ( )l l lω ω ω ω ω= × = + + × = −v i i i i i i iω  
2

2 1 1 20
3 3

( )
( )

l
F F

J I ω
= −

−
i i  

 

or by (we have 3I J> ) 

0 0
3 3 3 3( ) ( ) O

l lOO
I J I Jω ω

′= × =
− −

v F M . 
 

(16.2.22) 

Hence, after the application of the external force F, normal to the gyroscope axis, the 
point O ′  will be displaced along a direction normal to the plane formed by the force 
and by this axis, in the sense of the vector product O OO ′= ×M F  (the sense of the 

1Ox ′ -axis). This gyroscopic effect is as much greater as the initial angular velocity 0
3ω  

is smaller (formula (16.2.22)); on the contrary, if we maintain fixed the axle 3Ox , then 
its reaction will be given by the force F, being as much intense as 0

3ω  is greater 
(formula (16.2.21)). 
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If, initially, the wheel is at rest, being applied only the force F at the point O of the 
axle 3Ox ,  to the latter one will be imparted a motion of rotation about the 1Ox ′ -axis 

(normal to 3Ox ′  and to F, in the sense of the vector product OO ′ × F ); hence, the 
gyroscopic effect, put in evidence by the formula (16.2.22), tends to bring the symmetry 
axis of the gyroscope (the 3Ox -axis), on the shortest way, in the direction and the sense 
of the rotation axis of the rigid solid (the 1Ox ′ -axis), if this one would be acted upon, 
from its state of rest, by the force F. This represents the parallelism tendency of the 
rotation axes, with multiple applications in technics. 

Let us suppose that at the point O ′′  (specified by 3OO l′′ = − i ) acts a force −F too; 
in this case, the velocity v given by (16.2.22) doubles its intensity and we will have 

( )2 0
3 32 /v l F I J ω= − . If, independently, we apply to the mechanical system a 

rotation of angular velocity 2 2 2ω′ ′ ′= iω  about the vertical axis 2Ox ′ , then the motion 
which takes place (the velocity of the point O ′  is of magnitude 2v lω ′= ) is identical to 
that corresponding to the gyroscopic effect considered above; it results thus 

( )
0
3 2

32
F I J

l
ω ω ′

= − . 
 

(16.2.23) 

If 3I J , then one obtains  

0
3 3 2

2
I

F
l

ω ω ′
= , 

 

(16.2.23') 

a formula particularly useful in applications. The considered forces, of magnitude F, are 
called gyroscopic reactions; corresponding to the principle of action and reaction, the 
forces which have the same direction and the same magnitude, but opposite sense, are 
called gyroscopic pressures. 

16.2.1.8 Inertial Forces in the Motion of Regular Precession of the Gyroscope 
The motion of the gyroscope with respect to the fixed frame of reference (the absolute 
motion) can be obtained by composing the proper rotation of it about the symmetry axis 

3Ox , with the constant angular velocity ω  (the relative motion), with the motion of 
precession about the fixed axis 3Ox ′ , with the constant angular velocity ′ω  (the motion 

of transportation); we assume that the angle θ between the two axes is constant 

(Fig. 16.22). An element dm of the gyroscope, situated at the point P, is subjected to 
the centrifugal forces (forces of transportation) due to the proper rotation and to the 
motion of precession, as well as to the Coriolis force. 
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Fig. 16.22  Inertial forces in the motion of regular precession of the gyroscope 

The centrifugal force 2d dr mω=F r  ( PP=r , where P  is the projection of P on 
the 3Ox -axis), due to the proper rotation, leads to a zero torsor with respect to the point 

O on the 3Ox -axis, because of the properties of symmetry with respect to this axis 
( r =F 0 , Or′ =M 0 ). 

The centrifugal force 2d dp mω′ ′=F r  ( P P′ ′=r , where P ′  is the projection of P 
on the 3Ox ′ -axis) due to the motion of precession, leads to the resultant 

2dp
M

mω′ ′= ∫F r  and to the resultant moment 2dOp M
OP mω′ ′= ×∫M r .To simplify 

the calculation, we choose the 1Ox -axis along the line of nodes ON and the 2Ox -axis 
along the transverse line ON ′ . Corresponding to the point ( )1 2 3, ,P x x x , we obtain 

( ) ( )3 3 2 2 3cos sin sin cosj jOP OP x x xθ θ θ θ′ ′= ⋅ = ⋅ + = +i i i i , so that the co-
ordinates of the point P ′  on the 3Ox ′ -axis are 

1 0x = ,   ( )2 2 3sin cos sinx x xθ θ θ= + ,   ( )3 2 3sin cos cosx x xθ θ θ= + .  

We are thus led to 

2
1 1d dpF x mω ′= ,   ( )[ ]2

2 2 2 3d sin cos sin dpF x x x mω θ θ θ′= − + , 

( )[ ]2
3 3 2 3d sin cos cos dpF x x x mω θ θ θ′= − + . 

 

Taking into account the relations which give the static moments and the position of the 
mass centre 3(0, 0, )C ρ  on the symmetry axis of the gyroscope, we get  

1 0pF = ,   2
2 3 sin cospF Mω ρ θ θ′= − ,   2 2

3 3 sinpF Mω ρ θ′= − . 
 

(16.2.24) 
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The resultant pF  is applied at O being contained in the plane 3 3Ox x ′  and normal to the 

3Ox ′ -axis and having the magnitude 

2
3 sinP CF M Maω ρ θ′ ′= = , 

 

(16.2.24') 

where C′a  is the acceleration of the mass centre with respect to the inertial frame of 
reference. If O C≡ , then we have p =F 0 . 

Analogously, 

2 3 3 21d d dp pOpM x F x F= − ( )[ ]{2
2 3 2 3sin cos cosx x x xω θ θ θ′= − +  

( )[ ]}3 2 2 3sin cos sin dx x x x mθ θ θ− − + , 
( )[ ]{ }2

3 1 1 3 2 32d sin cos cos dOpM x x x x x x mω θ θ θ′= − − + , 

( )[ ]{ }2
1 2 2 3 2 13d sin cos sin dOpM x x x x x x mω θ θ θ′= − + − . 

 

By means of the relations which give the principal moments of inertia (the centrifugal 
moments of inertia vanish), we obtain 

( ) 2
31 sin cosOpM J I ω θ θ′= − ,   2 3 0Op OpM M= = ; 

 

(16.2.25) 

hence, the moment 

( ) ( )2
3 3 3 3cos cosOp J I J I ω

ω θ θ
ω

′′ ′ ′= − × = − ×M i i ω ω  
 

(16.2.25') 

is directed along the line of nodes. 
To calculate the Coriolis force d 2 drC m′= ×F v ω , we notice that the relative 

velocity is given by r = ×v rω ; by considerations analogous to those above, we get a 
vanishing resultant 

( ) ( )2 d 2 dC M M
m m′ ′= × × = − × × =∫ ∫F r r 0ω ω ω ω .  

The resultant moment is given by 

( )[ ]2 dOC M
OP m′= × × ×∫M rω ω   

and has the differential components 

( ) ( )[ ]2 3 2 2 3 21 3 2d d d 2 sin 2 cos dOC C CM x F x F x x x x mωω θ ωω θ′ ′= − = − − , 
( ) ( )[ ]3 1 1 22d 2 cos 2 sin dOCM x x x x mωω θ ωω θ′ ′= − − , 

( ) ( )[ ]1 2 2 13d 2 cos 2 cos d 0OCM x x x x mωω θ ωω θ′ ′= − = , 

 

where we took into account the relations 
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( ) ( ) ( )′ ′ ′× × = − ⋅ + ⋅r r rω ω ω ω ω ω , 
( ) ( ) 2sin sin sinr xω θ ϕ ω θ′ ′ ′⋅ = =rω , 

cosω ω θ′ ′⋅ =ω ω , 

 

with ( )1 ,Oxϕ = r . Using the known results concerning the tensor of inertia, we 
obtain 

( )2 2 2
2 1 21 2 sin d sin dOC M M

M x m x x mωω θ ωω θ′ ′= − = − +∫ ∫ ,  

so that 

31 sinOCM I ωω θ′= − ,   2 3 0OC OCM M= = , (16.2.26) 

the moment 

3 3 3 3OCM I Iωω ′ ′ ′= − × = − ×i i ω ω , (16.2.26') 

being directed along the line of nodes too.  
Comparing with the relation (16.2.16), we get 

g O Op OC= − = +M M M M . (16.2.27) 

Hence, the gyroscopic moment corresponds to the influence of the inertial forces. We 
notice that, by passing from the formula (16.2.16) to the approximate formula 
(16.2.16'),we neglect OpM , hence the effect of the centrifugal forces in the motion of 
precession, remaining only the effect of the Coriolis forces. 

We can replace the torsor { },p gF M  by a resultant pF  (gyroscopic pressure) in the 

3 3Ox x ′ -plane at a distance /g pM F  from the fixed point O. 

16.2.2 Applications 
In what follows, we present firstly some applications with a theoretical character, as 
well as the Cardanic suspension and the gyroscopic pendulum, introducing the 
influence of the friction forces too. We deal then with some technical applications of 
the theory of the gyroscope. 
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16.2.2.1 The Gyroscope with a Cardanic Suspension 
The centre of gravity of a gyroscope may be practically fixed with the aid of the 
suspension discovered in 1545 by Gerolamo Cardano. The gyroscope has the 3Ox -axis 
hinged in the interior annulus ia , which is hinged in the exterior annulus ea  by the 

horizontal axis ON, which can rotate about the fixed vertical axis 3Ox ′ ; because the 

3Ox -axis can rotate about both the horizontal and the vertical axes, while the gyroscope 
can have a proper rotation about this axis, it results that the gyroscope can take any 
position around its centre of gravity (Fig. 16.23). As a matter of fact, by the rotation of 
the annulus ea  about the 3Ox ′ -axis one determines the angle ψ, while by the rotation of 

the annulus ia  about the ON-axis is specified the angle θ; as well, by the rotation of the 

gyroscope about the 3Ox -axis one obtains the angle ϕ. Thus, the position of the 
gyroscope is given by Euler's angles, which can be measured. To obtain a Cardanic 
suspension of good quality, it is necessary an as good as possible centring of the 
rotation axes (to eliminate the parasite moments which may appear), eventually with the 
aid of some adjustable wedging screws; as well, it is necessary to have minimal 
frictions in the hinges (to eliminate the effect of the moments of friction), while the 
weights of all accessories be negligible with respect to the own weight of the gyroscope 
(for analogous reasons). 

 
Fig. 16.23  The Gyroscope with a Cardanic Suspension 

Let us assume that the gyroscope with Cardanic suspension is acted upon by external 
forces for which O =M 0 ; but if to this gyroscope is imparted, in a certain manner, a 
proper angular velocity ω , about the 3Ox -axis, and then an angular velocity of 
precession ′ω , about the 3Ox ′ -axis ( which must not be necessarily vertical), then arises 
a gyroscopic moment gM , given by (16.2.16) or – approximately – by (16.2.16'). 
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Taking into account the sense of this moment, it results that the angle of nutation cannot 
remain constant, becoming smaller. The 3Ox -axis of the gyroscope tends to the fixed 
axis 3Ox ′  on the shortest way, so that the senses of the vectors ω  and ′ω  do coincide; 
this is, after F. Klein and A. Sommerfeld, the parallelism tendency of the rotation axes 
of the gyroscope, put in evidence by Prandtl’s wheel too (see Sect. 16.2.1.7). 

If, in the preceding case, we wish to maintain the angle θ constant, then we must 
annihilate the effect of the gyroscopic moment gM , by introducing a moment 

gO = −M M , given by the external forces, along the line of nodes ON. To do this, we 

act upon the 3Ox -axis of the gyroscope with the force F at A and with the force −F at 
A′ , with the lever arm AA d′ = ; these forces are gyroscopic reactions (the reactions 
of the annulus ia  on the 3Ox -axis). Noting that OM Fd= , we obtain 

3 sin
I

F
d
ωω θ′= , 

 

(16.2.28) 

where we have used the approximate formula (16.2.16'). The force −F applied at A and 
the force F applied at A′  represent the gyroscopic pressures (the pressures of the 
gyroscopic couple upon the annulus ia ); these pressures induce the tendency of 
parallelism mentioned above (see Sect. 16.2.1.7 too). 

Let be a gyroscope with a Cardanic suspension at the centre of gravity, subjected to a 
proper rotation about its axis; we assume that upon this gyroscope acts also a moment 

OM , given by external forces. If this moment is directed along the 3Ox -axis of the 
gyroscope, then it will lead to the increasing or to the decreasing of the proper rotation 
velocity; if the respective moment is directed along the ON-axis of the interior annulus 

ia , then its effect will be a precession about the fixed axis 3Ox ′ , situated in the normal 

to ON plane, which passes through 3Ox . If the moment OM  is directed  along  the 

3Ox ′ -axis of the exterior annulus ea , then we make a decomposition of it along the 

3Ox -axis (the respective effect has been already mentioned) and along the transverse 
axis ON ′ ; this second component leads to a motion of precession of the 3Ox -axis of 

the gyroscope about the ON-axis. If the moment OM  directed along the 3Ox ′ -axis is 
constant, then one has a tendency of parallelism of the axes (the 3Ox -axis tends, on the 
shortest way, to the 3Ox ′ -axis). These considerations are particularly useful in various 
technical applications of the gyroscope. 

16.2.2.2 The Influence of the Friction  Forces on the Gyroscope 
It is quite difficult to introduce the influence of the forces of friction in a mathematical 
model of the gyroscope. Let us consider, e.g., a heavy gyroscope Cardanically 
suspended at its centre of gravity. If we assume that the proper velocity of rotation ω  is 
maintained constant by external means, then the effect of friction of the axle AA′  of 
the gyroscope on the interior annulus ia  is annihilated (Fig. 16.23); because of the 
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friction due to the motion of precession, the velocity ω ′  decreases. Because g =M 0 , 
from (16.2.16) it results 

( )3 3 cos 0I I Jω ω θ′+ − = . (16.2.29) 

In this case, cosθ  must increase till 1 for 3I J<  (prolate spheroid) or to decrease till 
1−  (oblate spheroid). It results thus 0θ =  and θ π= , respectively, the axis of the 

gyroscope taking the place of the axis of precession; the motion of the gyroscope is thus 
reduced to the proper rotation about its axis. 

 
Fig. 16.24  The influence of a moment of friction fM  on the gyroscope: case of  

a prolate cylinder (a); case of an oblate cylinder (b) 

If the velocity ω  is no more maintained constant, then appears a moment of friction 
fM  along the axis of the gyroscope and of sense opposite to ω , which leads to a 

decrease of ω ; the action of this couple on the annulus ia  is given by the moment 

f′M  ( f f′+ =M M 0 ), the projection of which on the axis of precession is cosfM θ′ . 
In the case of a prolate spheroid we have 0 /2θ π< < , the moment cosfM θ′  tending 

to increase ω ′  as in Fig. 16.24a – prolate cylinder); cosθ  must decrease, hence θ must 
reach the value /2π , the axis of the gyroscope being normal to the axis of precession  
(labile position), so that the relation (16.2.29) be verified. If the gyroscope is an oblate 
spheroid, then it results /2π θ π< < , the moment cosfM θ′  having the tendency to 

decrease ω ′  (Fig. 16.24b – oblate cylinder); cosθ  must increase, hence θ must 
decrease, tending to zero, the axis of the gyroscope coinciding thus with the axis of 
precession (stable position). 

Let be now a heavy gyroscope, which is rotating with the proper velocity of rotation 
ω  about the fixed point O, situated under the centre of gravity C (Fig. 16.25). If the 
initial velocity is great, then we can assume – with a good approximation – that the 
moment of momentum 3O I′ =K ω  is directed along the 3Ox -axis, the velocity of the 

extremity Q of this vector being given by Q O=v M , where OM  is the moment of the 
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own weight G with respect to the fixed point. Neglecting the pivoting friction around 
the fixed axis 3Ox ′ , as well as the friction of nutation, we take into account the moment 

of sliding friction fM  at the fixed bearing support O; we assume that the moment fM  
is constant and of horizontal direction, being contained in the 3 3Ox x ′ -plane. 
Decomposing fM  along the axes 3Ox  and 3Ox ′ , we see that the velocity of proper 
rotation ω  decreases, while the velocity of precession ω ′  increases. In this case, the 
velocity of the point Q will be f

Q Q O fQ′ = + = +v v v M M , so that f
fQ =v M . We 

notice that, under the action of the moment of friction fM , the axis of proper rotation 
of the gyroscope is brought on the shortest way to the vertical  line  (it  is  straightened);  

 
Fig. 16.25  The decreasing of the motion of nutation of a heavy gyroscope,  

due only to the moment of sliding friction 

the point Q describes, in a horizontal plane, a spiral, attaining the vertical line after a 
finite number of nutations in a finite interval of time. Afterwards, the moment fM  
disappears, remaining the action of the pivoting friction, which leads to a decreasing of 
the angular velocity ω  and of the moment of momentum OK ′ , till the gyroscope is 
falling. The velocity of nutation θ  changes always and fast its sense, the friction which 
arises changing its sense too; the effect of this friction consists in the decreasing of the 
velocity θ , hence in the decreasing of the motion of nutation. 

16.2.2.3 The Influence of the Rotation of the Earth on the Gyroscope 
Let be a Cardanically suspended centred gyroscope, to which was imparted an angular 
velocity of proper rotation ω  about its 3Px -axis, situated in the horizontal plane Π of 

the position (the 
3 3Px x ′ -plane), at the point P on the surface of the Earth, at the latitude 

λ (Fig. 16.26a). If the velocity of rotation of the Earth is ω, then we obtain the 
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component sinω λ′′ = nω  along the local vertical (the line of nodes PN) and the 

component 3cosω λ′ ′= iω  along the tangent 3Px ′  to the local meridian, in the plane Π. 
Because of the rotations of velocities ω  and ′ω  arises a gyroscopic moment g′′M  of 

magnitude 3 3 singM I Iωω ωω λ′′ ′′= = , contained in the plane Π ( ′′⊥ω ω ); imposing, 
by construction, that the symmetry axis of the gyroscope does oscillate only in the plane 
Π, the moment g′′M  has not one effect on it (it cannot take it out of this plane). The 
rotations of angular velocities ω  and ′ω  lead to a gyroscopic moment g′M , normal to 

the plane Π, in the negative sense of the ON-axis, its magnitude being 

3 3sin cos singM I Iωω θ ωω λ θ′ ′= = ; this moment leads to a decreasing of the angle θ 

between the axes 3Ox ′  and 3Ox , hence to a rotation of the 3Ox -axis in the Π-plane 
(Fig. 16.26b), in conformity to the equation of motion 

3 cos sin 0J Iϕ ωω λ θ+ = . (16.2.30) 

 
Fig. 16.26  The gyroscopic compass: position (a); rotation of 

the 3Ox -axis in the Π-plane (b) 

If we can take sin θ θ≅  then the axis of the gyroscope will perform a harmonic 
oscillation about the fixed axis 3Ox ′ , of period 

3
2

cos
JT

I
π

ωω λ
= , 

 
(16.2.30') 

the position of equilibrium (stable) corresponding to 0θ = , hence to the situation in 
which the axis of the gyroscope is directed along the local meridian. Hence, by a 
convenient system of damping, the 3Px -axis will stop on the direction 3Px ′ , property 
put in evidence by Foucault’s experiments and used to build up the gyroscopic compass 
for the determination of the north pole. 

Let us suppose now that the gyroscope is built up so as to allow the rotation of the 
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3Ox -axis of it only in the meridian plane which passes through P (Fig. 16.27a). In this 
case, the rotation ω of the Earth leads to a rotation of the same angular velocity about 
the 3Ox ′ -axis. The angular velocities ω and ω  determine a gyroscopic moment gM  in 

the negative sense of the PN-axis, its magnitude being 3 sinI ωω θ ; the equation of 
motion 

3 sin 0J Iθ ωω θ+ =  (16.2.31) 

puts in evidence a harmonic oscillation of the 3Px -axis about the 3Px ′ -axis with the 
period 

3
2 JT

I
π

ωω
= . 

 
(16.2.31') 

The position of equilibrium (stable) of the gyroscope takes place for 0θ = , 
corresponding to the situation in which its axis of symmetry is along the direction of the 
Earth’s poles. By a convenient system of damping, the axis of the gyroscope will stop 
on the same direction (so as, Foucault too, showed experimentally); one can thus build 
up the azimuthal gyroscope, which allows to determine the latitude of the point P at the 
surface of the Earth (one determines the azimuth, that is the angle /2π λ− ). 

 
Fig. 16.27  The gyroscope the axis of which rotates only in the  

meridian plane (a); the free gyroscope (b) 

Let be, in general, a free gyroscope for which the motion of rotation is not at all 
hindered; the gyroscope has a motion of rotation of  angular  velocity ω   about  the 

3Ox -axis, which makes an angle θ with the 3Ox ′ -axis, parallel to the velocity of rotation 
ω of the Earth (Fig. 16.27b). Supposing the Earth fixed, we must introduce the 
gyroscopic moment 3g I= ×M ω ω , of magnitude 3 singM I ωω θ= , as an external 
loading (corresponding to the Coriolis force in the relative motion); the gyroscope has 
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thus a motion of precession of angular velocity −ω. The symmetry axis of the 
gyroscope describes thus a cone of precession in 24 sidereal hours, having a sense of 
rotation opposite to the sense of rotation of the Earth. Thus, the effect of rotation of the 
Earth is nullified by the rotation of precession of the gyroscope; in a fixed frame of 
reference, the axis of the free gyroscope remains fixed in space and the rotation of the 
Earth has not one influence on its motion. 

16.2.2.4 The Gyroscopic Pendulum 

The gyroscopic pendulum is a heavy gyroscope for which the fixed point O (situated on 

the symmetry axis of the gyroscope) is over the centre of gravity C. If the 3Ox -axis 
about which the gyroscope has a rapid rotation is along the local vertical 3Ox ′ , then we 
are in the case of the sleeping gyroscope, while the 3Ox -axis is a stable axis of rotation 
(see Sect. 16.2.1.5); thus, the gyroscopic pendulum allows to determine the local 
vertical. Besides its own weight, this pendulum is subjected, in general, also to the 
action of perturbing vibrations; because of its importance, many researchers dealt with 
this problem (e.g., M. Schuler, R. Wieblitz and Y.A. Ishlinskiĭ), the gyroscopic 
pendulum being, thus, an self-excited rigid solid (see Sect. 15.2.3.8). 

 
Fig. 16.28  The gyroscopic pendulum 

We represent the motion with respect to the inertial frame of reference 1 2 3Ox x x′ ′ ′  of 
unit vectors j′i , the gyroscopic pendulum being rigidly linked to the non-inertial frame 

1 2 3Ox x x  of unit vectors ji , 1,2, 3j = ; for the sake of simplicity, we denote 3 =i m , 

1 =i n , 2 3 1= × = ×i i i m n , these axes being principal axes of inertia of the rigid 
solid ( Fig. 16.28). The moment of momentum vector with respect to the fixed frame is 
thus expressed in the form 3 3 1O O I Jω ω′ = = +K I m nω ; indeed, because of the 
symmetry with respect to the 3Ox -axis, we can make the decomposition of this vector 
in the plane determined by the vector ω and by the axis of the gyroscope. But 
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3 1( ) ω ω× = × × = − =m m m m m nω ω , so that 3 3 ( )O I Jω′ = + ×K m m m , 
intervening thus only one unit vector. Let us assume that upon the solid act the own 
weight 3Mg ′− i , at the centre of gravity 3(0, 0, )C ρ , 3 0ρ < , and the perturbing elliptic 
forces 1 1 1 cosk tν′= ±F i  (the sense is chosen corresponding to the sense of rotation 
with respect to the axis of the gyroscope), at the point 1 1(0,0, )P l , and 

2 2 2 sink tν′=F i , at the point 2 2(0,0, )P l , 1 2 1 2, , , , constl l k k ν = ; if 1 2k k= , then the 
force is circular, while if 1 0k =  (or 2 0k = ), then the force is linear. The theorem of 
moment of momentum leads to  

( )3 3 1 1 1 cosI J k l tω ν′+ × = ± ×m m m m i ( ) ( )2 2 2 3 3sink l t Mgν ρ′ ′+ × − ×m i m i , 
 (16.2.32) 

wherefrom, in components with respect to the inertial frame of reference, we obtain the 
non-linear system 

2
1 3 2 2 3 2 2 3 sinm m m m m m m tΩ Ω γ ν′ ′ ′ ′ ′− + = − , 

2
2 1 3 3 1 1 1 3 cosm m m m m m m tΩ Ω γ ν′ ′ ′ ′ ′− + = − ± , 

3 2 1 1 2 2 1 1 2sin cosm m m m m m t m tΩ γ ν γ ν′ ′ ′ ′ ′− + = ∓ , 

 
 

(16.2.32') 

where the constants 3 /gM JΩ ρ= −  and 3 3 /I JΩ ω=  are of the nature of an 
angular velocity, while the constants 1 1 1 /k l Jγ = , 2 2 2 /k l Jγ =  are of the nature of 
an angular acceleration. 

In the case of the circular force ( 1 2k k k= = , 1 2l l l= = , hence 1 2γ γ γ= = ), 
Wieblitz obtains 

1 cosm C tν= ± ,   2 sinm C tν= ,   3m C= ,   2 2C
C
γ

Ω ν γν
=

− ±
, 

 

(16.2.33) 

where the constants C and C  are determined by the relation 1j jm m′ ′ = . 
If the spin is great, then we can write, approximately, 3 33O I ω′ ≅K m , and the 

differential system (16.2.32') reads  

( )1 2 3 sinO O OK K K tΩ λλ ν′ ′ ′′ ′ ′ ′= − , 

( )2 1 3 cosO O OK K K tΩ λ ν′ ′ ′′ ′ ′ ′= − ∓ , 

( )3 1 2sin cosO O OK K t K tλΩ λ ν ν′ ′ ′′ ′ ′ ′= ∓ , 

 
 

(16.2.34) 

in the normal form, where the constant 2
3 3 3/ /Mg IΩ Ω Ω ρ ω′ = = −  is an angular 

velocity, while the constants 2
1 1 1 3/ /k l Mgλ γ Ω ρ= = −  and 2 1 2 2 1 1/ /k l k lλ γ γ= =  

are numbers; the same Wieblitz solves this system by successive approximations, Ω ′  
being a small parameter. 

In the case in which the axis of the, gyroscope is not very far from the vertical line, 
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the differential system (16.2.32') can be linearized and we can write 1 2m β′ ≅ , 

2 1m β′ ≅ − , 3 1m ′ ≅ , where 1β  and 2β  correspond to the rotations by which the fixed 
frame of reference can attain the position of the movable frame. Indeed, starting from 
the frame 1 2 3Ox x x′ ′ ′ , by a rotation of angle 1β  about the 1Ox ′ -axis, we obtain a frame 

1 2 3Ox ξ ξ′ , then, by a rotation of angle 2β  about the 2Oξ -axis, we obtain a frame 

1 2 3Oη ξ η  and, finally, by a rotation of angle 3β  about the 3Oη -axis, we get the frame 

1 2 3Ox x x ; we obtain 

[ ]
3 3 2 2

3 3 1 1

2 2 1 1

cos sin 0 1 0 0cos 0 sin

sin cos 0 0 1 0 0 cos sin

0 0 1 sin 0 cos 0 sin cos
j k

β β β β

β β β β

β β β β

⎡ ⎤ ⎡ ⎤⎡ ⎤ −
⎢ ⎥ ⎢ ⎥⎢ ⎥

′⋅ = − ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

i i  

2 3 1 2 3 1 3 1 2 3 1 3

2 3 1 2 3 1 3 1 2 3 1 3

2 1 2 1 2

cos cos sin sin cos cos sin cos sin cos sin sin

cos sin sin sin sin cos cos cos sin sin sin cos

sin sin cos cos cos

β β β β β β β β β β β β

β β β β β β β β β β β β

β β β β β

+ − +

− − + +

−

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎣ ⎦

, 

wherefrom  1 2sinm β′ = , 2 1 2sin cosm β β′ = − , 3 1 2cos cosm β β′ = , the 
approximation made being thus justified. The first two equations (16.2.32') read 

2
1 2 1 2 sin tβ Ωβ Ω β γ ν+ = − − , 

2
2 1 2 1 cos tβ Ωβ Ω β γ ν− = − ± , 

 
(16.2.35) 

the third equation (16.2.32') becoming a linear consequence of the system (16.2.35), in 
the frame of the approximation thus made; Wieblitz has given the solution of this 
system in case of a linear force. 

Because of the properties with respect to the gyroscope axis, the 1Ox -axis can be 
chosen arbitrarily in the plane normal to 3Ox ; in particular, the 1Ox -axis can be even 

the line of nodes ON. The respective frame of reference, called the frame of  Résal, is 
not involved in the proper rotation of the rigid solid, so that the matric relation (3.2.11''') 
reads (we make 0θ = ). 

[ ]
cos sin 0

cos sin cos cos sin

sin sin sin cos cos
j k

ψ ψ

θ ψ θ ψ θ

θ ψ θ ψ θ

⎡ ⎤
⎢ ⎥

′⋅ = −⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

i i . 

 

Hence, 3 1 2 3sin cosψ θ θ ψ θ ψ θ′= + = + +i n i i iω  and 1 2( sin )O J θ ψ θ′ = +K i i  

3 3( cos )I ψ θ ϕ+ + i . With these data, we can write the theorem of moment of 
momentum ( /O O Ot′ ′∂ ∂ + × =K K Mω , where we have introduced the derivative with 
respect to time in the non-inertial frame of reference) in the form  (in the frame 
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1 2 3Ox x x ) 

( ) 2 21 sin cos sin sina aθ ψ θ θ ψϕ θ Ω θ+ − + = −  

1 2cos sin cos cos cos sint tγ θ ψ ν γ θ ψ ν± − , 
( ) 1 2sin 2 cos cos cos sin sina a t tψ θ θψ θ θϕ γ ψ ν γ ψ ν− − − = ± + , 

cos constψ θ ϕ+ = , 

 
 

(16.2.36) 

where 3 /a I J= . This differential system is sensibly simplified if ϕ  is great, while θ 
is small (the gyroscope axis, which is rotating rapidly, is close to the vertical line). 

16.2.2.5 Technical Applications 

The considerations made till now can be applied to a great number of problems with a 
technical character, as well as-to the construction of many apparatuses useful in various 
domains. Let be thus a rigid solid with the symmetry axis 3Ox  inclined by an angle θ 
with respect to the O O′ ′′ -axis, about which it rotates with a constant angular velocity 

′ω  (Fig. 16.29); one obtains thus a motion of regular precession, arising the gyroscopic 
moment (we make 0ω =  in the formula (16.2.16)) 

 
Fig. 16.29  A regular motion of precession – the gyroscopic moment 

( ) 2
3 3 3cosg I J ω θ′ ′= − ×M i i , 

 

(16.2.37) 

of magnitude 2
3( /2) sin2gM I J ω θ′= − . On the bearings at O ′  and O ′′  act the 

gyroscopic forces −N and N, respectively, of magnitude 

3 2 sin2
2

I J
N

l
ω θ

− ′= , 
 

(16.2.37') 

where l O O′ ′′= ; if 3I J> , then the sense of these forces is that in Fig. 16.29 and 
opposite if 3I J< . The forces −N and N are contained in the movable plane 3 3Ox x ′  
and rotate together with the rigid solid with the period 2 /T π ω ′= ; thus, they load and 
unload successively the bearings O ′  and O ′′ , which leads to their wear. Hence, the 
assembling of wheels and fly-wheels on axles must be made very carefully, so that their 
axis of symmetry coincide with their axis of rotation (to have 0θ = , hence 0N = ). In 
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particular, in the case of a full wheel of radius R and weight G, which is assembled 

with the axle inclined by the angle θ, obtaining thus 2
3 2 /2I J GR g= = , so that 

( )2 2/ 8 sin2N GR gl ω θ′= , where g is the gravity acceleration. Numerically, for 
16 cmR l= = , a revolution of 6000 rot/min  (hence, 2 6000/60ω π′ = ⋅  

200  rad/sπ= ) and 1θ = °  we get 28.1N G= ; we see thus that for an assembling 
deviation of only 1°  one obtains a significant gyroscopic effect, which cannot be 
neglected. 

 
Fig. 16.30  The motion of a railway car in a curve 

An analogous study can be made for the motion of vehicles in a curve. Let be thus a 
pair of wheels of radius r, which form a gyroscope of symmetry axis 3Ox , inclined 

with the angle α with respect to the horizontal line, and which rotate with an angular 

velocity /v rω =  (v is the linear velocity); the velocity of precession about the fixed 

axis 3Ox ′  is /v Rω ′ =  where R is the radius of curvature (Fig. 16.30). Because 
R r , it results ω ω ′ . The system formed by the two wheels acts (e.g., in case of 
a railway car) on the rails with the gyroscopic moment (16.2.16); in the given 
conditions, /2θ π α= +  and we can write, with a good approximation, 

2

3 cosg
vM I
rR

α= . 
 

(16.2.38) 

Thus, arise the gyroscopic forces N and −N, of magnitude 

2

3 cosvN I
rRd

α= , 
 

(16.2.38') 

where d is the rail gauge (the distance between the rails); these forces load the external 
rail er  and unload the internal rail ir . 
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Let us consider now a steamer; the axle of rotation 3Ox  (with the angular velocity 
vector ω ) of the turbine is along the ship and has the bearings O ′  and O ′′  as supports 
(Fig. 16.31a). If, at a certain moment, the steamer has a motion of rotation about the 
vertical axis 3Ox ′  with the angular velocity ′ω , then appears the gyroscopic moment 
(16.2.16') (approximate value), which leads to the gyroscopic reactions N and −N of  
magnitude (O O l′ ′′ = ) 

 
Fig. 16.31  The motion of a steamer. The 3Ox -axis along the axis of the  

ship (a) or the 3Ox ′ -axis normal to this axis (b) 

3IN
l
ωω ′= , 

 

(16.2.39) 

acting on the axle of the turbine; hence, it results a loading of the bearing at O ′  and an 
unloading of that at O ′′  (the gyroscopic forces are of sense opposite to the sense of the 
gyroscopic reactions; in Fig. 16.31a are specified the gyroscopic forces). Besides this 
phenomenon, takes place a rotation about the horizontal axis in the transverse plane of 
the ship (motion-of pitching). To put in evidence the effect of this motion (e.g., due to 
the waves), we assume that the fixed axis 3Ox ′  is horizontal and normal to the axis of 
the ship (Fig. 16.31b); the gyroscopic moment gM  is directed along the descendent 

vertical at O, while the gyroscopic reactions are given by the same formula (16.2.39), 
the gyroscopic forces leading to loadings and unloadings too. The tendency of the 
steamer to rotate about the vertical line is thus explained. The cases in which the axle of 
rotation of the turbine is vertical or horizontal, in a transverse plane of the ship, can be 
studied analogously. 

These phenomena can be put in evidence, in the same way, also in the case of 
aircraft. But we mention that, in this case, the ratio of the weight of the propeller or of 
the rotary engine to the whole weight of the aircraft (built of a material as light as 
possible) is much more greater; because of this, by a sharp turning takes place a pitch of 
the aircraft which can lead to unexpected damages. This effect can be eliminated in case 
of aircraft with two airscrews, the rotations of which are of opposite sense. 

Besides the indirect actions mentioned above, the gyroscope can have also a direct 
action of stabilizing the ships. Such a gyroscope, conceived by Schlick, is formed by a 
flywheel F which rotates with a very great angular velocity ω  about the 3Ox -axis. The 
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ends of the axle of the flywheel are sustained by a reinforcement which is rotating about 
the axle AOA′ , which is transversal to the ship (Fig. 16.32); at the bottom of the 
reinforcement is put a weight G, so that – in the normal position – the 3Ox -axis be 
vertical. If, under the action of the waves, the steamer is inclined and rotates about the 
longitudinal axis 3Ox ′  with the angular velocity ′ω  (motion of rolling), then arises a 
gyroscopic moment gM , of magnitude 3I ωω ′ , which imparts to the flywheel a rotation 
about the axle AOA′  (motion of pitching); this leads to a new gyroscopic moment g′M  

which, by means of the bearings A and A′ , is in opposition to the motion of pitching, 
diminishing thus the inclination of the ship about its longitudinal axis. This gyroscope 
proves its utility in the rectilinear motion of the steamer, as well as in the case of the 
rotations about the vertical line in the same sense as its rotation; in the case of a rotation 
in an opposite sense, take place supplementary motions of pitching, which can be 
dangerous. For this reason, there have been invented and built also other anti-pitching 
gyroscopes much more perfected, used to stabilize the steamers (e.g., the Sperry 
gyroscope); in this order of ideas, we mention the pilot gyroscope too, which 
determines the motion of precession. 

 
Fig. 16.32  Schlick’s gyroscope 

The stabilization of the cars with only one rail (monorail) is analogously realized. 
The gyroscope with a vertical axle considered by Scherl to this purpose is analogous to 
Schlick's gyroscope. Brennan has introduced a gyroscope with a horizontal axle, useful 
in case of a rectilinear motion. To increase the precession, other auxiliary apparatuses 
are used. We mention also the realization of the monorail coach, of the gyroscopic 
motorcar on two wheels and of the gyroscopic bicycle with only one wheel. 

The motion of the bicycle with two wheels is also stabilized by the gyroscopic 
moments which appear. If the linear velocity is v, then the angular velocity is given by 

/v rω = , where r is the radius of the wheel. Assuming that, for some reason, the 
bicycle is inclined with an angular velocity ′ω , arise the gyroscopic moments 
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3g I ′= ×ω ωM , to which correspond the angular velocities 1ω  and 2ω , which lead to 
the new gyroscopic moments 3 1g I′ = ×ω ωM , 3 2g I′′ = ×ω ωM , of a sense opposite 
to that of ′ω  (Fig. 16.33); these moments tend to bring back the bicycle in the vertical 
position, stabilizing its motion. Obviously, this modelling of the phenomenon is 
approximate; the problems which arise are multiple and much more difficult. 

 
Fig. 16.33  The bicycle with two wheels 

We meet applications of the gyroscopic effect also in case of mills with movable 
pulleys, of pendulary mills or in case of other mills used to grind cereals, grains or other 
materials. 

As we have seen in Sect. 16.2.2.3, the gyroscope can be used successfully also as an 
orientation device. Thus, the gyroscopic compass, with the mobile axle in the local 
horizontal plane is used to determine the direction north-south in the motion of ships 
and, especially, of submarines. The azimuth gyroscope (with the mobile axle in the local 
meridian plane) is used to determine the latitude at the respective position on the surface 
of the Earth. As well, a heavy gyroscope, with the fixed point over the centre of gravity, 
allows to determine the gyroscopic horizon (the artificial horizon), even when – on the 
sea – this one is in a thick fog; the gyroscopic inclination compass determines the 
inclination with respect to the horizon of the longitudinal axis of an aircraft, as well as 
of its transverse axis. 

 
Fig. 16.34  Motion of a projectile. Constant direction of it (a). Screw motion of its vertex (b) 

We meet gyroscopic effects which must be taken into consideration in ballistics too; 
thus, a projectile, besides the motion of its centre of gravity C, has also a motion of 
rotation of angular velocity ω  about its axis of symmetry 3Ox . If the motion takes 
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place in vacuum or in the air of resistance R , passing always through C, we have 

O =M 0 , so that the 3Ox -axis does not change its direction (Fig. 16.34a); the axis of 
the projectile moves away from the tangent to the trajectory and comes up against a 
resistance of the air more and more greater, while the target is reached with the inferior 
part of the projectile. In reality, the resistance of the air R does not pass through the 
centre C, but through a point P at the distance l from C; we assume that this resistance 
is approximately parallel to the velocity v of the centre of gravity. There appears a 
gyroscopic moment gM  applied at C, normal to the plane of the trajectory, which leads 
to a motion of precession of the projectile about the vector v with an angular velocity of 
magnitude 
 

3 3sin
gM Rl

I I
ω

ω θ ω
′ = = . 

 

(16.2.40) 

 
Fig. 16.35  The direction of the vertex of a projectile: upwards (a) or downwards (b) 

Thus, the vertex V of the projectile is directed upwards (Fig. 16.35a) and then 
downwards (Fig. 16.35b); the vertex of the projectile tends to the tangent to the 
trajectory (the projectile runs after its tangent). In the real motion, the projectile vertex 
describes a screw motion around the trajectory of its centre of mass (Fig. 16.34b). By a 
convenient choice of the form and of the dimensions of the projectile, the point P will 

be situated between the points C and V, the angle remaining sufficiently small, so that 
the projectile be falling with its vertex. 

An important rôle is played by the directional gyroscopes, e.g., by those used to 
maintain the direction of the automobile torpedo; we mention also the automatic 
directional gyroscopes (e.g., the gyropilot). We put in evidence the navigation by 
inertia and the gyroscopic directing of the rockets, useful for the guided rockets, the 
intercontinental rockets and the interplanetary rockets. 
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16.3 Dynamics of the Rigid Solid of Variable Mass 
We take again the problem of dynamics of the mechanical systems of variable mass by 
some considerations concerning the application of variational methods of calculation; 
we apply then these methods to some particular cases of motion. As well, we consider 
the case of the aircraft fitted with jet propulsion units. 

16.3.1 Variational Methods of Calculation 
In the following we present firstly the approximate variational methods of R. Goddard 
and H. Oberth, passing then to considerations concerning the general methods of 
calculation with a variational character. We will assume a particle model of the rigid 
solid, using the results obtained in Chap. 10, Sect. 3. 

16.3.1.1 Goddard’s Approximate Method 
Let us consider the rectilinear motion of a particle of variable mass in a gravitational 
field, with a resistance of the medium ( , )v x=Q Q , where v is the velocity along the 

Ox-axis; the equation of motion, corresponding to the equations obtained in Chap. 10, 
Sects. 3.1.2 and 3.2.3, reads  

sin ( , )mv mg Q v x mwθ= − − − , (16.3.1) 

 
Fig. 16.36  Goddard’s approximate method of calculation 

where w is the relative velocity of the emitted mass with respect to a non-inertial frame 

of reference rigidly linked to the particle in motion while θ is the angle made by the 
trajectory with the horizontal line (Fig. 16.36). Taking the mass of the form (10.3.11') 
and putting 0( , ) ( , )Q v x m v xϕ= , we may write 

sinfv fg g fwθ ϕ= − − − , (16.3.1') 

finding thus solutions of the form 1( ; , ; )v v t f f C= , 1 2( ; , ; , )x x t f f C C= , where 

1 2,C C  are integration constants; these solutions can be taken as functional equations of 
some problems of optimization, where various characteristics of the motion (the 
distance travelled through, the time in which a certain position can be reached, the work 
and the resistance of the medium) take extreme values. In 1919, R. Goddard proposed 
an approximate solution to determine the function ( )v v x= , so as to reach a given 
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height with a minimal mass; the total height is divided in n parts and on each part the 
resistance of the medium is considered to be constant ( constϕ = ). As well, one 
assumes that /2θ π= , constv a= = , obtaining an equation of the form (10.3.13') 
with constant coefficients 

0
ga gf f

w w
ϕ++ + = . 

 

(16.3.2) 

The solution (10.3.13") of this equation leads to 

{ }[( )/ ] [( )/ ]

0
( ) e ea g w t a g w tgmf t C

m a g
ϕ− + += = −
+

, 
 

(16.3.2') 

with 1 /( )C g a gϕ= + +  (we notice that (0) 1f = ). If the mass used up at a given 
moment is 0m m− , hence if 0 01 ( )/f m m m= − − , then it results 

{ }0 [( )/ ]

0
1 1 e a g w tm m g

m a g
ϕ − +− ⎛ ⎞= + −⎜ ⎟+⎝ ⎠

, 
 

(16.3.2'') 

Imposing, together with Goddard, that that the final mass be equal to unity ( 1m = ), 
we get 

{ }[( )/ ] [( )/ ]
0 e 1 ea g w t a g w tQ

m
a g

+ += − −
+

. 
 

(16.3.3) 

To 0Q =  and 0g =  corresponds ( / )
0 e a w tm∗ = , so that the problem of extremum 

of the mass, in the given conditions, consists in minimizing the ratio 
( / )

0 0 0/ e a w tm m m∗ −= . 

The calculation is made successively for each of the n intervals, till the final mass 
equates the unity. Thus, we obtain also the time in which the displacement takes place 
and which corresponds to the minimum of the ratio of the masses. 

16.3.1.2 Oberth’s Approximate Method 
For the same problem, H. Oberth assumes in 1929 that the velocity of the particle is 
negligible with respect to the relative velocity of emission of the mass of combustible 
(v w ); denoting m= +R Q g , it results the equation of motion along the 
ascendent vertical (Fig. 16.37) 

mv R mw= − − . (16.3.4) 

We notice that (d /d )v v x v= , (d /d )m m x v= , so that we can also write   

d d 0
d d
v R mm w
x v x

+ + = . 
 

(16.3.4') 
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If at the height x we impose a condition of minimal consumption of combustible 

( d /d 0m x = ) and if we differentiate the equation (16.3.4') with respect to v, then we 
get 

( ) ( )d 0
d
v Rm

v x v v
∂ ∂+ =
∂ ∂

.  

 
Fig. 16.37  Oberth’s approximate method of calculation 

In the hypothesis d constm v = , it results      

( ) ( ) 0R mg Q
v v v v
∂ ∂ += =
∂ ∂

, 
 

(16.3.5) 

where the force R is opposed to the motion ( /R v  is the resistance on unit of path and 
time). One obtains thus the optimal velocity to raise a particle of variable mass (for 
which the unit loss caused by the force R is minimal). We have seen in Chap. 10, 
Sect. 3.2.5 that the resistance can be taken in the form 2( ) /2Q v b Avρ= , where 

( )b b v=  is the aerodynamic coefficient, ρ is the density of the air, while A is an area 
characteristic for the rigid solid modelled as a particle (in case of the aircraft, the area of 
the wing). If we assume that constm =  on a stratum of width dx, then the relation 
(16.3.5) leads to 

2
1 1 d

0
2 2 d

mg b
b A Av

vv
ρ ρ− + + = , 

 

wherefrom 

2 2
[ ( / )]

mgv
A b v db dvρ

=
+

. 
 

(16.3.6) 

Taking constb = , it results     

2mg
v

b Aρ
= . 

 

(16.3.6') 
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Hence, if the resistance of the medium ( )Q v  is in direct proportion to the square of 
the velocity, then it will be equal to the weight of the particle (Q mg= ); in this case, 
the optimal velocity of the rigid solid of variable mass is the velocity which must have 
the particle of mass m in free falling in a homogeneous medium of given density ρ. 
From the above results, one obtains easily all the kinematic and dynamic characteristics 
of the motion. 

16.3.1.3 General Considerations on the Application of Variational  
Methods of Calculation 

The methods of calculation of Goddard and Oberth have an approximate character; we 
give a formulation of the same problem, in what follows, in a rigorous variational 
calculus. We have seen in Chap. 7, Sect. 2.1.4 that, in case of a functional 

1 2( , ,..., )nI y y y  of the form (7.2.13) for the functions ( )ky x , 1,2,...,k n= ,  of the 

same independent variable x, we are led to the Euler-Lagrange equations (7.2.13'). 
Imposing the supplementary conditions 

1 2 1 2( ; , ,..., ; , ,..., ) 0n njf x y y y y y y′ ′ ′ = ,   1,2,...,j h= , (16.3.7) 

too, we introduce the auxiliary function              

1

h

j j
j

F F fλ∗

=
= + ∑ , 

 

(16.3.7') 

where 1 2 1 2( ; , ,..., ; , ,..., )n nF F x y y y y y y′ ′ ′=  is the function under the integral operator 
in the functional (7.2.13), while ( )j j xλ λ= , 1,2,...,j h= , h n< , are Lagrange’s 
multipliers which must be determined; the equations (7.2.13') lead to          

( )d 0
dk k

y yF F
x

∗ ∗
′− = ,   1,2,...,k n= , 

 

(16.3.7'') 

,k k
y yF F ′  being the partial derivatives with respect to the corresponding arguments ( ky  

and /k ky y x′ = ∂ ∂ ). We obtain thus a system of n differential equations (16.3.7") and a 

system of h non-holonomic constraint relations (16.3.7) for the n functions 

1 2, ,..., ny y y  and for the h parameters 1 2, ,...., hλ λ λ . 
In our case, the problem of determination of the law of variation of the particle mass 

is put, so that the path travelled through
0 0

d d
x T

x v t=∫ ∫  have a maximum, T being the 

time in which the motion of the particle takes place, while X is the space travelled 

through. In this variational problem the function v under the integral must verify the 
differential equation of the particle of variable mass (16.3.l') on the active segment 
[ ]10,t  (till the end of the process of emission, hence of combustion of a rocket) and the 
differential equation of the particle of constant mass ( 1 1( )m m t= , 1 1( )f f t= ) 
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1 1 sinf v f g gθ ϕ= − − , (16.3.8) 

on the passive segment [ ]1 ,t T . To apply the general method of calculation, we 
assume, after A.A. Kosmodemyanski, some simplifying hypotheses. Thus, we consider 
that, on the active segment, the consumption of mass on a second is a finite magnitude, 
being negligible on the passive segment; thus, the function f, partially continuous on the 
interval [ ]0,T , is replaced by a continuous function, sufficiently close to that one. In 
what concerns the condition (16.3.8), we can have any velocity at the initial moment, as 
well as any value for 1 0f > ; hence, this condition may be overlooked in the 
variational problem which was put, remaining with the condition (16.3.1'), written in 
the form ( d /dv v v x= , d /df v f x= )     

sin ( , ) 0x xfvv fg g v x vwfθ ϕ′ ′+ + + = . (16.3.8') 

In our case, 1F = , while 1 ( )y f x= , 2 ( )y v x= , so that 

[ ]1 sin ( , )F fvv fg g v x vwfλ θ ϕ∗ ′ ′= + + + + .  

The equations (16.3.7") lead to 

d( ) ( ) 0
dvfv g wf vw
x

λ ϕ λ′ ′ ′+ + − = , 

d( sin ) ( ) 0
d

vv g vw
x

λ θ λ′ + − = . 

 

Developing and eliminating λ and xλ ′  between these equations, we get 

( ) sin 0v
f v g g

v w
f w f w

ϕ θ
′ ′⎛ ⎞ ′+ − − + =⎜ ⎟

⎝ ⎠
. 

 

Eliminating the sum / /f f v w′ ′+  between this relation and  (16.3.8'), we obtain 

[ ]1 ( )
sin vf v w vw

w
ϕ ϕ

θ
′= − + . 

 

(16.3.9) 

Taking 2
0( ) ( ) /2v b v Av m gϕ ρ= , as in aerodynamics, we can  write 

[ ]
2

0 ( )
2 sin v

Av
m m f v w b vwb

gw
ρ

θ
′= = + + , 

 

(16.3.9') 

where we assume, usually, that the gravity acceleration does not- vary with the altitude; 
we have thus determined the relation between the mass and the velocity of the particle 
in case of an optimal regime. In the hypothesis in which constb = , the relation 
(16.3.9') is reduced to 
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( )2
1

2 sin
Abv vm
g w
ρ

θ
= + , 

 
(16.3.10) 

while, in case of the motion on the vertical, it results   

( )21 1
2

vmg Abv
w

ρ= + . 
 

(16.3.10') 

If v w , then we find again Oberth’s formula. 

16.3.2 Applications to Dynamics of the Rigid Solid of Variable Mass 
Using again the modelling as a particle of the rigid solid of variable mass, we apply the 
above results to the study of the motion in a homogeneous atmosphere and of the 
motion by simultaneous capture and emission; as well, we make some considerations 
concerning- the motion of the rocket. 

16.3.2.1 Motion in a Homogeneous Atmosphere 
In 1946, A.A. Kosmodemyanski dealt with the motion of the particle of variable mass 
in a homogeneous atmosphere ( constρ = ), using the above considerations. Noting 
that d /df v f x= , the equation (16.3.1') reads 

( ) [ ]sin ( )vf wf v g f vθ ϕ′+ = − + . 
 

(16.3.11) 

In this case, the length of the path travelled through the rectilinear trajectory is given by 

[ ]00 0

( ) d
d ( ; , )d

sin ( )
T V V v

v
v

f wf v v
v t F v f f v

g f vθ ϕ
′+′= = −
+∫ ∫ ∫ , 

 
(16.3.12) 

where 0v  is the initial velocity. 
Writing the Euler-Lagrange equation corresponding to this functional, we get 

2
( sin ) ( ) sin d 0

d sin( sin )
vv f f wf v vw

v ff
θ ϕ θ

θ ϕθ ϕ

′+ − +
− =

++
, 

 
 

being thus led to the relation (16.3.9) in the particular case in which constg =  and 
( )vϕ ϕ= . 

The relation (16.3.11) allows to write      

[ ]
0 d

sin ( )
v v
v

f wft v
g f vθ ϕ

′+=
+∫ , 

 
(16.3.13) 

where ( )f v  is given by the relation (16.3.9); we obtain thus the velocity ( )v v t= . 
Associating the relation ( )f f v=  too, we determine the variation law of the particle 
mass, hence the optimal regime of work of the motor, in case of  a rocket. 
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16.3.2.2 Motion by Simultaneous Capture and Emission 
Let be a particle of variable mass which is moving in the same conditions as above in a 
uniform gravitational field, with the initial condition 0(0)v v= . In the case of a 
phenomenon of simultaneous capture and emission, the differential equation of motion 
is of the form 

0sin ( ) ( ) ( )mv mg m g v m u v m u vθ ϕ − +
− += − − + − + − , (16.3.14) 

where 0m− <  and 0m+ >  correspond to the variations of the emission and of the 
capture of mass, while u−  and u+  are the absolute velocities, respectively. Denoting by 
w u w− −= −  the relative velocity – considered to be constant – of the emitted masses, 
with respect to the non-inertial frame of reference, assuming that 0u+ =  (case 
considered by Levi-Civita) and that /m m γ+ −= − , we also can write  

[ ]sin ( )
v

mv mg v m wθ ϕ
γ

−
−

⎛ ⎞= − + + +⎜ ⎟
⎝ ⎠

. 
 

(16.3.14') 

Because constw− =  at the end of the active segment ( 1t t= ), when 0u− = , we 
have 1w v− = , where 1v  is the velocity at the respective moment. 

If we denote 0( ) ( )m t m f t− = , with (0) 1f = , 0(0)m m− = , then it results 

0(1 1/ ) (1 1/ )m m m m m fγ γ− + −= + = − = − , because 0( ) ( )m t m m t−= +  
( )m t++ ; we get thus [ ]0( ) ( )m t m bf t a+ = − +  and [ ]0( ) ( )m t m af t b= + , 

1 1/a γ= − , 1/b γ= , 1a b+ = . Replacing in the equation (16.3.14'), we obtain 

[ ] 1( ) ( )sin ( )af b v g af b f v bvθ ϕ+ = − + + − − . 
 

(16.3.14'') 

Choosing v as independent variable,  we can write  

[ ]
[ ]

0 0

1 1

1( ) ( ) ( )
( ; , )d d

( ) sin ( )
v v v

v
v v

v bv f v af v b v
gx F v f f v v

af v b vθ ϕ
′− + +′= =

+ +∫ ∫ . 
 

(16.3.15) 

We impose a variation of mass given by ( )f v , so that the displacement x have a 
maximum. Writing the corresponding Euler-Lagrange equation, we get  

[ ]1 1 1

1

( ) ( ) ( 2 ) ( ) ( 2 )sin
( )

( 2 )sin
vv v bv v a b v v v b v bv

f v
a v bv

ϕ ϕ θ
θ

′− + + − − −
=

−
. 

 
(16.3.16) 

As well, starting from the same relation (16.3.14"), we can write 

[ ]1

1( ) ( ) ( )
d

( ) sin ( )
v v

v

v bv f v af v b
gt v

af v b vθ ϕ
′− + +

=
+ +∫ . 

 

(16.3.15') 
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One obtains ( )v v t=  and then ( )f f t= , the consumption of mass being thus 
determined. 

16.3.2.3 Considerations Concerning the Motion of the Rocket 
In the case of a rocket launched along the ascendent vertical, Meshcherskiĭ’s equation 
(see Chap. 10, Sect. 3.1.2 too) reads   

( , ) 0mv mg Q v x mw+ + + = , (16.3.17) 

where = −w u v  is the relative velocity of the evacuated masses, while v x= . It is 
assumed that: (i) constg =  for relatively small heights (100...200 km) from the 
Earth’s surface; (ii) constw = , hence a constant emission of mass; (iii) the influence 
of the mass variation in the resistance of the air, characterized by the function ϕ, is 
neglected; (iv) the variation of the momentum in the interior of the rocket, modelled as 
a particle, is neglected; (v) the influence of the motion of rotation of the Earth is not 
taken into consideration. The conditions 0x = , 0v v= , 0m m=  at the initial moment 

0t =  and 1x x= , 1v v= , 1m m=  at a certain moment 1t t=  being given, G. 
Hamel, in 1936, put the problem to determine the minimal initial mass 0m , so that the 
rocket reach a given altitude 1x  (at the end of the active segment ( 1t t= ) for which we 
have the velocity 1v  and the mass 1m ). 

Noting that 0( ) ( )m t m f t= , (0) 1f = , and applying the formula (10.3.13") for an 
equation of the form (10.3.13), (10.3.13'), we get 

[ ]{ } [ ] [ ]{ }{ }1 1
0 0

( ) / d ( ) / d
01 0

( ) ( )
e e d

t ttg v t w t g v wQ v t x t
m m t

w
τ τ− + − +∫ ∫= − ∫ , 

 

where we took into consideration also the initial condition 0(0)m m= ; after 
calculations, we can write 

[ ] [ ] ( )10 1 1/ ( ) / /
0 10

1e ( ) ( ) e d e
tv w gt v t w gt v wm Q v t x t t m

w
+ += +∫  

1
1 1 10

( , ; )d ( , )
t

F v x t t F v t= +∫ , 

 
 
 

(16.3.18) 

obtaining a relation between the mechanical quantities at the end of the active segment. 
After the consumption of the combustible, due to the existent kinetic energy, the 

rocket continues to ascend, in conformity to the equation of motion 

1 1 ( , ) 0m v m g Q v x+ + = , (16.3.19) 

which is obtained from (16.3.17), making 0m =  and taking 1m m= ; this equation is 
of the form 1( , ; ) ( ; ) 0F v x t F v t+ =  and can also be written in the form 
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( , )xvv Q v x′ = ,   
1

1( , ) ( , )Q v x Q v x g
m
⎡ ⎤= − +⎢ ⎥⎣ ⎦

. 
 

(16.3.19') 

Assuming that 1( , )Q v x m g  and integrating, we get 

( ) 2 ( )v x g h xψ= = − ,   [ ]1 ,x x h∈ , (16.3.20) 

hence a formula of Torricelli type, where ( ) 0hψ = . In this case, 1 1( )v xψ=  and 

1 1 1 1 1 1( , ) ( ( ), )F v t F x tψ= . 
In the variational problem which is put (the minimizing of the functional (16.3.18)) 

one takes, usually, 1x  and 1t  fixed, to avoid the difficulties of calculation, writing – 
consequently – the Euler-Lagrange equation for the function ( , ; )F v x t ; if 1x  and 1t  
are variable, then the problem becomes much more complicated. 

16.3.3 The Motion of the Aircraft Fitted Out with Jet  
Propulsion Motors 

In the case of modern aircraft fitted out with systems of jet propulsion of great traction, 
a great consumption of combustible is emphasized; thus, during the work of the system 
of propulsion, in the body of the aircraft circulate great masses of liquid, air and gases. 
To determine the equations of motion which allow the study of the flying qualities, it is 
necessary to take into account the displacement of the mass centre of the aircraft, the 
variation of the moments of inertia and of the non-inertial frame of reference of the 
principal axes of inertia with respect to a frame rigidly linked to the outer covering of 
the aircraft. In 1975, M.M. Niţă and Gh. Drăgănoiu dealt with the motion of the mass 
centre of the aircraft, while M.M. Niţă, considered, in 1979, its motion about the res-
pective centre; in this case, it is necessary that the aircraft be modelled as a mechanical 
system of variable mass, by simultaneous emission and capture of mass (gas and air, 
respectively). In what follows, we make some general considerations concerning the 
general theorems corresponding to the mentioned case, applying then these results to 
the motion of the aircraft. 

16.3.3.1 Theorems of Momentum and of Moment of Momentum 

We assume that the aircraft (modelled as a mechanical system S  of variable mass) the 
motion of which we are studying has, at the moment t, a mass M (contained in the 

interior of a surface Σ, corresponding to the outer covering of the aircraft) of the form 

s c gM M M M= + + , (16.3.21) 

where sM  is the solid mass, cM  is the combustible mass and gM  is the mass of the 
particles of gas (air or combustion products); the position vector of the mass centre C 
of the mechanical system S, with respect to a non-inertial frame of reference R  of 
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axes 1 2 3Ox x x , rigidly connected to the outer covering of the aircraft (O is a point of the 
outer covering), is given by 

( )1
s s c c g gM M M

M
= + +ρ ρ ρ ρ , 

 

(16.3.21') 

where , ,s c gρ ρ ρ  are the position vectors of the mass centres corresponding to the solid 
part, to the liquid combustible and to the particles of gas, respectively. The velocity of 
the centre C, relative to the frame of reference R, is given by 

( ) ( )1
c c c g gM M M

t M t t
∂ ∂ ∂⎡ ⎤= = + −⎢ ⎥∂ ∂ ∂⎣ ⎦

w ρ ρ ρ ρ , 
 

(16.3.21'') 

the derivative of the mass with respect to time being independent on the frame and 
having obviously, 0sM =  and /s t∂ ∂ = 0ρ .  

We can take 

1 1
d dj i

l l

p q

c l lV Vj i
M V Vμ μ

= =
= +∑ ∑∫∫∫ ∫∫∫ , 

 
(16.3.22) 

where lμ  is the density of the liquid combustible, while j
lV  and i

lV  represent the 

volume of a room (bunker, tubing etc.) occupied by the liquid at a moment t, the indices 

j and i specifying the p commuted and the q non-commuted rooms respectively, in the 
consumption circuit. These integrals are defined on variable domains, so that, by the 
displacements of the free surfaces j

lS  and i
lS , corresponding to the above mentioned 

volumes, respectively, it results 

1 1
( )d ( )dj i

l l

p q

c l l l lS Sj i
M S Sμ μ

= =
= ⋅ + ⋅∑ ∑∫∫ ∫∫w n w n ; 

 

(16.3.22') 

it has been assumed that the liquid is incompressible and that lw  is the relative velocity 
with respect to the frame of reference R  of a particle on the free surface, n being the 
unit vector of the external normal to this surface; obviously, the integrals corresponding 
to the q components non-commuted to the consumption circuit vanish. Analogously, 

d d
a g

g a g
V V

M V Vμ μ= +∫∫∫ ∫∫∫ , 
 

(16.3.23) 

where by aμ  and gμ  have been denoted the densities of the air and of the gas, 
respectively, aV  and gV , being the corresponding volumes; noting that constaV =  
and constgV = , it results 
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d d
a g

g a g
V V

M V Vμ μ= +∫∫∫ ∫∫∫ . 
 

(16.3.23') 

Returning to the relation (16.3.22'), we notice that the first integral represents, in 
absolute value, the mass of the liquid contained in the volume delivered by the 
displacement of the free surface j

lS  in a unit of time and which, on the basis of the 

continuity condition, is equal to the rate of flow of the liquid combustible j
lQ  in the 

room j
lV ; hence, 

( )dj
l

j
l l lS

S Qμ ⋅ = −∫∫ w n ,   
1

p
j

c ll
j

M Q Q
=

= − = −∑ , 
 

(16.3.24) 

where lQ  is the total rate of flow of the liquid combustible. Noting  that 

1 1
d dj i

l l

p q

c c l l l lV Vj i
M V Vμ μ

= =
= +∑ ∑∫∫∫ ∫∫∫r rρ , 

 

it results 

1
( ) di

l

q

c c l L l lVi
M Q V

t t
μ

=

∂ ∂= − +
∂ ∂ ∑∫∫∫ rρ ρ , 

 

(16.3.24') 

where 

1

1
j

p
j

L Ll
l j

Q
Q =

= ∑ρ ρ ,   
( )d

( )d

j
l

j
j
l

l l lS
L

l lS

S

S

μ

μ

⋅
=

⋅

∫∫
∫∫

r w n

w n
ρ , 

 
 

(16.3.24'') 

lr  being the position vector of a particle of liquid of the free surface, with respect to the 
frame of reference R. The vector 

jLρ  specifies the position of the mass centre of the 

mass of combustible contained in the volume delivered by the displacement of the free 
surface in a unit time; if the product ( )l lμ ⋅w n  is the same at all the points of the 

surface j
lS , then the vector 

jLρ  defines the centre of mass of this surface, while the 

vector Lρ  corresponds to the mass centre of all free surfaces in the rooms commuted in 
the consumption circuit. 

If dl lV
Vμ∫∫∫ r  is the static moment of the system of particles of liquid combustible 

contained in the volume V relative to the rooms commuted in the consumption circuit 
and if we take into account the formula (A.2.80'), then we get the momentum with 
respect to the non-inertial frame of reference R in the form 

d ( )dl l l l lV S
V Sμ μ+ ⋅∫∫∫ ∫∫r r w n , where S is the surface which bounds the domain of 
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volume V. In connection with these rooms, we consider the mixing surfaces k
mS , 

1,2,...,k r= , through which passes the liquid combustible, leaving the considered 
system (one assumes that, at the points of these surfaces, takes place the mixing of the 
particles of liquid with the particles of air or gas – at the systems with post-combustion– 
and the instantaneous transformation of this mixture in gas). Noting that 0lμ = , the 
momentum of the mentioned liquid combustible is given by 

1 1
( )d ( )d ( )j k

ml

p r
m cl l l l l M LS Sj k

S S Qμ μ
= =

⋅ + ⋅ = −∑ ∑∫∫ ∫∫r w n r w n ρ ρ , 
 

where 

1

1
k

r
k
cM M

c k
Q

Q =
= ∑ρ ρ ,   

( )d

( )d

k
m

k

k
m

ml lS
M

mlS

S

S

μ

μ

⋅
=

⋅

∫∫
∫∫

r w n

w n
ρ , 

 
 

(16.3.25) 

with an analogous significance concerning the surfaces of mixing k
mS , mw  being the 

relative velocity of a particle of liquid on this surface, in the frame of reference R; 
obviously, we have 

1

r
k
c c l

k
Q Q Q

=
= =∑ ,   ( )dk

m

k
c ml lS

Q Sμ= ⋅∫∫ r w n , 
 

(16.3.25') 

where k
cQ  is the rate of flow of the combustible which passes through the surface k

mS , 
being transformed in gas. The relative momentum of the system of particles of liquid 
combustible contained in the rooms non-commuted to the consumption circuit is given 
by the second term in (16.3.24'); in this case, the momentum of the system of particles, 
corresponding to all the rooms, will be expressed in the form 

1
( ) di

l

q

cl M L l lVi
Q V

t
μ

=

∂= − +
∂ ∑∫∫∫H ρ ρ ρ , 

 
(16.3.25'') 

while the formula (16.3.24') becomes 

( )c c cl MM Q
t

∂ = −
∂

Hρ ρ , 
 

(16.3.26) 

where we took into account (16.3.25"). 
In what concerns the mass of the gas particles (air or combustion products) we can 

make analogous considerations. Thus, the condition of continuity of the air flow is 
given by 

d
m

m e m
V

V Q Qμ = −∫∫∫ , 
 

(16.3.27) 
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where eQ  is the rate of flow of the air at the entrance sections h
eS , 1,2,....., eh n= , 

while mQ  is the rate of flow of the air at the passing through the mixing surfaces; we 
have 

1 1
( )d

e e

eh
e

n n
h

e e m a
Sh h

Q Q Sμ
= =

= = − ⋅∑ ∑ ∫∫ w n , 

1 1
( )dmk

m

r r
k

m m m a
Sk k

Q Q Sμ
= =

= = ⋅∑ ∑ ∫∫ w n , 

 
 

(16.3.27') 

where eaw and maw represent the velocities of a particle of air at the section of entrance 
and at the section of mixing, respectively. The condition of continuity of the flow of 
gases is of the form 

1 1
d ( )d ( )d 0

i

m ik l
g m i

nr
g g g g g

V S Sk l
V S Sμ μ μ

= =
+ ⋅ + ⋅ =∑ ∑∫∫∫ ∫∫ ∫∫w n w n , 

 

where mgw and igw  are the velocities of a particle of gas at the surface of mixing and at 
the surface of exit (issue) l

iS , 1,2,..., il n= , respectively. Assuming that, at the passing 
through the surfaces of mixing, the liquid is transformed instantaneously in gas, this 
condition becomes 

d
g

g c m iV
V Q Q Qμ = + −∫∫ , 

 

(16.3.28) 

with  

1
( )d ( )mk

m

r
g g miSk

S Q Qμ
=

⋅ = − +∑ ∫∫ w n ,   
1 1

( )d
i i

il
i

n n
l

g gi i Sl l
Q Q Sμ

= =
= = ⋅∑ ∑∫∫ w n , 

 (16.3.28') 

iQ  being the rate of flow of gases at the sections of exit. 
From (16.3.23'), (16.3.27) and (16.3.28) , it results 

g c e iM Q Q Q= + − . 
 

(16.3.29) 

Noting that 

c cM Q= − , (16.3.29') 

from (16.3.24) and (16.3.25'), the relation (16.3.21) leads to 

e iM Q Q= − , (16.3.30) 
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because 0sM = . If 0m gμ μ= =  and if we take into account the relation (16.3.27) 
(which leads to e mQ Q= ) and the relation (16.3.28) (wherefrom m ciQ Q Q= + ), then 
it results 

cM Q= − . (16.3.30') 

Using the relations (16.3.27'), (16.3.28') and (16.3.30), the formula (13.2.12) allows 
to express the theorem of momentum, in the case of the considered problems, in the 
form 

1 1

d ( )d ( )d
d

e i

e e i ih l
e i

nn

a a a g g g
S Sh l

S S
t

μ μ
= =

′
+ ⋅ + ⋅ =∑ ∑∫∫ ∫∫

H u w n u w n R , 
 

(16.3.31) 

where ′H  is the momentum of the mechanical system S  with respect to an inertial 
frame of reference R, aeu  and giu  are the velocities of the particles of air at the 
surface of entrance and of the particles of gas at the surface of exit, respectively, with 
respect to the same frame, while R is the resultant of the given external forces. As well, 
in conformity to the formula (13.2.15), extended to the generalized equation of 
Meshcherskiĭ, the theorem of moment of momentum for the above problem is given by 

1 1

d
( )d ( )d

d

e i

e e i ih l
e i

nn
O

a a a a g g g g OS Sh l
S S

t
μ μ′

′
= =

′
′ ′+ × ⋅ + × ⋅ =∑ ∑∫∫ ∫∫

K
r u w n r u w n M , 

 (16.3.32) 

where O ′′K  is the moment of momentum of the system S  with respect to the inertial 
frame of reference, a′r  and g′r  are the position vectors of the particles of air at the 
surface of entrance and of the particles of gas at the section of exit, respectively, with 
respect to the same frame, while O ′M  is the resultant moment of the given external 
forces with respect to the pole O ′  of the respective frame. 

Obviously, starting from the results given in Sect. 13.2.1.2, we can give also other 
remarkable forms to these theorems. 

16.3.3.2 Motion of the Centre of Mass 
The mass centre of the particles of gas is given by the relation of static moments 

d d
a g

g g a a g g
V V

M V Vμ μ= +∫∫∫ ∫∫∫r rρ , 
 

(16.3.33) 

where ar  and gr  are the position vectors of the particles of air and of gas, respectively, 
with respect to the frame of reference R; thus, it results 

( ) d d
a g

g g a a g g
V V

M V V
t

μ μ
∂ = +
∂ ∫∫∫ ∫∫∫r rρ .  

16 Other Considerations on the Dynamics of the Rigid Solid 449 



www.manaraa.com

As in the case of particles of liquid, we can write the momentum of the mass of the 
particles of air and of the particles of gas, respectively, with respect to the frame R, in 
the form 

1 1
d ( )d ( )d

e

e mh k
a e m

n r
a a a a a a a a a

V S Sh k
V S Sμ μ μ

= =
= + ⋅ + ⋅∑ ∑∫∫∫ ∫∫ ∫∫H r r w n r w n , 

1 1
d ( )d ( )d

i

m ik l
g m i

nr
g g g g g g g g g

V S Sh l
V S Sμ μ μ

= =
= + ⋅ + ⋅∑ ∑∫∫∫ ∫∫ ∫∫H r r w n r w n . 

 (16.3.34) 

If the densities ,a gμ μ  and lμ , as well as the scalar products ma ⋅w n , mg ⋅w n  and 

a ⋅w n  are uniformly distributed on the mixing surface k
mS , then we can write  

( )d ( )dm mk k km m

k
a a a g g g c MS S

S S Qμ μ⋅ + ⋅ = −∫∫ ∫∫r w n r w n ρ .  

Introducing the notations 

1

1 e

h

n
h
eE E

e h
Q

Q =
= ∑ρ ρ ,   

1

1 i

l

n
l
iI I

i l
Q

Q =
= ∑ρ ρ , 

( )d

( )d

eh
e

h
eh

e

a a a
S

E
a a

S

S

S

μ

μ

⋅
=

⋅

∫∫
∫∫

r w n

w n
ρ ,   

( )d

( )d

il
i

l
il

i

g g g
S

I
g g

S

S

S

μ

μ

⋅
=

⋅

∫∫
∫∫

r w n

w n
ρ , 

 
 

(16.3.35) 

where E and I represent the centre of the sections of entrance and the centre of the 
sections of exit (issue), respectively, the relations (16.3.27'), (16.3.28'), (16.3.33)-
(16.3.35) lead to 

( )g g a g c e iM E IM Q Q Q
t

∂ = + + + −
∂

r H H ρ ρ ρ . 
 

(16.3.36) 

If the products  ( )ea aμ ⋅w n  and ( )ig gμ ⋅w n  are the same for all the points of the 
sections h

eS  and l
iS , respectively, then the vectors 

hEρ  and 
lIρ  define the mass centres 

of these sections, while the points E and I represent the mass centres of the sections of 
entrance and exit, respectively. Taking into account- the relations (16.3.26), (16.3.30), 
(16.3.36), the relation (16.3.21) allows to express the velocity of the mass centre C of 
the mechanical system S  with respect to the frame of reference R  in the form 

[ ]1 ( ) ( )e iC E IQ Q
t M

∂= = + − − −
∂

w Hρ ρ ρ ρ ρ , 
 

(16.3.37) 

where 

a gl= + +H H H H  (16.3.38) 

is the momentum of this mechanical system with respect to the same frame. 
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In the case of the aircraft fitted with rocket motors we have 0eQ = , so that 

[ ]1 ( )iC IQ
M

= − −w H ρ ρ . 
 

(16.3.37') 

Let  O′= − = + ×v u w v rω  be the velocity of a point of the outer covering of the 
aircraft, hence of the non-inertial frame of reference R  with respect to the inertial 
frame ′R  (velocity of transportation), where O′v  is the velocity of the pole O with 
respect to the frame ′R , while ω is the rotation angular velocity of the frame R  with 
respect to the same frame ′R . The theorem of momentum (16.3.31) may be written 
also in the form 

1 1

d
d

e inn
h h l l
e e e i i iE I

h l
Q Q Q Q

t = =

′
− − + + =∑ ∑H w v w v R , 

 

(16.3.39) 

where we took into account the relations ( 16.3.27'), (16.3.28'), (16.3.35) and where 
h
ew , l

iw  are the velocities relative to the frame R, considered to be constant, at the 
section of entrance h

eS  and at the section of exit l
iS , respectively, Ev  and Iv  being the 

velocities of transportation of the centres E and I, respectively, given by the relations 

1 1
( )d ( )d

e e

e e eh h
e e

n n

a a a a aOS Sh h
S Sμ μ

= =
′⋅ = ⋅∑ ∑∫∫ ∫∫v w n v w n  

1
( )d ( )

e

eh
e

n

a a a e eO E ESh
S Q Qμ

=
′+ × ⋅ = − + × = −∑ ∫∫ r w n v vω ω ρ , 

1 1
( )d ( )d

i i

i i il l
i i

n n

g g g g gOS Sl l
S Sμ μ

= =
′⋅ = ⋅∑ ∑∫∫ ∫∫v w n v w n  

1
( )d ( )

i

il
i

n

g g g i iO I ISl
S Q Qμ

=
′+ × ⋅ = − + × =∑∫∫ r w n v vω ω ρ . 

 

Taking into account (16.2.21), we can write s c g′ ′ ′ ′= + +H H H H , so that 

dd d d
d d d d

gs c

t t t t
′′ ′ ′

= + +
HH H H . 

 

(16.3.40) 

We have s ss s sC CM M′ = =H u v , because the velocity relative to R  of the mass 
centre of the solid part vanishes ( sC =w 0 ); hence, 

dd
d d

s
s

s C
s CM

t t
′ ′= =

vH a , 
 

(16.3.41) 

where sC′a  is the acceleration of transportation of the mass centre of the solid part. 
Calculating the momentum in the motion of transportation in the form  
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1 1 1 1
d d d dj ji i

l l l l

p q p q

l l O l lV V V Vj i j i
V V V Vμ μ μ μ

= = = =

⎛ ⎞′+ = +⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑∫∫∫ ∫∫∫ ∫∫∫ ∫∫∫v v v  

1 1
d dj i

l l

p q

l l l lV Vj i
V Vμ μ

= =

⎛ ⎞
+ × +⎜ ⎟

⎝ ⎠
∑ ∑∫∫∫ ∫∫∫r rω , 

 

corresponding to the liquid combustible in the rooms occupied by it at the moment t, we 
can write ( lH  is the momentum of the liquid part relative to the frame of reference R) 

( )c c cl OM′ ′= + + ×H H v ω ρ , 
 

(16.3.42) 

where we took into account (16.3.22) and the relation which gives the corresponding 
centre of mass. Taking into account (16.3.26), we get 

d 2
d c

c l
c cl M CQ M

t t
′ ∂ ′= + × − +

∂
HH H v aω , 

 

 

(16.3.43) 

where Mv  is the velocity of transportation of the centre M of the mixing surfaces, cC′a  
is the acceleration of transportation of the centre of mass of the combustible, while the 
operator / t∂ ∂  corresponds to the derivative with respect to the frame R.  

Starting from (16.3.23), it results, analogously, 

( )g g g gOM′ ′= + + ×H H v ω ρ  
 

(16.3.44) 

for the particles gas-air. We obtain thus ( gC′a  is the acceleration of transportation of the 
mass centre the gas-air part) 

d
2

d g

g g
g c e giM E I CQ Q Q M

t t
′ ∂ ′= + × + + − +

∂
H H

H v v v aω , 
 

(16.3.45) 

where we took into account (16.3.29), (16.3.36) and the manner of introduction of the 
velocities of transportation Ev  and Iv . 

Noting that at a fixed moment we can write 

s c gs c gC C C CM M M M′ ′ ′ ′= + +a a a a , 
 

(16.3.46) 

where C′a  is the acceleration of transportation of the mass centre of the mechanical 
system S, and denoting by  gl= +H H H  the momentum of this system with respect 
to the frame of reference R  (the relative momentum of the solid part vanishes), the 
theorem of momentum (16.3.39), with (16.3.40), leads to 

1 1
2

e inn
h h l l
e e i iC

h l
M Q Q

t= =

∂′ = + − − − ×
∂∑ ∑ Ha R w w Hω . 

 

(16.3.47) 
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This result can be used, e.g., in the study of the immobile flight of the aircraft with 
vertical take-off (we make C C= =v a 0  and = 0ω ). 

Introducing the relative acceleration 2 2/ t∂ ∂ρ  of the mass centre C of the 
mechanical system, as well as the Coriolis acceleration 2 C× wω , we obtain the 
equation of motion of this centre with respect to the inertial frame of reference ′R  in 
the form 

2

2
1 1

d
2 2

d

e inn
C h h l l

e e i i C
h l

M Q Q M M
t t t= =

∂∂= + − − − × + + ×
∂ ∂∑ ∑u HR w w H wρω ω , 

 (16.3.48) 

where Cu  is the absolute velocity of the centre C. 
We decompose the resultant of the given forces in the form 0p= +R R R , where 
pR  is the resultant of the forces of static pressure, while 0R  is the resultant of the 

other given external forces. If 0p  is the static pressure on the surface S of the outer-
covering of the aircraft, then we will have 

0
1 1

d
e inn

h h l l
e e i iS h l

S p A A
= =

⎛ ⎞= +⎜ ⎟
⎝ ⎠
∑ ∑∫∫ p n n , 

 

where h
eA  and l

iA  are the areas of the sections of entrance and exit, respectively, 
supposed to be plane, while h

en  and l
in  are the unit vectors of the corresponding 

external normals. Denoting by h
ep  and l

ip  the mean pressure on the same surfaces of 
entrance and exit, respectively, it results 

dh
e

h h h
e e e e

S
S p A= −∫∫ p n ,   dl

i

l l l
i i i iS

S p A= −∫∫ p n .  

Finally, we can write 

( ) ( )0 0
1 1

e inn
h h h l l l

p e e e i i i
h l

p p A p p A
= =

= − + −∑ ∑R n n . 
 

(16.3.49) 

The equation of motion of the mass centre (16.3.48) becomes thus 

2

0 2
d

2 ( )
d

C
CM M M

t t t
∂∂= + − + − × −

∂ ∂
u HR T H wρ ω , 

 
(16.3.50) 

where the force of traction developed in the aeroreactive system of propulsion has been 
introduced in the form 

( ) ( ) 1
0 0

1 1

e inn
h h h h h l l l l
e e e e e i i i i i

h l
Q p p A Q p p A

= =
= + − − + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑ ∑T w n w n . 

 
(16.3.50') 
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We mention that the supplementary terms (excepting the forces 0R  and T) which 
appear in the equation (16.3.50) can present a particular interest, e.g., in the study of the 
motion and of the stability of the vehicles with a vertical take-off-landing. If, in 
particular, the vehicle is fitted out with rocket motors, then one takes 0h

eQ = , 0h
ep = , 

1,2,..., eh n= , in the expression of the force of traction. 
Applying the theorem of momentum for the current of fluid which enters through the 

section h
eS , in case of a motion of rectilinear and uniform translation, the flow is 

stationary and we can write 0( ) ( )h h h h h
e e c e e eQ p p A+ + − =w v n 0 , so that the function 

of traction becomes 

( )0
1

in
l l l l l

e c i i i i i
l

Q Q p p A
=

= − − − −⎡ ⎤⎣ ⎦∑T v w n . 
 

(16.3.50'') 

16.3.3.3 The Motion About the Centre of Mass 
We notice that the position of a particle of solid, liquid, air or 
gas is specified by O′ ′ ′= + = +r r r rρ , where r  is the position vector in a Koenig 
frame of reference, its absolute velocity being written in the form = +u v w , where 
the velocity of transportation is given by ( )O O′ ′= + × = + × +v v r v rω ω ρ  

C= + ×v rω . The moment of momentum with respect to the pole O ′ , in the frame 
′R , reads 

C CO ′′ ′ ′= × + +K H K Kρ ,  dC V
Vμ= ×∫∫∫K r w ,  ( ) dC V

Vμ= × ×∫∫∫K r rω , 

 (16.3.51) 

where CK  and CK  are the momenta of momentum with respect to the mass centre C, 

in the frame R  and in the frame ( )CR  of Koenig, respectively, and where we have 
taken into account that the static moment of the mechanical system S  with respect to 
the mass centre vanishes. Differentiating with respect to time, in the fixed frame of 
reference, and taking into account that C C C= +u v w , /C t= ∂ ∂w ρ  and 

CM′ = +H H v  (we use the expressions of the velocities u and v, as well as the same 
property of the static moments), we obtain 

d d dd
d d d d

O C C
C C C CM

t t t t
′′ ′′= × + × + × + × + +

K K KHw H w v v H ρ ,    (16.3.51') 

We can define the centres E and I by the formulae 
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(16.3.52) 
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analogous to the formulae (16.3.35). Noting that E E= −ρ ρ ρ , I I= −ρ ρ ρ  and 
taking into account (16.3.37), we get 

1 1
( )d ( )d

e i

e ih l
e i

nn

a a a g g g CS Sh l
S S Mμ μ

= =
⋅ + ⋅ = −∑ ∑∫∫ ∫∫r w n r w n H w . 

 

In this case, the sums of the integrals in the formula (16.3.32) become 
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where we took into account the above result, the formula (16.3.31) and the expressions 
of the position vectors a′r  and g′r , as well the decomposition of the velocities eau  and 

igu . Replacing in (16.3.32) and taking into account the previous results and the relation 
(16.3.51'), we get, finally, 
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− × × ⋅ − × × ⋅∑ ∑∫∫ ∫∫r r w n r r w nω ω ,  (16.3.53) 

where we have noticed that CO ′ ′= + ×M M Rρ . 
To give to this equation of motion of rotation about the mass centre a form as useful 

as possible from the point of view of the practical calculation, we mention that  

d
d

C C
Ct t

∂
= + ×

∂
K K

Kω ,   
d
d

C C
Ct t

∂
= + ×

∂
K K

Kω , 
 

(16.3.54) 

where we have used the derivatives with respect to the non-inertial frame of reference 
R. Noting that C C=K I ω , we have 
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const constC

C C C

t t t= =

∂ ∂ ∂⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠I

K K K

ω
, 

constC

C
Ct =

∂⎛ ⎞ =⎜ ⎟∂⎝ ⎠I

K
I ω ,   

const

C C

t t=

∂ ∂⎛ ⎞ =⎜ ⎟∂ ∂⎝ ⎠

K I

ω
ω , 

 
 

(16.3.55) 

because the mechanical system S  is of variable mass. 
We can decompose the resultant moment of the given forces in the form 

0pC C C= +M M M , where pCM  is the resultant moment of the forces of pressure 

while 
0CM  is the resultant moment of the other external forces. 

Noting that ( )de ea a a Sμ ⋅w w n  and ( )dgi ig g Sμ ⋅w w n  can be considered 
elementary forces due to the capture of the particles of air and to the detachment of 
particles of gas, respectively, through an elementary surface of area dS, we introduce 
the moment of traction in the form 

1 1
( )d ( )d

e i

e e i ih lp
e i

nn

a a a a g g g gT C S Sh l
S Sμ μ

= =
= − × ⋅ − × ⋅∑ ∑∫∫ ∫∫M M r w w n r w w n . 

 (16.3.56) 

As well, 

1const
( ) ( )d

e

eh
e

n
C

a a a a a
Sh

M S
t

μ
==

∂⎛ ⎞= − − × × ⋅⎜ ⎟∂⎝ ⎠
∑ ∫∫

K
r r w n

ω
ω  

1
( ) ( )d

i

il
i

n

g g g g
Sl

Sμ
=

− × × ⋅∑∫∫ r r w nω  

 
 
 
 

(16.3.57) 

is the moment of gas-dynamical damping. The equation of motion (16.3.3) takes thus 
the form 

0
constC

C C
aTC C C Ct t=

∂ ∂⎛ ⎞ + × = + − − × + − ×⎜ ⎟∂ ∂⎝ ⎠I

K K
K M M K M w Hω ω , 

 (16.3.58) 

generalizing Euler's equations. 
Considering that the aircraft is a system of constant mass and assuming that 

/C t∂ ∂ =K 0 , we can write 

0
constC

C
TC C Ct =

∂⎛ ⎞ + × = + + ×⎜ ⎟∂⎝ ⎠I

K
K M M Kω ω , 

 
(16.3.58') 

where the last term of gyroscopic nature corresponds to solid masses which give raise 
to the spin. Comparing the equations (16.3.58) (where we make /C t∂ ∂ =K 0 ) and 
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(16.3.58'), we notice that, considering that the aircraft is a system of variable mass, 
appears the supplementary moment 

s a C= + ×M M H w . (16.3.59) 

Because the vectors H and Cw  are, often, nearly parallel, it results aS ≅M M . 
Hence, s =M 0  if = 0ω ; the condition in which takes place a motion of translation 
are thus formally the same, immaterial if the mechanical system S  is of constant or of 
variable mass. 

If we suppress the capture of particles of air, then the equation (16.3.58) becomes the 
equation of motion of the rocket about the centre of mass. 
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Chapter 17 

Dynamics of Systems of Rigid Solids 

A mechanical system S  can be formed of a finite number (let be n) of rigid solids and 

of a finite number (let be p) of particles, its position with respect to an inertial frame of 
reference ′R  being specified by means of + = +6 3 3(2 )n p n p parameters; hence, 
such a system has +3(2 )n p  degrees of freedom. In the case in which the system S  is 

subjected to m constraints, the number of degrees of freedom is reduced with m units, 
equating + −3(2 )n p m . We study, in this chapter, the motion of the mechanical 
system S, free or with constraints, including the case in which appear discontinuities 
(the collision problem). The results thus obtained will be applied to some problems of 
dynamics of machines. 

17.1 Motion of Systems of Rigid Solids 
After some results with a general character, one considers the contact problem of two 
rigid solids; in this order of ideas, one studies various particular cases too. 

17.1.1 General Results 
In what follows, we make some general considerations concerning the motion of 
systems of rigid solids; a special attention is given to some particular cases (the double 
pendulum and the sympathetic pendulum). 

17.1.1.1 General Considerations 

Let be, in general, a free mechanical system S, formed of the rigid solids Sk , 
= 1,2,..., ,k n and of the particles iP , of position vectors ′ri , = 1,2,...,i p , with 

respect to an inertial frame of reference ′R ,  of pole ′O ; the elements of this system 
are acted upon by given external forces, originated in other systems, and by given 
internal forces, corresponding to their reciprocal actions. The rigid solid Sl  acts upon 
the rigid solid Sk  by a set of forces (analogously modelled as sliding vectors) of torsor 
{ }R M,kl kl , while the rigid solid Sk  acts upon the rigid solid Sl  by a set of forces 
(analogously modelled) of torsor { }R M,lk lk ; corresponding to the theorem of action 
and reaction (the Theorem 12.1.7 stated for a continuous mechanical system, can be 
applied in the case of a system of rigid solids too), we can write 

P.P. Teodorescu, Mechanical Systems, Classical Models,  
© Springer Science+Business Media B.V. 2009 
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{ }R M,kl kl { }+ =R M 0,lk lk , hence + =R R 0kl lk , + =M M 0kl lk , ≠k l , 
=, 1,2,...,k l n . The particles iP  and jP  are interacting with the forces Fij  (applied 

upon the particle iP ) and Fji  (applied upon the particle jP ), respectively, having as 
support the straight line i jP P  and verifying the relation + =F F 0ij ji , ≠i j , 

=, 1,2,...,i j p ; these forces are modelled as bound vectors. Analogously, if the rigid 
solid Sk  acts upon the particle iP  with a force ikΦ  (modelled as a bound vector), then 
the particle iP  reacts upon the rigid solid Sk  with a force kiΦ  (modelled as a sliding 
vector), these forces having the same support and verifying the relation + = 0ik kiΦ Φ , 

≠i k , = 1,2,...,i p , = 1,2,...,k n , as free vectors. As in the case of a discrete system 
of particles (see Sect. 11.1.1.4 too), applying the principle of action of forces (the 
theorem of torsor in case of a rigid solid; see Sect. 14.1.1.7 too), we can write the 
equations of motion of the free mechanical system S  in the form (for the sake of 
simplicity, it is convenient to denote by “prime” the sums of terms with two indices, if 
the case of equal indices is excluded)  

= =
= + +∑ ∑r F F

1 1
' '

p n

i i ij ik
j k

m Φ ,   = 1,2,...,i p , 
 

(17.1.1) 

= =
′ = + +∑ ∑H R R

1 1
' '

p n

k k ki kl
i l

Φ ,   = 1,2,...,k n , 

′ ′
= =

′ ′= + × +∑ ∑K M r M
1 1
' '

p n

i ki klO k O k
i l

Φ ,   = 1,2,...,k n , 

 
 

(17.1.1') 

where Fi  is the resultant of the given external forces which act upon the particle iP , 
{ }′R M,k O k  is the torsor of the given external forces which act upon the rigid solid 
Sk , while ′Hk  and ′′KO k  represent the momentum and the moment of momentum, 
respectively, of the rigid solid Sk , with respect to the pole ′O , in the frame of 
reference ′R . In general, the given forces can depend on the position vectors ′ri , 

= 1,2,...i p , on the position vectors ′rOk  and on Euler’s angles kψ , kθ , kϕ , which 
specify the position of a point of the rigid solid Sk , = 1,2,...,k n ,  as well as the 
motion of rotation about this one. 

The mechanical system S  is considered to be free, so that the +2n p  vector 
equations (17.1.1), (17.1.1') (or, in components, the ( )+3 2n p  scalar corresponding 
equations) can determine the ( )+3 2n p  parameters (co-ordinates and Euler’s angles), 
which specify its position. These equations are completed by the initial conditions (at 
the moment = 0t t ), i.e.: the positions and the velocities of the particles, as well as the 
positions and the velocities (the parameters which specify them) of the rigid solids 
which form the mechanical system S. In this case too, starting from the Theorem 
11.1.1, corresponding to a system of particles, and taking into account the Theorem 
14.1.12, corresponding to a rigid solid, we can state a theorem of existence and 
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uniqueness of Cauchy-Lipschitz type for the free discrete mechanical system considered 
above. 

In the case of a mechanical system S  subjected to constraints (external or internal, 
because of the contact between the rigid solids or because of other causes), one must 
introduce also the constraint forces (external or internal). If a particle ∈ SiP , e.g., is 
constrained to move on a surface ∈ SS , then the constraint is internal, while if 

∉ SS , then the constraint is external. Analogously, if a rigid solid ∈ SkS  remains 
in contact with another rigid solid appears a torsor of internal or external constraint 
forces, as this solid belongs or not to the mechanical system S. The holonomic 
constraint relations are of the form 

( ) ( ) ( ) ( ) ( ) ( )( )′ ′ ′ ′ ′ ′ =1 2 3 1 2 3, , , , , , , , ; 0k k ki i i
k k kO O Of x x x x x x t ,  = 1,2,...,q , 

 

(17.1.2) 

the non-holonomic constraints being expressed by the relations  

( ) ( ) ( ) ( ) ( ) ( )( ( ) ( ) ( )′ ′ ′ ′ ′ ′ ′ ′ ′1 2 3 1 2 3 1 2 3, , , , , , , ,k k ki i i i i i
O O Og x x x x x x x x x ,  

( ) ( ) ( ) )′ ′ ′ =1 2 3, , , , , , , , ; 0k k k
k k k k k kO O Ox x x t ,   = 1,2,...,r , 

 

(17.1.2') 

linear in the linear and angular velocities. Obviously, the number of the unknowns 
increases by = +m q r , corresponding to the constraint forces; but also the number of 
relations which link the unknown functions increases analogously (by the relations 
(17.1.2), (17.1.2')). We can enounce a first basic problem (the direct problem), the 
solution of which is unique in certain conditions, sufficiently large (e.g. the Cauchy-
Lipschitz theorem). A second basic problem (the inverse problem), as well as the mixed 
basic problem have not, in general, a unique solution; to have uniqueness, it is 
necessary to impose some supplementary conditions (see Sect. 11.1.1.4 too). 

17.1.1.2 The Double Pendulum 

The double pendulum is a mechanical system S  formed of two rigid solids S1  and 
S2 , subjected to the action of the own weights =G g1 1M  and =G g2 2M  at  the 
centres of mass 1C  and 2C , respectively; the rigid solid S1  oscillates about a fixed 
horizontal axis ′1 3O x  , while the rigid solid S2  oscillates about an axis 2 3O x , parallel 
to the first axis and rigidly connected to the solid S1 . We assume, for the sake of 
simplicity, that the vertical plane normal to these axes, which passes through the poles 

1O  and 2O , is a plane of geometric and mechanical symmetry for the mechanical 
system S, hence containing also the mass centres 1C  and 2C ; we assume that 

∈1 1 2C O O  too. We choose the ′1 1O x -axis along the descendent vertical, the ′1 2O x -axis 
being horizontal; the axes 2 1O x  and 2 2O x  are chosen analogously. The position of the 
system S  (the motion is plane-parallel, the point 1O  is fixed (two constraint relations), 
while the point 2O  is moving on a fixed circle (one constraint relation), hence the 
mechanical system has ( )⋅ − + =2 3 2 1 3 degrees of freedom) is specified by the 
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distance =1 2O O l  between the two poles (constant for a given double pendulum) and 
by the angles 1  and 2  made by 1 1O C  and 2 2O C , respectively, with the descendent 
vertical; we notice =1 1 1O C l , =2 2 2O C l  too (Fig. 17.1,a). Upon the rigid solid S1  act 
the own weight =G g1 1M , the constraint force R1  at 1O  and the constraint force R2 , 
exerted by the rigid solid S2  upon the rigid solid S1  at the cylindrical hinge 2O , while 
upon the rigid solid S2  act the own weight =G g2 2M  and the constraint force ′R2  
exerted by the rigid solid S1  upon the rigid solid S2  at 2O ; obviously, we 
have ′+ =R R 02 2  . We neglect the friction couples which appear on the axes ′1 3O x  
and 2 3O x . The motion of both centres of mass is given by the equation (the 
differentiation takes place with respect to the fixed frame of reference) 

 
Fig. 17.1  Double pendulum 

= + +g R R1 1 1 1 2M Mρ ,   ′= +g R2 2 2 2M Mρ ,  

where 

( )′ ′= +i i1 1 1 1 1 2cos sinlρ ,   
( ) ( )′ ′= + + +i i2 1 2 2 1 1 2 2 2cos cos sin sinl l l lρ  

 

are the corresponding position vectors; projecting on the axes ′1 1O x , ′1 2O x  and 
calculating the components of the accelerations, one obtain the components of the 
constraint forces in the form 

( ) ( )= − + +2
11 1 1 2 1 1 1 1cos sinR M l M l  

( ) ( )− + − +2
2 2 2 2 2 2 1 2cos sinM l M M g , 

( ) ( ) ( )= + − + −2 2
12 1 1 2 1 1 1 1 2 2 2 2 2 2cos sin cos sinR M l M l M l , 

 
 

(17.1.3) 
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( ) ( )′= − = + + + +2 2
21 21 2 1 1 1 1 2 2 2 2 2cos sin cos sinR R M l l g , 

( ) ( )′= − = − − + −2 2
22 22 2 1 1 1 2 2 2 2 2cos sin cos sinR R M l l . 

 
(17.1.3') 

Taking into account the Huygens-Steiner theorem (formulae (3.1.113), (3.1.113'), we 
can write the moment of inertia of the rigid solid S1  with respect to the ′1 3O x -axis in 
the form ( )+2 2

1 1 1M l i , where 1i  is the gyration radius corresponding to the mass 
centre 1C , taken with respect to an axis parallel to ′1 3O x ; the moment of inertia of the 
rigid solid S2  with respect to an axis parallel to the 2 3O x , which passes through the 
mass centre 2C , is given by 2

2 2M i , where 2i  has an analogous significance. The 
theorem of moment of momentum for the rigid solid S1 , in the frame ′R , with 
respect to the ′1 3O x -axis, reads 

( ) ( )+ = − + −2 2
1 1 1 1 1 1 1 22 1 21 1sin cos sinM l i M gl l R R .  

As well, writing the theorem of moment of momentum for the rigid solid S2 , in a 
frame of reference of Koenig, with respect to an axis parallel to the ′1 3O x -axis, we get 

( )′ ′= −2
2 2 2 2 21 2 22 2sin cosM i l R R .  

Replacing the constraint forces given by (17.1.3'), it results the system of differential 
equations of second order  

( ) ( )+ − − − + =2
1 1 2 1 2 2 1 2 1cos sin sin 0g

l
, 

( ) ( )+ − + − + =2
2 2 2 1 1 2 1 1 2cos sin sin 0g

l
, 

 
 

(17.1.4) 

where 

( )+ +
= >

2 2 2
1 1

1
2

0
l i l

l l
,   

+
= >

2 2
2 2

2
2

0
l i

l l
,   

+
= >1

2
0

l l
l

,   = 1

2

M
M

. 
 

To determine the motion, one must add also the conditions ( ) = 0
1 0 1t , 

( ) = 0
2 0 2t , ( ) = 0

1 0 1t , ( ) = 0
2 0 2t , where 0

1 , 0
2  and 0

1 , 0
2  specify the 

position and the velocity, respectively, of the double pendulum at the initial moment. 
Being impossible to give an exact solution to this non-linear problem, we will 

consider the case of small motions for which ( )− ≅2 1cos 1 , ≅1 1sin , 
≅2 2sin  and ( )− ≅ −2 1 2 1sin ; we find thus 

( )+ − − + =2
1 1 2 2 1 2 1 0g

l
, 

( ) 2
2 2 1 2 1 1 2 0g

l
+ + − + = . 

 
 

(17.1.4') 
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For linearization, we assume – further – that ≅1 2  so that ( )− 2
2 1 1 1  and 

( )− 2
2 1 2 2 ; we may write 

+ + =1 1 2 1 0g
l

, 

+ + =2 2 1 2 0g
l

. 

 
 

(17.1.4'') 

We search solutions of the form =1 1( ) e tt , =2 2( ) e tt  and are led to 

( )+ + =2
1 1 2 1 0g

l
,   ( )+ + =2

2 2 1 2 0g
l

; 
 

(17.1.5) 

one must have  

( ) ( ) ( )− − + − =
2

4 2
1 2 1 21 0g g

l l
,  

wherefrom 

( )
( )= − + ± − +

−
22

1 2 1 2
1 2

4
2 1

g
l

, 
 

(17.1.5') 

so that the linear algebraic system in 1 and 2  be compatible. Noting that the 
discriminant of the biquadratic equation is always positive, that the magnitude between 
the square brackets is also positive and that >1 2 1  we can state that <2 0 . 
Denoting by ± 1i , ± 2i  the corresponding roots and determining 1 2,  from  the 
system (17.1.5), one obtains the general solution of the linearized system (17.1.4'') in 
the form 

( ) ( ) ( ) ( )

( ) ( )

2 2
1 1 2 1 1 1 2 2 2 2 2

2 2
2 1 1 1 1 2 2 2 2

( ) cos cos ,

        ( ) cos cos ,

g gt C t C t
l l

t C t C t

= − − + − −

= − + −
    (17.1.6) 

where 1C , 2C , 1 , 2  are arbitrary constants, which are determined by the initial 
conditions. The system S  oscillates so that the amplitudes of any oscillation are small 
(hence, the constants 1C  and 2C  too), the pulsations 1  and 2  being, in general, 
distinct. 

We can make an analogous study of the double pendulum choosing as unknown 
functions the co-ordinates ′ =2 1 1( ) sinx t l  and =2 2 2( ) sinx t l  of the mass centres 

1C  and 2C , respectively. 
We may put the problem to find the conditions in which the mechanical system S 

oscillates as a unitary rigid solid; in this case, we must have =1 2( ) ( )t t .  Assuming 
that = =1 2( ) ( ) ( )t t t  too, the equations (17.1.4) become 
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( )+ + =11 sin 0g
l

,   ( )+ + =21 sin 0g
l

; 
 

(17.1.7) 

we are led to the same solution if the relation ( )+ = +1 21 1  takes place, hence 
if    

( ) ( )[ ]+ − + − =2 2 2 2 2
1 2 1 1 1 2 2 1 2 2 2M l i l l i l ll l M li , 

 

(17.1.7') 

even in case of finite amplitudes. It is sufficient to have ≅1 2  in the case of small 
motions. The two equations (17.1.7) correspond thus to a synchronous mathematical 
pendulum of length ( )′ = + 21l l  hence of length 

′ = + +2 2l l l l , (17.1.7'') 

where = >2
2 2 2/ 0l i l ; we notice thus that ′ ′= 1l O O , the point ′O being on the other 

part of the mass centre 2C , with respect to the point 2O  (Fig. 17.1,b). 
A bell together with its tongue forms a double pendulum, subjected to small 

oscillations. If, by construction, the condition (17.1.7') takes place, then the bell does 
not ring (no sound is heard, because the tongue cannot strike the bell). Such a 
phenomenon took place in reality, remaining famous, at the inauguration, in 1876, of 
the bell of the cathedral in Cologne; this bell has been put in form from the bronze of 
the guns conquered by the Prussian army at Sedan, in 1870, in the campaign against 
France. 

Returning to the non-linear system of differential equations of second order (17.1.4), 
we introduce the notation =1 1z , =2 2z , =1 3z , =2 4z , so that the system 
becomes now of first order and reads     

=1 3z z ,   =2 4z z ,  
( ) ( )+ − − − + =2

3 4 2 1 4 2 1 1cos sin sin 0z z z z z z z z , 
 

(17.1.8) 

( ) ( )+ − + − + =2
4 3 2 1 3 2 1 2cos sin sin 0z z z z z z z z ,  

where 

( )
=

+2 4/3
rs

r m
,   

( )
+=

+2
4
3 4/3

r ms
r m

,   = 3
4

r
s

 
 

(17.1.8') 

are non-dimensional coefficients with 

= 1

2

M
m

M
,   =

1

lr
l

,   2

1

l
s

l
= . 

 

(17.1.8'') 

Using the theory of Lie transform applied by L. Morino, F. Mastroddi and M. Cutroni 
in 1992, Anca Zl tescu studied, in 1998, in her doctor thesis, the system (17.1.8), 
assuming that  
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( )
( )2

2 12
2 1

1 1 cos
1 cos

z z
z z

≅ + −
− −

. 
 

(17.1.8''') 

She put in evidence also the effect of this approximation, as well as the influence of the 
generalized forces of vibrating type applied at the points 2C  or ′O , which introduce 
perturbing terms in the second members of the last two equations (17.1.8). In this order 
of ideas, she dealt with the conditions of stability of the motion; the passing to chaos 
has been taken into consideration too.  

Analogously, one can study the problem of the triple pendulum. 

17.1.1.3 Sympathetic Pendulums 

Let be a mechanical system  S  formed of two identical (in tune) or distinct (out of time) 
physical pendulums, linked between them (stronger or weaker) by an elastic spring; 
these pendulums which oscillate simultaneously are called sympathetic (coupled) 
pendulums. We mention the analogy between this system and a device formed of two 
electrical circuits (one primary and one secondary) inductively connected. If 1l and 2l  
are the lengths of the mathematical pendulums synchronous with the considered 
sympathetic pendulums, then the pulsations are given by =2

1 1/g l , =2
2 2/g l ; the 

elastic constants involved are =1 1/k M , =2 2/k M , where 1M  and 2M  are the 
masses of the pendulums,  while  is  the stress in the spring for a unit  linear strain 
(Fig. 17.2). 

 
Fig. 17.2  Sympathetic Pendulums 

If, in particular, the sympathetic pendulums are perfectly in tune, then we can write 
the equations of motion in the form ( = =1 2l l l , = =1 2 0 , = =1 2M M M , 

= =1 2k k k ) 

( )2
01 1 1 2x x k x x+ = − − ,   ( )2

02 2 2 1x x k x x+ = − − , 
 

(17.1.9) 

where 1x and 2x  are the elongations of the corresponding centres of oscillation ′1O and 
′2O . The change of variable = −1 1 2x x , = +2 1 2x x  leads to the equations 

( )2
01 12 0k+ + = ,   2

02 2 0+ = ,  
 

(17.1.9') 
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with the pulsations = + ≅2
0 2k +0 0/k , ′ = 0 . Assuming that at the 

initial moment 0t =  we have =0
1x a , =0

1 0x , =0
2 0x , =0

2 0x , hence 
= =0 0

1 2 a , = =0 0
1 2 0 , we get 1 ( ) cos t a t , 2 ( ) cos t a t′  and then 

( ( )1 1 2 /2x = + , ( )2 2 1 /2x = − )  

( ) ( ) ( )
1 ( ) cos cos cos cos

2 2 2
t tax t t t a

′ ′− +′= + = ,   

( ) ( ) ( )
2 ( ) cos cos sin sin

2 2 2
t tax t t t a

′ ′− +′= − = . 

 

 
 

(17.1.9'') 

 
Fig. 17.3  Sympathetic pendulums: Graphics of the elongations  

of the points 1O ′  (a) and 2O ′  (b) 

The graphics of the elongations of the points ′1O  and ′2O  are drawn in Fig. 17.3a 
and b, where the variation of the amplitude (vibrations with modulation in amplitude)  
is represented by broken lines; if ( ) 0 0/2 /2k′− ≅ , then the connection of 
the pendulums is a weak connection, the amplitude varying slowly in time (we can say 
that a fluctuation of the amplitude takes place). One can see that the vibration of each 
physical pendulum can be obtained by the superposition of two fundamental vibrations; 
to a constructive interference (maximal amplitude) of one pendulum corresponds a 
destructive interference (which is an extinction) for the second pendulum. Each of the 
two pendulums leads to a phenomenon of beats (see Chap. 8, Sect. 2.2.4 too). The 
mechanical energy passes from a pendulum to another one.   

There are two cases in which this energy transfer does not take place: the symmetric 
case (Fig. 17.4a) in which = =0 0

1 2 /2x x a , = =0 0
1 2 0x x , resulting 

1 2( ) ( )x t x t= ( ) ′= /2 cosa t  and the antisymmetric case (Fig. 17.4b) in which 
= − =0 0

1 2 /2x x a , = =0 0
1 2 0x x , obtaining ( )1 2( ) ( ) /2 cosx t x t a t= − = . These 

vibrations represent the two fundamental vibrations (principal vibrations or proper 
vibrations) of the sympathetic pendulums, which take place without transfer of energy, 
corresponding to the number of degrees of freedom of the mechanical system. One 
observes that the equations (17.1.9') are just the differential equations of these two 
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vibrations. The vibrations (17.1.9'') are obtained by superposing the effects of the two 
fundamental vibrations. 

 
Fig. 17.4  Sympathetic pendulums: a) symmetric case; b) antisymmetric case 

If the two pendulums are out of tune (the general case) then the equations of motion 
read 

( )2
1 1 1 1 1 2x x k x x+ = − − ,   ( )2

2 2 2 2 2 1x x k x x+ = − − . 
 

(17.1.10) 

Putting i
1 1e tx A ±= , i

2 2e tx A ±= , we get the homogeneous algebraic system 

( )− + − =2 2
1 1 1 1 2 0k A k A ,  

( )− + − =2 2
2 2 2 2 1 0k A k A ;  

the condition of compatibility leads to the biquadratic equation  

( )[ ] ( )[ ]− + − + =2 2 2 2
1 1 2 2 1 2k k k k ,  

wherefrom 

( )22 2 2 2 2
1 2 1 2 1 2 1 2 1 2

1 4
2

k k k k k k= + + + ± − + − + ,  

both roots being positive. Expanding the radical after Newton’s binomial, we get 

( )
( )

≅ + + + ± − + − +
− + −

1 22 2 2 2 2
1 2 1 2 1 2 1 2 22 2

1 2 1 2

21 1
2

k k
k k k k

k k
 

for 1k  and 2k  small (hence for a weak connection); the pulsations  and ′  will be 
given by 

( )
1 22 2

1 1 2 2
1 1 2 2

k k
k

k k
= + +

+ − +
,   

( )
1 22 2

2 2 2 2
1 1 2 2

k k
k

k k
′ = + −

+ − +
. 

(17.1.10') 
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One obtains thus elongations of the form 

( ) ( )1 ( ) cos sin cos sinx t A t B t A t B t′ ′ ′ ′ ′= + + + , 

2 ( ) cos sin cos sinx t A t B t A t B t′ ′ ′ ′= + + + , 

 
(17.1.10'') 

where  and ′  correspond to the non-determinate solutions of the homogeneous 
linear algebraic system. With the initial conditions (for 0t = ) =0

1x a , 0
1 0x = , 

=0
2 0x , =0

2 0x , it results  

( )1 ( ) cos cosax t t t′ ′= −′ −
, 

( )2 ( ) cos cosax t t t′= −′ −
 

( ) ( )2
sin sin

2 2
t ta ′ ′− +

= ′ −
. 

 
 

(17.1.10''') 

 
Fig. 17.5  Sympathetic pendulums out of tune. Graphics of the elongations  

of the points 1O ′  (a) and 2O ′  (b) 

The graphics of these elongations are drawn in Fig. 17.5a and b. One observes that, in 
this case, the destructive interference of the first pendulum does not lead to extinction 
after intervals of time equal to ( )′−2 / . 

An analogous study can be made choosing as unknown functions the angles 
( )1 1 1( ) arcsin /t x l=  and ( )2 2 2( ) arcsin /t x l=  made by ′1 1O O  and ′2 2O O  with 

the descendent vertical line, respectively. 
We denote =1 1O O l  and 1 1 2 2O Q O Q a= = , where 1Q  and 2Q  are the ends of the 

elastic spring, characterized by the elastic constant k;  the elastic force in the spring is 
thus given by 1 2 1 2k O O Q Q− . We notice that 

( )[ ] ( )2 2 22
1 2 2 1 2 1sin sin cos cosQ Q l a a= + − + −  

( ) ( )[ ]= + − + − −2 2
2 1 2 12 sin sin 2 1 cosl al a . 

 
 

(17.1.11) 
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The non-linear system of equations of motion is obtained in the form  

( )21 1 1 1 1 1 2
1

sin 0
2
kI M gl l Q Q∂+ + − =

∂
, 

( )22 2 2 2 2 1 2
2

sin 0
2
kI M gl l Q Q∂+ + − =

∂
. 

 
 

(17.1.12) 

Introducing the expression of 1 2Q Q , it results 

( )[ ]1 1 1 1 1 1 2 1sin cos sin 0I M gl kaH l a+ + + − = , 
( )[ ]2 2 2 2 2 2 2 1sin cos sin 0I M gl kaH l a+ − + − = , 

 
(17.1.12') 

where 

( ) ( )
( )

−
= 1 2

1 2
1 2

,
,

,
l

H , 
 

(17.1.11') 

with 

( ) ( ) ( )[ ]{ }22 2
1 2 1 2 2 1 2 1, 2 sin sin 2 1 cosQ Q l al a= = + − + − − .  

(17.1.11'') 

Using the notations 

2
1 1

1

M gl
w

I k
= ,   1 2 2

2

M M gl
w

I k
= ,   

l
= , 

a
l

= ,   1

1

alM
I

= ,   1

2

alM
I

= , 

 
 

(17.1.13) 

as well as 

( ) −= −1/2
1 2, 1 , (17.1.13') 

with  

( ) ( ) ( )[ ]2
1 2 2 1 2 1, 1 2 sin sin 2 1 cos= + − + − − . (17.1.13'') 

Introducing the unknown functions =1 1z , =2 2z , =3 1z , = 24z , the system of 
differential equations of second order takes the form of a system of first order 

1 3z z= ,   2 4z z= ,  
( ) ( )[ ]= − − + −3 1 1 2 1 2 1sin , cos sinz w z z z z z z , (17.1.12'') 
( ) ( )[ ]4 2 1 2 2 2 1sin , cos sinz w z z z z z z= − + + − .  
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These equations have been introduced in 2001 by tefania Donescu in her doctor thesis. 
She studied them using the linear equivalence method (LEM) established by Ileana 
Toma in her doctor thesis, in 1980 (see Chap. 24, Sect. 1.2), assuming that 

( ) ( )[ ]2
2 1 2 12 sin sin 2 1 cos 1− + − − < , 

 

(17.1.13''') 

wherefrom 

( ) ( ) ( )[ ]≅ − − − − −2
1 2 2 1 2 1, sin 1 cos ; 

 

(17.1.13iv) 

this approximation has been thoroughly discussed. t. Donescu dealt also with cnoidal 
solutions, obtaining numerical results plotted into diagrams, as well as interesting 
results concerning the stability of the mechanical system, both for the approximate case 
and for the exact one. 

17.1.2 Contact of Two Rigid Solids 
In what follows, we consider firstly the general case of the rigid solid in contact with a 
fixed surface, assuming that one can have constraints with friction too; the results thus 
obtained will be then used to the study of some particular problems (the motion of the 
gyroscope in contact with a fixed plane, the motion of a heavy circular disc or of a 
heavy sphere on a fixed plane etc.).  

The first study in this direction has been made by S.-D. Poisson (the motion of a 
heavy rigid solid in contact with a fixed plane); Cournot took again the problem 
considering the friction too. The particular case of the motion of a billiard ball has been 
considered by Coriolis in 1835. Puiseux studied the motion of a heavy rigid solid of 
rotation on a perfectly smooth horizontal plane; Slesser tackled in 1861 the same case, 
assuming that the rigid solid can roll and pivot without sliding, Neumann taking again 
the problem in 1886. Other results are due to Scouten, Ferrers, Carvallo, Korteweg and 
Appell. 

17.1.2.1 General Considerations 

Let be two rigid solids S  and ′S , bounded by the surfaces S  and ′S ,  respectively, 
having – at every moment – the ordinary common point ′≡P P , ∈P S , ′ ′∈P S  
(obviously, the points P  and ′P  of the two rigid solids are always other ones, the 
mentioned situation being instantaneous), at which they have the same tangent plane 

; the distribution of the velocities in the relative motion of a rigid solid with respect 
to another one has been considered in Chap. 5, Sect. 3.3.1. In this study, we neglect any 
interaction which can intervene between the two solids, excepting the actions of 
contact. The condition of impenetrability of the rigid solids (which can be separated or 
in contact) is expressed, in general by an inequality; e.g., if the rigid solids are two 
spheres ( ),O R  and ( )′ ′,O R , the unilateral constraint relation is expressed in the form 

OO R R′ ′≥ + . We assume, in what follows, that the constraints are bilateral, having 

contact relations at one point ′≡P P , expressed by equalities. 
Let R be the constraint force which represents the action of the rigid solid ′S  upon 

the rigid solid S, at the point P , and let ′R  be the constraint force corresponding to 
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the action of a rigid solid S  upon the rigid solid ′S , at the point ′P ; in conformity to 
the theorem of action and reaction, these forces verify the relation ′ + =R R 0 . We 
mention that the equations of motion of the rigid solid (the theorems of momentum and  
of moment of momentum), the theorem of action and reaction and the relation of 
impenetrability (relation of bilateral constraint) are not sufficient to determine the 
unknowns which intervene (as a matter of fact, the constraint forces R and ′R  are 
unknowns); to solve the problem, one must add some supplementary conditions. 

In case of a contact without friction (the surfaces S and S ′  are smooth), the 
constraint forces R and ′R  must be normal to the tangent plane  at the point of 
contact, being denoted by N and ′N  respectively (we have ′+ =N N 0 ; eventual 
tangential components T and ′T  would correspond to an infinite relative displacement 
in the plane . We notice that these constraint forces are pressures, the sense of which 
is towards the interior of the rigid solid upon which they act and which vanish when the 
contact ceases (see Chap. 3, Sect. 2.2.9 too). In some cases, a contact takes place along 
a curve or on a certain surface and one can make analogous considerations. 

If the contact is with friction, remaining punctual, then the friction is a sliding 
friction. We can decompose the constraint force in the form = +R N T  (the same for 
the constraint force ′R ) where N is the ideal constraint force (normal, without friction), 
while T is the sliding constraint force (see Chap. 3, Sect.. 2.2.12 too). We denote by f 
the Coulombian coefficient of friction ( 0f ≥ ), introduced in Chap. 3, Sect.. 2.2.11. 
Further, we assume that the rigid solid ′S  is at rest with respect to an inertial frame of 
reference, studying the motion of the rigid solid S  on the surface ′S . If the sliding 
velocity of the rigid solid S  on the surface ′S  at the contact point (the velocity of a 
point Q which coincides with ′≡P P  at any moment t, hence the velocity of 
transportation with respect to the surface ′S , contained in the plane  and given by 
(5.3.21)) vanishes ( Q =v 0 ), then we have f≤T N ; to Q ≠v 0  corresponds 

f=T N , with Q= −T v , / 0Qf= >N v  (in this limit case, the vector R 
has its support along a generatrix of the cone of friction). 

In fact, in the dynamic case one uses the Coulomb-Morin relation in the form 

versdf N= −T v , (17.1.14) 

where df  is a coefficient of a dynamic friction; we notice that ≤ sdf f , =sf f , where 
sf  is the coefficient of static friction. In general, we can have ( )d df f v= . 

The equation of motion of the theoretical contact point P is of the form 

dM f N= −r F τ ,   d
ds

= rτ , 
 

(17.1.15) 

where F is the resultant of the given forces, while M is the mass of the rigid solid S, 
mathematically modelled as a particle (considered to be reduced to the point P); by 
integration, we get  
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2
0 0

1 d d
2

s s
dMv h f N s= + ⋅ −F r , 

 

(17.1.16) 

where [ ]∈ 0,s s  is a curvilinear co-ordinate along the trajectory of the point P. In case 
of a conservative force, we can write 

0
d

s
dT V h f N s+ = − , 

 

(17.1.16') 

where h  is the energy constant. Because the above integral is always positive, it results 
a decrease of the mechanical energy of the rigid solid S  which slides on the surface of 
another fixed rigid solid ′S . This energy is lost, being transformed in a degraded 
energy (e.g., heat). 

But, practically, the contact between rigid solids is not punctual taking place on a 
small part  of the surface, where a process of  deformation takes place (the model of 
rigid is only an approximation); the actions R  of a solid upon the other one are 

distributed on after a unknown law (as a mater fact, even the surface  is, in general, 
difficult to specify). Therefore, assuming some simplifying hypotheses, the torsor of 
these actions at a point ′≡ ∈P P  is determined. 

We assume, further, the rigid model for the two solids, the contact taking place – 
theoretically – at the point ′≡P P ; the action of a solid upon the other will be 
modelled by a torsor (a force and a moment (couple)), applied at the theoretical point of 
contact, the theorem of action and reaction being used. If we suppose, further, that the 
rigid solid ′S  is at rest with respect to an inertial frame of reference ′R , at the point 
P  of the solid S  will act, in general, a constraint torsor { }Pτ R  of resultant R and  
resultant moment PM (see Chap. 3, Sect.. 2.2.12 too). We effect a decomposition, so 

that one component be along the normal to the surface S at P, the other component 
being contained in the plane  tangent to this surface, at the same point; one obtains 
thus = +R N T  and p rP = +M M M  where pM  is the pivoting friction moment 
(along the normal), while rM  is the rolling friction moment (in the tangent plane). As 
well, we notice that the motion of the rigid solid S  with respect to the surface S ′  is 
characterized by a translation of velocity ( )Q tv  and by a rotation of angular velocity 

( )tω  (see Chap. 5, Sect.. 3.3.1 too); analogously, we decompose the angular velocity in 
the form n t= +ω ω ω , where ( )n tω  is the pivoting angular velocity, while ( )t tω  is 
the rolling angular velocity. If the rigid solid  S  is at rest with respect to the frame of 
reference ′R  ( Q =v 0 , = 0ω ), then the inequalities 

T fN≤ ,   rM sN≤ ,   pM aN≤ ,   , , 0f s a ≥ , (17.1.17) 

take place, where f is the (non-dimensional) coefficient of sliding friction, s is the 

rolling friction coefficient, while a is the pivoting coefficient of friction (s and a have 
the dimension of a length), as it has been shown in detail in Chap. 5, Sect.. 3.3.1. In the 
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case in which a sliding, a rolling and a pivoting of the rigid solid  S  on the surface ′S  
take place ( Q ≠v 0 , t ≠ 0ω , n ≠ 0ω ), the inequalities (17.1.17) are replaced by 
equalities, in the form 

Q= −T v ,   r r t= −M ω ,   p p n= −M ω , 

0
Q

N
f
v

= > ,   0r
t

N
s= > ,   0p

n

Na= > . 

 
(17.1.17') 

If one or two of the types of motion mentioned above do not take place, then the 
corresponding relations of equality (17.1.17') are replaced by the inequalities (17.1.17), 
which put in evidence the respective friction phenomena. E.g., if Q ≠v 0 , 

nt = = 0ω ω , then we have a (pure) sliding without rolling and pivoting (the surfaces 
S  and ′S  are perfectly smooth), while if Q =v 0 , t ≠ 0ω , n = 0ω , then we have a 
(pure) rolling without sliding and pivoting (the surfaces S  and ′S  are perfectly rough). 

We have assumed, in the above considerations, that the friction coefficients f, s and a 
are the same both in the static (relations (17.1.17)) and in the dynamic case (relations 
(17.1.17')). 

If one has a contact at several points between the surfaces S  and ′S , then at one of 
these points (let be the point P ) is concentrated the contribution due to the constraint 
forces et each point. As well, if between these surfaces takes place a contact along an 
arc of curve C, then one considers the constraint corresponding to an element ds of the 
curve, the constraint forces being in direct proportion to this element; the contribution 
of all these constraints is obtained calculating the corresponding torsor by integration 
along the arc of curve C. In general, if the surfaces S  and ′S  have in common a part  
of the surface, so that ∈P , the constraint forces are in direct proportion to the 
element of area d , while d d d= +R N T , d d dr pP = +M M M ; the 

torsor of these forces is { } { }d , dP Pτ =R R M , where R and PM  are 

vector functions. 
We assume now that also the rigid solid ′S  (hence, the surface ′S  too) is in motion 

with respect to the inertial frame of reference ′R . In this case, the velocity of the point 
Q, which coincides with ′≡P P  at any moment t , with respect to this frame, is given 
by Q P P P P′ ′= + = +v v w v w  where Pw and P ′w , are the velocities of these points 
with respect to the rigid solids S and ′S , respectively, and one can write 

( )P PP P′ ′− = − −v v w w ; because the second difference is contained in the common 
tangent plane , the difference P P ′−v v  has the same property. As well, if ω and ′ω   
are the instantaneous rotations of the rigid solid S  and ′S , respectively, with respect 
to the frame of reference ′R , then ′ω − ω  is the instantaneous rotation of the rigid 
solid S  relative to the rigid solid ′S . The forces of friction exerted by ′S  upon S  
are expressed also by the torsor { }Pτ R , which is decomposed analogously, being 
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led to the same inequalities (17.1.17). If  a relative sliding, rolling and pivoting takes 
place, then the relations (17.1.17') read  

( )P P′= − −T v v , ( )r r t t′= − −M ω ω , ( )p p n n′= − −M ω ω , , , 0r p > , 
(17.1.18) 

where we have put in evidence the tangential and the normal components of the angular 
velocities. Corresponding to the theorem of action and reaction, the rigid solid S  acts 
upon the rigid solid ′S  by forces the torsor of which is { }, P′ ′R M , so that 

′+ =R R 0 , P P′+ =M M 0 ; as well, the decompositions ′ ′ ′= +R N T , 
p rP′ ′ ′= +M M M , ′+ =N N 0 , ′+ =T T 0 , p p′+ =M M 0 , r r′+ =M M 0  take 

place too. 
The formula (14.1.37) allows to express the elementary work of the forces which rise 

on the contact surface  of the rigid solids S  and ′S  in the form  

( ) ( )d d dP P P PW t t′ ′′ ′ ′= ⋅ + ⋅ + ⋅ + ⋅R v M R v Mω ω   
( ) ( )[ ]dP PP t′ ′= ⋅ − + ⋅R v v M ω − ω ; (17.1.19) 

one  can notice that this work corresponds to the motion of the rigid solid S  with 
respect  to the rigid solid ′S . Decomposing R, PM  and ω so as to obtain the normal 
and the tangential components and observing that ( ) 0P P ′⋅ − =N v v  (the difference  

P P ′−v v  is contained in the plane ), ( )- 0t tP ′⋅ =M ω ω , ( )- 0r n n′⋅ =M ω ω , 
it results 

( ) ( ) ( )[ ]d dr p n nt tP PW t′′ ′ ′= ⋅ − + ⋅ − + ⋅ −MT v v M ω ω ω ω   

( ) ( ) ( )2 2 2 d 0r p n nt tP P t′ ′ ′= − − + − + − <v v ω ω ω ω , 
 

(17.1.19') 

where we took into account the relations  (17.1.18). Hence, the elementary work of the 
friction forces in case of the contact of two rigid solids is negative. Taking into account 
the formula (14.1.37), we get the power of these forces in the form 

( ) ( )P PPP ′′ ′= ⋅ − + ⋅ −ω ωR v v M , (17.1.19'') 

quantity which – obviously – is negative too. 
We mention that, in a first approximation, the effect of the couples of rolling and 

pivoting can be neglected. 

17.1.2.2 Painlevé’s Paradox   
Painlevé called attention to some contradictions in the study of the motion of a non-
homogeneous heavy circular disc, which moves in a vertical plane, laying on a fixed 
rough horizontal straight line; thus, the motion is a plane-parallel one (see Sect. 14.2.2.7 
too). Let be thus a non-homogeneous disc of centre O, radius R and weight Mg, the 

centre of gravity of which is at C, of position vector ρ with respect to a movable frame 
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of reference R  of axes 1 2Ox x  parallel to those of a fixed frame ′R  of axes ′ ′ ′1 2O x x , 

the horizontal axis ′ ′1O x  being tangent to the disc (Fig. 17.6). At the point of contact P 
act the normal constraint force N and the sliding friction force T. The velocity of the 
point C with respect to the frame ′R  is given by C O′ ′ + ×v = v ω ρ , where the 
angular velocity ω corresponds to a positive rotation. 

 
Fig. 17.6  Painlevé’s paradox 

The theorem of motion of the mass centre gives the equation of motion 

( )2
d
d OM v T
t

′ − = ,   ( )1
d
d

M N Mg
t

= − . 
 

(17.1.20) 

As well, the theorem of moment of momentum with respect to a frame of Koenig leads 
to 

( )2 1CI R T N= + − , (17.1.20') 

where = 2
C CI Mi  is the central moment of inertia with respect to an axis parallel to the 

′ ′3O x -axis, while Ci  is the corresponding radius of the gyration. 
Eliminating  between the second equation (17.1.20) and (17.1.20'), we get (we 

mention that ( )= = − = −1 2d cos /d sint ) 

( )[ ]12
2 2 1 0

C

NR T N g
I M

− + + − − + = , 
 

a relation which must take place at the initial moment too. We assume that at this 
moment =1 , =2 0 , the centre C being on the 1Ox -axis; as well, we take 

=0 0  and we consider that 0Ov ′ < , so that =T fN  (we have 0N > ). Hence, at 
the initial moment, the relation 

( )21
C

N fR g
M i

− − =  
 

 

(17.1.21) 
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must take place. 
Assuming that the non-homogeneity is obtained by attaching to a homogeneous disc 

of radius R and mass 0M  a second homogeneous disc of radius r and mass QM  at the 

point Q, situated at the distance a from the centre O, the relation of static moments 
gives ( )Q OM a M− = ; with the aid of the non-dimensional ratio = 0/QM M  it 
results [ ]/(1 ) a= + . According to the Huygens – Steiner theorem (formula 
(3.1.113)), we may write ( ) ( )= + + + − 22 2 2 2

0 /2 /2C QMi M R M r a , 
wherefrom 

( ){ }2 2 2 21 1
1 2 1Ci R r a= + +

+ +
. 

 

We obtain thus the ratio 

( )
( ) ( ) ( )

( ) ( ) ( )

2

2 2 2
1 / /

2
1 1 / 2 /C

f a R a R
fR

i r R a R
+ −

= − =
+ + +

.           (17.1.21') 

We observe that one can find a technical solution so that the subunitary non-
dimensional ratio /r R  be sufficiently small, the subunitary non-dimensional ratio 

/a R  be close to 1/2 , the coefficient of sliding friction be sufficiently great, while the 

non-dimensional ratio  be superunitary, sufficiently great, so that 1> . In this case, it 
results from (17.1.21) that one must have 0N < , contradicting thus the Coulombian 
model of sliding friction. 

F. Klein showed later that the motion considered by Painlevé does not satisfy the 
continuity hypotheses assumed in the Newtonian modelling of mechanics relative to the 
initial conditions. As a matter of fact, at the initial moment intervenes an impulse which 
modifies the static laws assumed for the friction, the deterministic aspect of mechanics 
being thus preserved.   

17.1.2.3 Motion of a Rigid Solid Which Slides Frictionless on a Fixed Plane 

Let us consider a rigid solid S, bounded by the surface S, which slides without friction 
on a fixed plane P, remaining during the motion in contact to this one. We assume that 
the fixed frame of reference ′R  has the axes ′ ′1O x  and ′ ′2O x  contained in this plane, 
the ′ ′3O x -axis being normal to the plane and directed towards the part in which is the 
rigid solid S ; as well, we introduce the movable frame of reference R,  having the 
pole at the mass centre C of the solid and being rigidly linked to it, and the movable 

frame R , with the pole at the same point and the axes parallel to the axes of the frame 
′R . To specify the position of the rigid solid  S, we determine the position of the 

mass C (three parameters ′ ′ ′1 2 3, , ) and the three angles ,  and  of Euler (three 

parameters), which give the position of the frame R  with respect to the frame R . But 
these six parameters are not independent. 
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Indeed, let ( ) =1 2 3, , 0f x x x  be the equation of the surface S with respect to the 
frame of reference R,  while Pr  and r are the position vectors corresponding to the 

contact point P and to an arbitrary point Q of the plane P  (Fig. 17.7), respectively; the 
equation of this plane is written in the form 

( ) grad 0P f− ⋅ =r r . (17.1.22) 

 
Fig. 17.7  Motion of a rigid solid which slides frictionless on a fixed plane 

The rigid solid S being tangent to the plane P, there must exist a point 
( ) ∈1 2 3, ,x x x S  at which the tangent plane be normal to 

( )3 sin sin , sin cos , cos′i , and the relations 

( ),1 ,2 ,3
1 2 3, , ; , ,

sin sin sin cos cos
f f f

x x x= = =  
 

(17.1.23) 

take place. As well, this tangent plane must pass through the pole ′O , so that we must 
have 3 1 sin sinx′⋅ = +r i ′+ = −2 3 3sin cos cosx x . The relations (17.1.23) 
read 

( )1 2 3
3 3

gradgrad , , ; , ,P ff x x x
⋅⋅ = =′ ′⋅ −

rr
r i

. 
 

(17.1.23') 

Eliminating 1 2 3, ,x x x  between the equations (17.1.23), (17.1.23') and taking into 

account the equation of the surface S, we find a relation of the form 

( )3 3 , ,′ ′= , (17.1.24) 

which is – in fact – the constraint relation of the rigid solid S ; hence, only five 
independent parameters are necessary to specify the motion, the rigid solid S  having 
only five degrees of freedom. 
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The theorem of motion of the mass centre, in projection on the ′ ′jO x -axes, 
= 1,2, 3j , reads  

2

2
d
d

M
t

′
′= ⋅R i ,   1,2= ,   

2
3

32
d
d

M N
t

′
′= ⋅ +R i , 

 

(17.1.25) 

 where R is the resultant of the given forces which act upon the rigid solid S ; the 
constraint force N at the contact point P is normal to the plane P, having thus only one 

component N along the ′ ′3O x -axis, which is given by the third equation (17.1.25). The 
theorem of moment of momentum written in the frame  R  with respect to the movable 
axis 3Cx  leads to Euler’s equation 

( )+ − =3 3 2 1 1 2 3CI I I M , (17.1.26) 

where 3CM  is the projection on 3Cx  of the moment with respect to C of the given 
forces and where we notice that the moment of the constraint force R has not a non-
zero component along this axis; as well, projecting the equation given by the theorem  
of moment of momentum on the 3C x -axis (of fixed direction) and noting that 

( )[ ] ( )[ ]3 3d /d d /dC Ct t′ ′⋅ = ⋅ω ωI i I i , we may write 

( )1 1 2 2 3 3 3
d sin sin sin cos cos
d CI I I M
t ′+ + = , 

 

(17.1.26') 

where we have introduced the moment of the given forces with respect to this axis. 
Taking into account the results in Sects. 14.1.1.6 and 14.1.1.7, we can write the theorem 
of kinetic energy in the form 

( )
2

2 2 2
1 1 2 2 3 3

d1 1
d d

2 d 2
M I I I

t
′

′+ + + = ⋅ ρR . 
 

(17.1.27) 

We obtain thus five scalar equations, which do not contain the unknown constraint 
force N, to determine the five independent parameters characterizing the motion of the 
rigid solid S . 

17.1.2.4  Motion of a Heavy Homogeneous Rigid Solid of Rotation Which Slides 
Frictionless on a Fixed Horizontal Plane 

We consider, in particular, the case of a rigid solid S  for which the surface S is of 
rotation with respect to the 3Cx -axis, this axis being – at the same time – an axis of 
symmetry for the corresponding central ellipsoid of inertia. These conditions are 
fulfilled, e.g., by a heavy homogeneous rigid solid of rotation. We represent in Fig. 17.8 
a meridian curve C  of  a rigid solid S,  the point Q being the projection of the mass 

centre C on the fixed plane P. 
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If we denote by   the angle formed by the straight line CQ  with the 3Cx -axis, then 
we can write a relation of the form  

3 ( )f′ = , (17.1.28) 

which is determined by the meridian curve C. Choosing the 1Ox -axis in the considered 
meridian plane, the equation of the tangent PQ  is given by 

1 3sin cos ( )x x f− = . (17.1.29) 

Because the meridian curve C  is the envelope of this tangent, the co-ordinates of the 
contact point P are obtained associating the equation 

1 3cos sin ( )x x f ′+ = , (17.1.29') 

obtained by differentiation with respect to  ; this is just the equation of the straight line 

which passes through P and is parallel to the ′ ′3O x -axis. The distance = PQ  is, in 
this case, given by 

′= ( )f . (17.1.29'') 

 
Fig. 17.8  Motion of a heavy homogeneous rigid solid of rotation which  

slides frictionless on a fixed horizontal plane 

Taking into account that M=R g , corresponding to the own weight of the rigid 
solid S, the equations of motion (17.1.25) of the mass centre read  

2
1

2
d

0
dt

′
= ,   

2
2

2
d

0
dt

′
= ,   

2
3

2
d
d

M Mg N
t

′
= − + . 

 
(17.1.30) 
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Hence, the point Q has a rectilinear and uniform motion in the plane P. 
Firstly, we assume that – at the initial moment – the velocity of the mass centre is 

directed towards the vertical line (along the ′ ′3O x -axis) or vanishes; because the 
horizontal component of this velocity is constant, it results that it will be – further – 
equal to zero. Hence, the point Q  remains fixed, while the centre C oscillates along the 
vertical of this point. 

Applying the theorem of moment of momentum, we notice that C =M 0 . Because 
= =1 2I I J , the equation (17.1.26) leads to =3 0 , hence = =0

3 3 const . As 
well, the equation (17.1.26')  leads to the first integral 

( ) ′′+ + =0
1 2 3 3 3sin sin cos cos CJ I K , 

 

(17.1.31) 

 where 3CK ′′  is the constant component of  the  moment  of  momentum  along  the  

3Cx -axis, in the frame of reference ′R , with respect to the centre C. From (17.1.27) 
we get a conservation theorem of mechanical energy in the form (in the considered 
hypothesis we have ′ ′= =1 2d /d d /d 0t t ) 

( ) ( )
2

23 2 2 0
1 2 3 3 3

d
2 2

d
M J I Mg h

t
′

′+ + + = − + , 
 

(17.1.32) 

where h is the energy integration constant. 
Noting that the relation (17.1.28) allows to write 3d /d ( )t f′ ′= , ( )=d /df f′ , 

and, using the relations (5.2.35), the first integrals (17.1.31), (17.1.32) take the form 
(we associate the third relation (5.2.35)) 

= −2 0
3sin cosa , 

[ ]2 2 2 2sin 1 ( ) ( )cf bf′+ + = − , 

+ = 0
3cos , 

 
 

(17.1.33) 

where we have introduced the notations 

3CK
J

′= , 
( )20

3 32h I
J

−
= , 3 0

I
a

J
= > , 2 2 0Mgb gc

J
= = > , 0Mc

J
= > ; 

we notice that  and  are constants which depend on the initial conditions, while a, b 

and c depend only on the geometry and the mechanical properties of the rigid solid. We 
obtain thus a system of differential equations which determine Euler’s angles 

( )t= , ( )t=  and ( )t= . Eliminating  between the first two equations, 
we get the equation  

[ ] ( )22 2 2 2 0
31 ( ) sin ( ) sin coscf bf a′+ = − − − , 

 

(17.1.34) 
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which  determines t as a function of  by a quadrature; if ( )f  is a rational function of 
sin  and cos  and if we take as a new variable ( )tan /2 , then we obtain a 
hyperelliptic integral. Taking into account the geometric significance of the function 

( )f , specified by the relation (17.1.28), it results that the integral can take only finite 
values. We notice that, for = 0  and = , the function in the second member of the 
equation (17.1.34) takes negative values; for = 0 , at the initial moment, the function 
can take only a positive value, corresponding to a real value of . It results 

01 2< < ,  where 1  and 2  are two real zeros of the mentioned function. Thus, we 
can make for the equation (17.1.34) a study analogous to that in Sects. 15.2.1.1 and 
15.2.1.2. In this context, Puiseux showed that one can choose an initial angular velocity 

0
3  sufficiently great so that ( )t  remain close to 0  at any moment t, the motion of 

the  rigid solid being thus stable. But Thomson showed that supplementary constraints, 
instead to increase the stability of the  rigid solid, could lead to a loss of the stability of 
its motion (the  rigid solid overturns). 

We notice that the straight line QN , normal to the meridian plane, is parallel to the 
line of nodes; in this case, if we use the ′1Ox -axis, parallel to the fixed axis ′ ′1O x , the 

point Q being chosen as pole, then the contact point P will be specified by the polar co-

ordinates  and = + 3 /2 . The first equation (17.1.33) leads thus to the equation 

( )0
32

1
cos

sin
a= − . 

 

(17.1.35) 

Eliminating dt between the equations (17.1.34) and (17.1.35), we find an equation with 

separate variables which gives the angle by a quadrature as a function of the angle ; 

taking into account (17.1.29''), it results a relation which links  to . We obtain thus 

the curve described by the contact point P in the fixed plane P. 

If the mass centre is not projected at a fixed point Q on the plane P, then we observe 
that this point has a rectilinear and uniform motion; we report the relative motion to a 
frame of reference ′ ′ ′1 2 3Qx x x , observing that this frame is inertial too. Hence, the 
relative motion is governed by the same differential equations as the absolute motion; in 
the movable frame, the point Q is fixed, so that the problem is reduced to that studied 
above. 

As an application, one can study Gervat’s  gyroscope (the “equilibrist foot”) 
previously considered in Sect. 16.2.1.1. 

17.1.2.5 Frictionless Motion of a Heavy Gyroscope on a Fixed Horizontal Plane 
The gyroscope is a rigid solid for which the ellipsoid of inertia relative to a fixed point 
of it is of rotation. In our case, the fixed point is the contact point P (at a given 
moment), assuming that the gyroscope is bounded at the vicinity of this point by a 
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smooth surface, e.g., spherical (even if the radius of the respective sphere is very small); 
if the gyroscope is a solid of rotation, then the PC-axis is a principal axis of inertia, 
being just the symmetry axis of it. If =CP l  , then the function ( )f  is given by (Fig. 
17.9) 

( ) cosf l= . (17.1.36) 

As well, we have    

= sinl . (17.1.36') 

 
Fig. 17.9  Frictionless motion of a heavy gyroscope on a fixed horizontal plane 

The initial conditions (at the moment = 0t ) read 

1 2(0) (0) 0= = ,  
0

03 3(0) = = ,  

0(0) = ,   0(0) = ;  

we associate to them (0) 0=  (we use the second relation (14.1.15)) and the constants 
of integration are obtained in the form 

0 033 cosCK I′′ = ,   ( )20 032 2 cosh I Mgl= + ,  

so that 

( )32
0 0sin cos cos

I
J

= − , 

( ) ( )2 2 2 2 2
0

2sin 1 sin cos cosM Mgll
J J

+ + = − . 

 
 

(17.1.37) 
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Finally, the equation (17.1.34) takes the form 

2 2
00 3 02

2 2 2
cos cos cos cos

2 1
2sin sin
I

Mgl
MglJJ Ml

− −
= −

+
. 

 
(17.1.38) 

From the first equation (17.1.37) it results that 0cos cos> , while the relation 
(17.1.38) shows that one must have ( )2 2 2

0 03 cos cos /2 sin 1I MglJ− < . If, at the 
initial moment, we impart to the gyroscope a very great rotation 0 , then we must have 

− <<0cos cos 1 ; taking = +0 , << 1 , it results 0cos cos−  

( )0cos 1 cos= − 0 0sin sin sin+ ≅  and ≅ 0sin sin . The equation 
(17.1.38) becomes 

( )= −2 1 , 
 

(17.1.38') 

where 

0
2 2

0

2 sin
sin

Mgl
J Ml

=
+

,   
2 2

03

02 sin
I

MglJ
= , 

 
(17.1.38'') 

with the initial condition (0) 0= . By integration, using a substitution of the form 
= 2sin z , we get  

( )21 1sin
2

t= , 
 

(17.1.38''') 

whence = = 2 2
max 0 3 01/ 2 sin /MglJ I  has a small value. As in Chap. 15, 

Sect..2.1.2, to can appreciate easier the mode in which the motion of the gyroscope is 
obtained and to determine easier its position, we consider the motion on the unit sphere 
of centre C of the piercing point of the movable axis 3Cx  with the very same sphere; 
one obtains thus, in the motion of nutation, a curve contained in the interior of the 
spherical zone bounded by the circles = 0  and = + max0 , the latter one being 
the inferior circle. The period of motion is given by 2 2/⋅  

( )2 2
0 3 04 sin /J J Ml I= + , being as much smaller as the initial angular 

velocity 0  is greater. We notice that, in fact, the period of motion is in inverse 
proportion to 0 , while the amplitude of the motion  (see the formula (17.1.38''')) is in 
inverse proportion to 2

0 . From the first equation (17.1.37) we get, analogously, 

( )03 2

0 03

2 1sin
sin 2
I Mgl t

J I
= = , 

 

(17.1.39) 
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 wherefrom, by integration, 

( ) 0
03

1( ) sinMglt t t
I

= − + . 
 

(17.1.39') 

Observing that 0 0> , the meridian plane being rotated in the same sense, it results 
that the rotation axis of the gyroscope performs a  motion of precession with an angular 
velocity, which varies periodically between the value zero and a maximal value 

max 032 /Mgl I= . The curve described in the motion of nutation on the unit sphere 
between the circles = 0  and = + max0  is of the nature of the curve in 
Fig. 15.21c, from the corresponding Lagrange-Poisson motion, having cuspidal points 
for = 0  and being tangent to the circle = + max0 . Indeed, if V is the angle 
made by this curve with a meridian circle, then we may write (see Sect. 15.2.1.2 too)  

( )2
2

0 0
0

d 1 1
tan sin sin 1 sin tan

d sin 2
Ml

V t
J

= ≅ = + .     (17.1.40) 

 For = 0  we have = 0 , while – if we take into account (17.1.38''') – it results 
=tan 0V , hence cuspidal points; for → + max0  one obtains → ∞tanV , the 

curve being normal to the meridian circle. 
The point P describes an analogous curve in the plane P  (Fig. 17.9). 

17.1.2.6  Frictionless Motion of a Homogeneous Rigid Solid of Cylindrical Form 
on a Fixed Horizontal Plane 

We consider, analogously, a homogeneous rigid solid S  of cylindrical form, which lays 
on a fixed horizontal plane P  along a generatrix P P′ ′ . The fixed frame of reference 

′R  is linked to the plane P, the ′ ′3O x -axis being normal to it, in the part in which is 
the solid S . The movable frame R  is chosen so that the axes 2 3,Cx Cx  be in the 

median transverse section, which attains the plane P  at the point P; the 1Cx -axis is 
taken parallel to the generatrices of the cylinder (Fig. 17.10). The applicate ′= 3CQ  

of the centre C will be given by a relation of the form (17.1.28) too. We also notice that 

the 1Ox -axis is contained in the plane 1 2Cx x  (we use also a frame of reference R , the 
axes of which are parallel to the axes of the frame ′R ), so that Euler’s angle is 

= 0 ; the relations (5.2.35) become  

1 = ,   2 sin= ,   3 cos= . 
 

(17.1.41) 

The own weight Mg and the constraint forces along the generatrix ′ ′P P  are along 
the direction of the ′ ′3O x -axis. From the theorem of motion of the mass centre, as in the 

preceding cases, it results that the point Q has a rectilinear and uniform motion in the 
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plane P ;  analogously, we can reduce the general case to the case in which the point Q 
is fixed. Observing that the moment of the given and constraint external forces with 
respect to the ′ ′3O x -axis vanishes, we can write a scalar conservation theorem of 
moment of momentum in the form 3 3 constO OK′ ′ ′′ ′ ′⋅ = =K i ; the formulae (14.1.23'), 
(14.1.24'), with 0ρ =  and 3C′ ′v i , lead to CO ′′ =K I ω , so that 

( ) ( )12 1 22 2 23 3 31 1 23 2 33 3 3sin cos OI I I I I I K ′ ′′+ + + + + = , 

where we took into account the relations (5.2.36) with = 0  and so that the axes 
chosen for the frame R  are not, in general, principal axes. Introducing the relations 
(17.1.41) too, we get 

 
Fig. 17.10  Frictionless motion of a homogeneous rigid solid of  

cylindrical form on a fixed horizontal plane 

( ) ( )2 2
12 31 22 33 23 3sin cos sin cos 2 sin cos OI I I I I K ′ ′′+ + + + = . 

(17.1.42) 

We express the kinetic energy of the rigid solid S  with respect to the inertial frame of  
reference ′R  by means of the formulae (14.1.29'), (14.1.30'), with = 0ρ  in the form 

( ) 22 C CT Mv′ ′= ⋅ +Iω ω ; if we take into account also the relations (17.1.41), the 
conservation theorem of mechanical energy leads to the relation 

( )2 2 2 2 2
11 22 33 23( ) sin cos 2 sin cosI Mf I I I′+ + + +  

( )12 312 sin cos 2 ( ) 2I I Mgf h+ + = − + . 

 
 

(17.1.43) 

The differential equations (17.1.42), (17.1.43) allow to obtain Euler’s angles ( )t=  
and ( )t= . Eliminating  between these equations, we get a differential equation 
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with separate variables, which gives the time t as a function of , by a quadrature; 

returning to the equation (17.1.42), we find  as a function of  by a quadrature too. As 
in the preceding cases, one can make a qualitative study of the solution. An interesting 
particular case is that of the heavy homogeneous circular cylinder, case in which the 
points P and Q  coincide, while ( ) constf = . 

Let be now a rigid solid sphere for which the repartition of masses is such that the mass 
centre C is just the centre of the sphere, the corresponding ellipsoid of inertia being a 
sphere ( 11 22 33I I I J= = = ); for the sake of simplicity, we can assume that the 

sphere is homogeneous. We suppose that the sphere of radius l moves without sliding 
on a fixed plane P , taken as ′ ′ ′1 2O x x -plane, the sphere being on that part of the plane 
for which 3 0x ′ > ;  we assume, as well, that the sphere is acted upon by a force F, 

applied at the centre C (which, eventually, includes its own weight too), and by a 

constraint force R, applied at the contact point P (Fig. 17.11). We are in the hypothesis 

in which, at the point P, there does not exist sliding and the moments of rolling and 

pivoting friction can be neglected. The mass centre C moves in a fixed plane, parallel to 

the plane P  and situated at a distance l of it; hence, 3 0C′ ′⋅ =v i . From the imposed 
conditions, it results  P C P′ ′= + × =v v r 0ω   ( P′v  is the velocity of the point of the 

sphere which is in contact with the plane P  at the moment t ), where we use a frame of 
Koenig. From the decomposition 

 
Fig. 17.11  Slidingless motion of a sphere on a fixed plane 

n t= +ω ω ω ,   3 0t ′⋅ =iω ,   3n ′× =i 0ω ,  

we obtain 3tC l′ ′= ×v iω , whence 
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3
1

t Cl
′ ′= ×i vω . 

 

(17.1.44) 

The constraint forces which arise between two rigid solids in contact are of the 
nature of pressures, so that one must have  

3 0′⋅ ≥R i . (17.1.45) 

The theorem of motion of the mass centre gives 

M ′ = +F Rρ , (17.1.46) 

 where M is the mass of the sphere. In Koenig’s frame R , the moment of momentum  

with respect to the centre C is C J=K ω , so that the corresponding theorem of 
moment of momentum reads 

PJ = ×r Rω . (17.1.47) 

Using the decomposition of the vector ω and taking into account (17.1.46), we also can 
write 

( )3n tJ l M J′ ′= × − −i Fω ρ ω .  

Because the second member of this relation is a vector parallel to the fixed plane P , it 
results n = 0ω . Hence, the pivoting angular velocity nω , is constant, so that it can be 
specified by the initial conditions. The given force F can be decomposed, as well, in the 
form nt= +F F F , with 3 0t ′⋅ =F i , 3n ′× =F i 0 , so that we get 

3 3t tJ Ml l′ ′ ′+ × = ×i i Fω ρ , . Taking into account (17.1.44), we obtain, finally, the 
equation of motion of the mass centre in the form  

( )3 3 t
J Ml l
l

′ ′ ′× + = ×i i Fρ .  

 Because ′ =3 const , hence ′ =3 0 , it results that the centre of mass C moves as a 
particle of reduced mass = + 2

0 /M M J l , acted upon only by the given force tF , 
hence corresponding to the equation 

0 tM ′ = Fρ . (17.1.48) 

The angular velocity vector is then given by 

3
1

n l
′ ′= + ×iω ω ρ ,   constn =ω . 

 

(17.1.49) 

The constraint force 
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( )2
0

1
n

JM
M l

= − +R F F  
 

(17.1.50) 

is given by (17.1.46), (17.1.48). The condition (17.1.45) leads thus to the condition  

3 0n ′⋅ ≤F i , (17.1.45') 

which must be fulfilled by the given force F; the mechanical interpretation of this 
condition is obvious. The conditions which ensure that the motion is without sliding 
must be also fulfilled. 

 
Fig. 17.12  Slidingless motion of a homogeneous sphere of  

weight Mg  on a plane inclined with the angle  

In particular, let us consider a homogeneous sphere of weight Mg, which moves 

slidingless on a plane inclined with the angle  with respect to the horizontal line. 
Observing that ( )= 22/5J Ml , ( )=0 7/5M M , 1sint Mg ′= −F i , where 1′i  is the 
unit vector of the line of greatest inclination of the plane in an ascendant orientation 
(Fig. 17.12), we can write the equation (17.1.48) in the form 

1
5 sin
7

g′ ′= − iρ . 
 

(17.1.51) 

Hence, the motion of the centre C is uniformly accelerated, the plane trajectory (in the 
fixed plane ′ =3x l )  being rectilinear or parabolical, corresponding to the initial 
conditions. The formula (17.1.50)  gives the constraint force in the form 

1 3
2

sin cos
7

Mg ′ ′= +R i i . 
 

(17.1.52) 

Because  

cosN Mg= ,   2 sin
7

T Mg= ,  
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the motion takes place without sliding if the angle  verifies the condition 

( ) ( )≤ =tan 7/2 7/2 tanf , where f is the coefficient of sliding friction. 

We notice that in the equation (17.1.51) does not intervene the radius l of the sphere 
S . As small would be this radius, the homogeneous sphere S , which rolls without 
sliding on an inclined plane, cannot be assimilated to a particle; indeed, in case of  a 
particle the equation of motion is 1- sing′ ′=r i . 

17.1.2.8 Motion of a Heavy Homogeneous Sphere on a Fixed Horizontal Plane 

Let us consider a sphere S , the mass centre C of which coincides with the centre of the 

sphere, of radius l and weight Mg, which moves with friction on the horizontal plan P. 
As till now, we  choose the axes ′ ′1O x  and ′ ′2O x  in the plane P , the ′ ′3O x -axis being 

directed towards the part in which is the sphere S  (Fig. 17.13). At the contact point P 
acts a constraint force having the component N along the normal to the plane P and the 
component T contained in this plane. We use a movable frame of reference R  with the 
centre at C, rigidly connected to the solid, the axes of which are specified by Euler’s 

angles with respect to a frame R  of Koenig. We neglect the moments of rolling and 
pivoting friction. 

 
Fig. 17.13  Motion of a heavy homogeneous sphere on a fixed horizontal plane 

The equation of motion of the mass centre C is  

M M′ = + +g N Tρ , (17.1.53) 

the motion of rotation about this centre being specified by  
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PJ = ×r Tω . (17.1.54) 

Noting that ′ = =3 constl , it results that M + =g N 0  and M=N g , wherefrom 
T fMg=  during the sliding; as a matter of fact, during this motion one must have a 
relation of the form P′= −T v , where ( )t=  is a positive scalar. The equations 
(17.1.53), (17.1.54) are reduced to 

M ′ = Tρ , (17.1.53') 

3tJ Ml ′ ′+ ×i 0ω ρ = ,   n = 0ω . (17.1.54') 

The velocity of the contact point P of the sphere is given by 
( )3 3tP C Cl l′ ′ ′ ′ ′= + × − = ×v v i v iω − ω , so that it results 

( )
2 2

3 3 3 1tP C
Ml Mll
J J

′ ′ ′ ′ ′ ′ ′ ′= × = + × × = +v v i i i− ω ρ ρ ρ  

2 21 1
P

l l
M J M J

′= + = − +T v . 

 

Assuming that the sphere is homogeneous, one can write 

7 ( )
2P Pt
M

′ ′= −v v . 
 

(17.1.55) 

Hence, the velocity P′v  has a fixed direction of unit  vector 2′i  (we  choose  the  
′ ′2O x -axis so that to be parallel to this fixed direction, without any loss of generality). 

As well, the constraint force T will have a fixed direction; because = constT , it 
results 2 constfMg ′= − =T i  too. Integrating the equation (17.1.55), we get 

( )0
0 2

7
( )

2P Pt v fg t t′ ′ ′= − −v i . 
 

(17.1.55') 

We notice now, from the equation (17.1.53'), that the acceleration ′ρ  of the mass centre 
is constant in time, its trajectory being rectilinear or parabolical in the plane ′ =3 l , 
corresponding to the initial conditions; indeed,  

( ) ( )2 0 0
0 022 C

fg t t t t′ ′ ′ ′− − + − +i vρ = ρ . 
 

(17.1.56) 

The angular velocity vector is given by the equations (17.1.54')  in the form 

( ) 0
0 1( )t t

fMglt t t
J

′− − +iω = ω ,   0
n n=ω ω . 

 

(17.1.57) 
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The magnitude Pv ′  of the velocity of the point P with respect to the frame of 
reference ′R  decreases in time till vanishing at the moment ( ) ′= + 0

1 2/7 /Pt t v fg , 
so that ( )1P t′ =v 0  and 1( )t =T 0 . Hence, the motion of the sphere takes place with 
sliding, after the laws established above for [ ]∈ 0 1,t t t ; for ≥ 1t t  the motion takes 
place with rolling and pivoting but without sliding, corresponding to the results in the 
preceding subsection. We notice that we must make t =F 0   in (17.1.48), while 

0 constC′ ′ =vρ =  in (17.1.49); it results that the motion of the mass centre C  becomes 
rectilinear and uniform, the angular velocity vector ω being constant in time (in space 
and with respect to the sphere) . 

Let us choose the axes 1 2 3, ,Cx Cx Cx  of the non-inertial frame of reference R  so 
that the 3Cx -axis be after the fixed support of the vector = 0ω ω ;  from Euler’s 
equations (5.2.35), it results  

cos sin sin 0+ = ,   sin sin cos 0− + = ,   0cos+ = .  

The determinant of the coefficients of the first two equations is sin ; if ≠ 0 , then it 
results = = 0 , while the third equation gives = 0 . We get = 0 , = 0 , 

( )= − +0 0 0t t  corresponding to the initial moment. 
Coriolis observed that the equations (17.1.54') do not depend on the constraint force 

T, taking place at any moment t (immaterial on the phase of motion); by integration, we 
can write 

0
3C

Ml
J

′ ′= × +v iω ω ,   0 const=ω , 
 

(17.1.58) 

 
as well as 

( )0
3C

J
Ml

′ ′= ×v i ω − ω . 
 

(17.1.58') 

 
Choosing a point ( )0,0, /Q J Ml  over the mass centre C, so that ( ) 3/Q J Ml ′=r i , it 

results ( ) 0
3/ constQ C Q J Ml′ ′ ′= + × = × =v v r iω ω  ; the vector 0ω  depends on 

the initial conditions. In the second phase of the motion we have P′ =v 0 , hence  

3C l′ ′= ×v iω . (17.1.59) 

Replacing in (17.1.58'), we obtain  

0
3

0
C

J
M l

′ ′= ×v iω ,   0 2
J

M M
l

= + . 
 

(17.1.59') 
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From (17.1.58') and (17.1.59'), one sees that – by sliding – the sphere S  moves away 
from the pole ′O , in the first phase of the motion, and then comes near to the very same 
pole, by rolling  and pivoting without sliding. 

In the first phase of the motion takes place the holonomic constraint relation 

′ =3 l , (17.1.60) 

the sphere S  having − =6 1 5  degrees  of freedom. In the second phase of the motion 
one has the relation (17.1.59), hence 1 21 d /dCv t l′ ′ ′= = , 2 12 d /dCv t l′ ′ ′= = −  
(after the axes of the frame of reference ′R ); taking into account (5.2.35'), there 
results two constraint relations of the form 

( )1d sin d sin cos d 0l′ − − = , 
( )2d cos d sin sin d 0l′ + + = . 

 
(17.1.60') 

Assuming that one can write an integrable relation of the form ( )1 2, , , , 0f ′ ′ = , 
imposing the condition d 0f =  and taking into account (17.1.60'), we get 

1
sin 0f fl∂ ∂+ =′∂ ∂

,   
1 2

sin cos sin 0f f fl∂ ∂ ∂− + =′ ′∂ ∂ ∂
,   ∂ =

∂
0

f . 

A partial differentiation of the first two relations with respect to , where we took into 
account the third relation, leads to  

1 2
cos sin 0f f∂ ∂+ =′ ′∂ ∂

,   
1 2

sin sin cos 0f f∂ ∂− =′ ′∂ ∂
. 

 

It results ′ ′∂ ∂ = ∂ ∂ =1 2/ / 0f f one obtains then ∂ ∂ = ∂ ∂ =/ / 0f f  too. The 

function f depends on no one of the five variables; it results that one cannot determine 
any integrable form, starting from the constraint  relations (17.1.60'). Hence, these 
relations are non-holonomic constraints. One can obtain this result also by using the 
Theorem 3.2.1 of Frobenius. Thus, the sphere S  remains only with ( )− + =6 1 2 3  
degrees of freedom. The above results are verified, e.g., in case of the billiard ball. 

17.1.2.9 Slidingless Motion of a Heavy Circular Disc on a Fixed Horizontal Plane 

Let be a heavy rigid solid S,  the centre of gravity C of which coincides with its centre, 

bounded by a contour C  of  radius l, which allows a motion without sliding  on a fixed 
horizontal plane P ; we assume that the central ellipsoid of inertia is of rotation about 
an axis 3Cx  normal to the plane of the contour C ( 1 2I I J= = ). The fixed frame of 
reference ′R  has the axes ′ ′1O x  and ′ ′2O x  contained in the plane P, while the ′ ′3O x -
axis is directed along the ascendent vertical; the frame 1 2 3Cx x x  is a frame of Koenig. 
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We draw the horizontal line of nodes CN, normal to the plane formed by the axes 3Cx  
and 3Cx ; the ′CN -axis, normal to the line of nodes, is situated along the line of 
greatest slope of the plane of the contour C . The movable frame of reference R , 
rigidly connected to the solid S, is specified – with respect to the frame R  – by 
Euler’s angles ,  and . Upon the rigid solid S  acts  the own weight Mg, at the 

centre C, and the constraint force R, at the contact point P; the moments of rolling and 
pivoting friction are neglected (Fig. 17.14). 

 
Fig. 17.14  Slidingless motion of a heavy circular disc on a fixed horizontal plane 

We notice that the angular velocity vector will be given by 3′ + iω = ω , where ′ω  

corresponds to the instantaneous rotation of the movable frame R , of axes CN,  CN ′  
and 3Cx , with respect to the fixed frame ′R ; the components of these vectors along 
the axes of the frame R  , will be 

′= =1 1 ,  ′= =2 2 sin ,  3 2cos cot′ = = ,  = +3 cos . 

The equation of motion of the mass centre 

( )C CM M′ ′ ′+ × = +v v g Rω  (17.1.61) 

is written in the form 

              ( )[ ]2 11 3 2 cotC C CM v v v R′ ′ ′+ − = ,  

( )2 1 22 1 3cot sinC C CM v v v Mg R′ ′ ′+ − = − + , 
 

(17.1.61') 
              ( )1 2 33 2 1 cosC C CM v v v Mg R′ ′ ′+ − = − + ,  
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with respect to the frame R . Because the rigid solid S  has a central ellipsoid of 
inertia of rotation, the moment of momentum with respect to the centre C, in the frame 

R , will have the components 11CK J= , 22CK J= , 3 33CK I= ; Euler’s 
equations 

( ) CC C C′ × = +I I M Mω + ω ω  
 

(17.1.62) 

can be written (we have C =M 0  and C P= ×M r R , the components of the vector 

Pr  in the frame R , being 0, −l, 0) 

( )1 3 3 2 2 3cotJ I J lR+ − = − ,  

( )2 3 3 2 1cot 0J I J− − = , (17.1.62') 

=3 3 1I lR ,  

in the frame R . 
The rigid solid S  is rolling and pivoting without sliding on the plane P   only if the 

velocity P C P′ ′= + ×v v rω  of its contact point P vanishes; in components on the axes 

of the frame R , it results  

′ + =31 0Cv l ,   ′ =2 0Cv ,   ′ − =13 0Cv l . (17.1.63) 

We get thus nine equation (17.1.61'), (17.1.62'), (17.1.63) for the unknowns Cjv ′ , j  

and jR , = 1,2, 3j . 
Eliminating the velocity of the mass centre between the equations (17.1.61') and 

(17.1.63), we obtain 

                         ( )− = −3 1 2 1Ml R ,  

( )2
1 2 3 2cot sinMl Mg R+ = − , (17.1.64) 

                         ( )1 2 3 3cosMl Mg R+ = − + .  

We can eliminate 1R  between the last equation (17.1.62') and the first equation 
(17.1.64); it results ( )2 2

3 3 1 2 0I Ml Ml+ − = . Associating the second equation 

(17.1.62') and using the relation 1 = , we get 

( ) 32 2
3 2

d
0

d
I Ml Ml+ − = , 

( )2
3 3 2

d
cot 0

d
J I J− − = . 

 
 

(17.1.65) 

This system of differential equations determines the functions 2 2 ( )= , 

3 3 ( )= . The first equation (17.1.65) gives  
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3 3
2 2

d
1

d
I

Ml
= + . 

 

(17.1.66) 

Replacing in the second equation (17.1.65), we find the resolvent equation of the 
problem in the form  

( )
2 2

3 3 3
32 2

3

d d
cot 0

dd
Ml I

J I Ml
+ − =

+
. 

 
(17.1.67) 

The constraint at P being scleronomous, the elementary work of the constraint forces 
vanishes; the conservation theorem of the mechanical energy gives  

( ) ( )2 2 2 2 2 2
1 2 3 3 31 2 3 2 2C C CM v v v J I Mg h′ ′ ′ ′+ + + + + = − + . 

 

(17.1.68) 

Taking into account (17.1.63) and the relation ′ =3 sinl , we can also write  

( ) ( )+ + + + = +2 2 2 2 2
1 2 3 3 2 sin 2J Ml J I Ml Mgl h . 

 

(17.1.68') 

After determination of the components 2 2 ( )=  and 3 3 ( )= , this equation 
allows the calculation of the component =1 . As a matter of fact, this equation is of 
the form 2 ( )= ; its discussion can be made as in the previous cases. It results, 
finally, ( )j j t= , 1,2, 3j = ; from (17.1.63), we obtain ( )Cj Cjv v t′ ′= , while 

(17.1.61') gives the components jR , = 1,2, 3j , of the constraint force.   

Making the change of variable =2cos s , the problem is reduced to the 
hypergeometric Euler-Gauss differential equation 

( ) ( )[ ]
2

3 3
32

d ( ) d ( )
1 1 ( ) 0

dd
s s

s s s s
ss

− + − + + − = , 
 

(17.1.69) 

with 

1
2

+ = ,   
( )

2
3

2
3

Ml I
J I Ml

=
+

,   1
2

= . 
 

(17.1.70) 

The general solution of this equation depends on two constants of integration  and  
and is expressed by means of the hypergeometric function in the form 

( ) ( )1
3 ( ) , , ; 1 , 1 ,2 ;s F s s F s−= + + − + − − . 

 

(17.1.69') 

In the particular case in which the rigid solid is a homogeneous circular disc of mass 
M and radius l (e.g., a coin), we have = 2 / 4J Ml  and = 2

3 /2I Ml , so that 

= 1/3 , and if the rigid solid is a torus of mass M and of radius (of its axis) l, 
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considered reduced to its axis, then we have = 2 /2J Ml  and = 2
3I Ml , wherefrom  

= 1/4 . Obviously, a and  have imaginary values and we can write 

( ) ( )2 2
3

1 1 1 3( ) , , ; cos cos , , ; cos
2 2 2 2

F F= + + + . 
 

(17.1.71) 

By a change of variable of the form =cos s , Korteweg obtains an equation of the 
form (17.1.69) too, with 

1+ = ,   
( )

2
3

2
3

Ml I
J I Ml

=
+

,   1= . 
 

(17.1.70') 

In the particular case of the torus, = 1/4 , so that = = 1/2 , obtaining the 
solution 

( )=3
1 1( ) , ,1;cos
2 2

F , 
 

(17.1.71') 

which depends only on one arbitrary parameter. 
If we take into account 

( ) 1cos sin sinj j′ ′ ′= = +i iω  

( ) 2sin sin cos ′+ − i ( ) 3cos ′+ + i , 
( )1 2 3cos sin cos cos sinP l ′ ′ ′= − −r i i i , 

 

the condition C P′ + × =v r 0ω  leads to the constraint relations 

( )′ + − + =1 cos cos sin sin cos 0l ,  

( )′ + + + =2 cos sin sin cos sin 0l , 
 

(17.1.72) 

3 cos 0l′ − = .  

The last relations is holonomic, obtaining the obvious relation =3 sinl , by 
integration. The first two relations can be written, by simple linear combinations, in the 
equivalent Pfaff forms 

( )1 2cos d sin d cos d d 0l′ ′+ + + = , 

1 2sin d cos d sin d 0l′ ′− − =  

 
(17.1.72') 

too, which are not integrable, the corresponding constraints being non-holonomic. The 
rigid solid S  remains thus with ( )− + =6 1 2 3  degrees of freedom. 
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 MECHANICAL SYSTEMS, CLASSICAL MODELS 

17.2 Motion with Discontinuities of the Rigid Solids. Collisions 
The problem of motion with discontinuities of the discrete mechanical systems has be 
considered in Chap. 13, §1. In what follows, we will complete these results in case of 
the rigid solids, studying the general phenomenon of collision of two arbitrary rigid 
solids as well as some interesting particular cases. We put in evidence also the motion 
of a rigid solid subjected to the action of a percussive force. 

17.2.1 Percussion of Two Rigid Solids 
After some general considerations concerning the phenomenon of collision, we present 
a basic particular case: the centrical or the oblique collision of two spheres. We 
consider then some technical applications which are of interest, as well as the general 
case of collision of two rigid solids. 

17.2.1.1 General Considerations on the Phenomenon of Collision 
The general considerations in Sect. 13.1.1.1 concerning the phenomenon of collision in 
case of a discrete mechanical system of particles remain valid in case of a discrete 
mechanical system of rigid solids. The basic problem which is put consists in the 
determination of the velocities of the points of the rigid solids after collision, assuming 
that the corresponding velocities before this mechanical phenomenon are known. As 
well, we mark out a phase of compression and a phase of relaxation (restitution), so 
that the model of rigid solid is no more sufficient. We use, further, the notion of 
percussion, as it has been defined in Chap. 10, Sect.. 1.2.3, starting from the notions of 
force and impulse of the generalized force. 

Using the results in Sect. 13.1.1.3 and Sect. 14.1.2.1, we can put in evidence the 
jump relations corresponding to the discrete mechanical system S  of rigid solids, 
reported to an inertial frame of reference ′R  and subjected to the action of given and 
constraint, external and internal, percussive and non-percussive forces. By a process of 
passing to limit in the sense of the theory of distributions, we express the theorems of 
momentum and of motion  of the mass centre in the form 

( ) ( )0 0CMΔ = Δ = +H v R R , 
 

(17.2.1) 

where ( )0ΔH  and ( )0CΔv  represent the jumps of the momentum of the mechanical 

system S  and of the velocity of the mass centre C of this system, respectively, at a 
moment of discontinuity, while by R and R  one has denoted the resultants of the given 
and constraint external percussions, respectively, which act upon this system at that 
moment. 

The corresponding jump relation of the moment of momentum will be  

( )0 OO OΔ = +K M M , 
 

(17.2.2) 

where one has denoted by ( )0OΔK  the jump of the moment of momentum of the 

mechanical system S , with respect to the fixed pole O, at a moment of discontinuity, 
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while OM  and  OM  are the resultant moments of the given resultant percussions and of 
the constraint external percussions, respectively, which act upon this system, with 
respect to the very same pole, at that moment. 

These results can be expressed synthetically in the form of a theorem of torsor, 
which maintains its form with respect to a movable pole Q too. As well, this theorem 
can be stated also with respect to a non-inertial frame of reference, in a continuous 
motion with respect to an inertial frame; the basic equations of the mathematical model 
of the collision phenomenon do not need a privileged frame. In the phenomenon of 
collision of the considered mechanical system S , the jump relations are thus invariant 
to a change of frame or pole. 

The theorems of Carnot and Kelvin in Sect. 13.1.1.5 can be applied also in the case 
of the mechanical system S  considered above. 

If + = 0R R  in an interval of collision, then it results ( )0Δ =H 0  and 
( )0CΔ =v 0 , hence the momentum of the mechanical system S  and the velocity of the 
mass centre of this system, respectively, are conserved in this interval. As well, if  

OO + = 0M M  in an interval of collision, then  ( )0OΔ =K 0 , so that the moment of 
momentum of the system remains constant in the respective interval. 

Obviously, the above results take place also in the case of a single rigid solid S  
subjected  to  constraints.  We  mention  that  the  constraints  can  be  of   four  types:  
(i) constraints  which  take place before the collision interval, in this interval or after it; 
(ii) constraints which take place only in the collision interval or after it; (iii) constraints 
which take place only before the collision interval or in this interval; (iv) constraints 
which take place only in the collision interval.  

Referring to a non-inertial frame of reference with the pole at the mass centre, the 
jump relations (17.2.2) becomes 

( )0 CC CΔ = +I ω M M , 
 

(17.2.3) 

 where we have put in evidence the jump of the rotation angular velocity vector in the 
percussion interval. We can write, in components,  

( )0ij j Ci CiI M MΔ = + ,   1,2, 3i = , (17.2.3') 

for a rigid solid. If the axes of the considered frame of reference are just the central 
principal axes of inertia of the rigid solid S , then we have 

( )1 1 1 10 C CI M MΔ = + , ( )2 2 2 20 C CI M MΔ = + , ( )3 3 3 30 C CI M MΔ = + . 
(17.2.3'') 

In case of a rigid solid S  with a fixed point O, taken as pole of a non-inertial frame 
of reference R , we have ( )C′ × + × ×v = ω ρ ω ω ρ  with respect to an inertial frame 

′R ; it results that ( ) ( )00C′Δ = Δ ×v ω ρ , so that the theorem of motion of  the mass 
centre (17.2.1) takes the form 
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( )0M Δ × = +ω ρ R R . 
 

(17.2.4) 

Analogously, in case of a rigid solid S  with a fixed axis, specified by the fixed 
points ′O  and 1O , the equations (14.2.1), (14.2.1') read 

( ) 12 1 110M R R R′− Δ = + + ,  
( ) 21 2 120M R R R′Δ = + + , 

 

(17.2.5) 
′= + +3 3 130 R R R ,  

( )31 1210 OI M lRΔ = − ,  
( )23 1120 OI M lRΔ = + , (17.2.5') 

( )33 30 OI MΔ = ,  

 where jR  are the components of the given percussions, while jR′ , 1 jR , = 1,2, 3j , 
are the components of the constraint percussions at the fixed points ′O  and 1O , 
respectively. 

17.2.1.2 Centric Collision of Two Spheres 

Let be two rigid spheres 1S  and 2S  of masses 1m  and 2m , the centres 1O  and 2O  of 
which have the velocities 1′v  and 2′v , respectively (we assume that 1 2v v′ ′> , otherwise 
the spheres can never be in collision), along the line 1 2O O  (Fig. 17.15,a); after 
collision, the corresponding velocities will be 1′′v  and 2′′v , respectively, and must be 
determined (Fig. 17.15b). Because external percussions are not involved, we apply the 
conservation theorem of momentum (the phenomenon is one-dimensional, so that there 
intervene only the components of the velocities along the 1Ox -axis, taking the 
respective fixed pole on the line of the centres) 

 
Fig. 17.15  Centric collision of two spheres: (a) before and (b) after collision 

′ ′ ′′ ′′+ = +1 1 2 2 1 1 2 2m v m v m v m v
 

(17.2.6) 
 

A second relation necessary to solve the problem (we have two unknowns: 1′′v  and 

2′′v ) is obtained by a mathematical modelling corresponding to the mechanical 
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phenomenon. We consider thus a first phase of compression ( [ )0,t t t′∈ ) which takes 
place as long as the velocity of the centre 1O  is greater than the velocity of the centre 

2O , lasting till the equalization of the two velocities ( 0t t= ). The corresponding 
percussions of this phase is ( ) ( )0 0

1 1 2 2cP m v v m v v′ ′= − = − , where 0v  is the 
common velocity; it results 

1 1 2 20

1 2

m v m v
v

m m
′ ′+

=
+

,   
( )1 2 2 1

1 2
c

m m v v
P

m m
′ ′−

=
+

. 
 

(17.2.7) 

In the phase of relaxation ( ( ]0 ,t t t ′′∈ ), the velocity of the centre 1O  continues to 
decrease till ′′1v , and the velocity of the centre 2O  increases till ′′2v ; the percussion 
corresponding to this phase is ( ) ( )′′ ′′= − = −0 0

1 1 2 2rP m v v m v v , so that  

1 1 2 20

1 2

m v m v
v

m m
′′ ′′+

=
+

,   
( )1 2 2 1

1 2
r

m m v v
P

m m
′′ ′′−

=
+

. 
 

(17.2.7') 

Introducing also the coefficient of restitution  (coefficient of elasticity by collision) 

2 1

1 2

r

c

v vPk
P v v

′′ ′′−
= = ′ ′−

, 
 

(17.2.8) 

we obtain the second relation, which is added to the relation (17.2.6). Finally, we can 
write 

( ) ( )2
1 1 1 2

1 2
1

m
v v k v v

m m
′′ ′ ′ ′= − + −

+
, 

( ) ( )1
2 2 1 2

1 2
1

m
v v k v v

m m
′′ ′ ′ ′= + + −

+
 

 
 

(17.2.9) 

and one observe that 1 2v v′′ ′′< ,  the spheres moving away one from the other. 
In the case in which = 1k  (hence, =r cP P ), the two spheres are compressed in the 

first phase, returning then to the initial form; there corresponds a phenomenon of elastic 
collision, the velocities after it being given by 

( )[ ]1 2 2 1 2 1
1 2

1 2v m v m m v
m m

′′ ′ ′= + −
+

, 

( )[ ]2 1 1 1 2 2
1 2

1 2v m v m m v
m m

′′ ′ ′= − −
+

. 

 
 

(17.2.9') 

If = 0k  (hence, = 0rP ), then the relaxation phase takes no more place; the spheres 
adhere to each other and remain glued together, so that  

( )1 2 1 1 2 2
1 2

1v v m v m v
m m

′′ ′′ ′ ′= = +
+

. 
 

(17.2.9'') 
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The respective phenomenon is called plastic collision. Between these two limit cases 
(for 0 1k< < ) the spheres return practically to their initial forms, the phenomenon 
being a natural collision (an elastic-plastic collision). 

Taking into account (17.2.9), the loss of kinetic energy ( ( )0T T T′ ′′= −  
( ) ( )2 2 2 2

1 1 2 2 1 1 2 2/2 /2m v m v m v m v′ ′ ′′ ′′= + − + ) is given by 

( ) ( ) ( )20 2
1 2

1 1
2

T k m v v′ ′= − − ,    
1 2

1 1 1
m m m

= + . 
 

(17.2.10) 

In case of an elastic collision, we have ( )0 0T = , the phenomenon taking place 
without loss of kinetic energy; in case of a plastic collision, we find again the formula 
(13.1.77). The lost kinetic energy is transformed in work of deformation, in caloric or 
luminous energy etc. 

If 1 2m m=  (it is not necessary that the spheres be identical), we get 

( ) ( )[ ]1 1 2
1 1 1
2

v k v k v′′ ′ ′= − + + ,   ( ) ( )[ ]2 2 1
1 1 1
2

v k v k v′′ ′ ′= − + + . 
 

(17.2.9''') 

In case of an elastic collision, it results 1 2v v′′ ′=  and 2 1v v′′ ′= , the spheres transmitting 
the energy each other. In particular, if 2 0v ′ = , then we have 1 0v ′′ =  too; hence, if an 
elastic sphere 1S  strikes, with a velocity 1v ′ , another elastic sphere 2S , having the 
same mass and being at rest with respect to a given inertial frame of reference, then it 
transmits to the latter one its velocity 1v ′  and then stops. 

17.2.1.3 Technical Applications 

A particular case of the problem considered at the preceding subsection, interesting for 
technical applications, is that of the plastic collision of a sphere 1S  of mass 1m  and 
velocity 1v  with another sphere 2S  of mass 2m , at rest with respect to a given frame of 
reference. If we make 2 0v ′ =  in (17.2.9''), then we obtain 

1
1 2 1

1 2

m
v v v

m m
′′ ′′ ′= =

+
. 

 

(17.2.11) 

As well, the relation (17.2.10) reads 

( )0 2
1

1
2

T mv ′= . 
 

(17.2.11') 

The relative loss of kinetic energy with respect to the kinetic energy before collision 
( ( ) 2

1 11/2T m v ′= ) will be 

( )0 2

1 2 1 2

1
1 /

mT
T m m m m

= =
+ +

. 
 

(17.2.11'') 

These results of theoretical nature (the considered mathematical modelling) can be 
successfully used for different technical applications, e.g., in case of beating a nail with 
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a hammer ( 1m  is the mass of the hammer, 2m  is the mass of the nail, while 1v ′  is the 
velocity with which the hammer beats the nail) or in case of beating a pilot with a 
rammer ( 1m  is the mass of the rammer, 2m  is the mass of the pilot, while 1v ′  is the 
velocity with which the rammer beats the pilot). It is important, in both cases, that the 
relative loss of kinetic energy be as small as possible; one observes, from (17.2.11''), 
that the ratio 1 2/m m  must be as great as possible, hence the mass of the hammer (or 
the rammer) must be much more greater than the mass of the nail (pilot). 

In case of a process of working up a piece (bending, adjustment, rivetting etc.) it is 
useful a greater loss of kinetic energy, which is transformed in work of deformation. 
The ratio ( )0 /T T  is as greater as the ratio 1 2/m m  is smaller, so that the hammer 
must have a small mass 1m , while the piece to be worked up must have a great mass 

2m . Thus, the piece to be worked up is put on a bench (e.g., an anvil), increasing thus 
the mass 2m . As well, in case of rivetting, the rivet head bears on a special metallic 
piece (a rivetting knob), increasing much its mass 2m . 

17.2.1.4 Oblique Collision of Two Spheres 

Let be once more the two spheres 1S  and 2S , of centres 1O  and 2O  and masses 1m  
and 2m , the centres of which have the velocities 1′V  and 2′V , respectively (with respect 
to a given fixed frame of reference); the supports of these velocities are no more 
directed along the line of the centres and have the components 1′v  and 2′v  ( 1 2v v′ ′> ) 
along this line and the components 1′u  and 2′u  normal to it (Fig. 17.16a). After 
collision, these velocities become 1 1 1′′ ′′ ′′= +V v u , 2 2 2′′ ′′ ′′= +V v u , the notations 
corresponding to the precedent ones (Fig. 17.16b). If 1  and 2  are the angles made 
by the velocities 1′V  and 2′V , respectively, with the line of centres, there results 

 
Fig. 17.16  Oblique collision of two spheres: (a) before and (b) after collision 

1 1 1cosv V′ ′= ,   1 1 1sinu V′ ′= ,   2 2 2cosv V′ ′= ,   2 2 2sinu V′ ′= .  
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Assuming that at the contact of the two spheres intervene internal forces, hence 
internal percussions, only along the direction of the centres (we neglect the friction 
forces and the corresponding percussions), we can use the results in Sect.. 2.1.2 
(especially the formulae (17.2.9) (for 1v ′  and 2v ′ ), to which we associate the relations 

1 1u u′′ ′= , 2 2u u′′ ′= . In this case, 

2 2
1 1 1V v u′′ ′′ ′= + ,   2 2

2 2 2V v u′′ ′′ ′= + , 
 

(17.2.12) 

the angles made by the velocities 1′′V  and 2′′V  with the line of centres being given by 

1 2 1 11
1

1 1 2 1 1 2 2 2

( ) sin
tan

( ) cos (1 ) cos
m m Vu

v m km V k m V
′′ +

= =′′ ′ ′− + +
, 

1 2 2 22
2

2 1 1 1 2 1 2 2

( ) sin
tan

(1 ) cos ( ) cos
m m Vu

v k m V m km V
′′ +

= =′′ ′ ′+ + −
, 

 
 

(17.2.12') 

respectively. 
As well, the formulae (17.2.9) lead to 

1 2 1 1 2 2 2
1

1 2 1

( ) cos (1 ) cos
( )cos

m km V k m V
V

m m
′ ′− + +′′ =

+
, 

1 1 1 2 1 2 2
2

1 2 2

(1 ) cos ( ) cos
( )cos

k m V m km V
V

m m
′ ′+ + −′′ =

+
; 

 
 

(17.2.12'') 

using (17.2.10), the loss of kinetic energy reads 

( ) ( )20 2
1 1 2 2

1( ) 1 cos cos
2

T k m V V′ ′= − − ,   
1 2

1 1 1
m m m

= + . 
 

(17.2.12''') 

 
Fig. 17.17  Collision of a sphere with a fixed wall 

In particular, let us consider a limit case in which one of the spheres is replaced by a 
fixed wall P, to which a sphere S  strikes at the point P with a velocity ′ ′ ′= +V v u , 

which makes an angle  with the normal component ′v  (Fig. 17.17). 
Neglecting the friction, the component ′u  of magnitude sinu V′ ′=  is not 

modified; the component ′v  of magnitude cosv V′ ′=  changes of direction after 
collision, becoming ′′v  of magnitude v kv′′ ′=  (corresponding to the relation (17.2.8), 
where we make 2 2′ ′′= =v v 0 , the wall being fixed). We find thus 
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2 2 2 cossin cos
cos

V V k kV V′′ ′ ′ ′= + = ≤ ,   1tan tan
k

= , 
 

(17.2.13) 

where  is the angle made by the velocity ′′V  with the normal to the plane P  (see the 
analogous relations (13.1.21'), (13.1.21'') too; because 1k < , it results ≥ . Hence, 
by the collision of a sphere S  with a fixed wall P, the velocity decreases in magnitude, 
while the velocity vector moves away from the normal to the wall. In case of an elastic 
collision, we have 1k = ; one obtains V V′′ ′=  and = , finding again Huygens’s 
laws of reflection of the light photon which hits obliquely a mirror (the velocity 
maintains its magnitude, while the angle of reflection is equal to the angle of incidence). 

Another mathematical model has been built up by I. posu in 1991; he supposed 
that, besides (17.2.8), one has 

2 1

2 1

u u
k

u u
′′ ′′−

= ′ ′−
 

 

(17.2.8') 

too. He obtained thus 

1 2 1 1 2 2 2
1

1 2 1 1 2 2 2

( ) sin (1 ) sin
tan

( ) cos (1 ) cos
m km V k m V
m km V k m V

′ ′+ + −
= ′ ′− + +

, 

1 1 1 2 1 2 2
2

1 1 1 2 1 2 2

(1 ) sin ( ) sin
tan

(1 ) cos ( ) cos
k m V m km V
k m V m km V

′ ′− + +
= ′ ′+ + −

, 

 
 

(17.2.14) 

results identical with the classical ones for 1k =  (elastic collision). The velocities after 
collision are 

1 2 1 1 2 2 2
1

1 2 1

( ) cos (1 ) cos
( )cos

m km V k m V
V

m m
′ ′− + +′′ =

+
 

1 2 1 1 2 2 2

1 2 1

( ) sin (1 ) sin
( )sin

m km V k m V
m m
′ ′+ + −

=
+

, 

1 1 1 2 1 2 2
2

1 2 2

(1 ) cos ( ) cos
( )cos

k m V m km V
V

m m
′ ′+ + −′′ =

+
 

1 1 1 2 1 2 2

1 2 2

(1 ) sin ( ) sin
( )sin

k m V m km V
m m

′ ′− + +
=

+
, 

 
 
 
 

(17.2.14') 

their components being given by 1 1 1cosv V′′ ′′= , 2 2 2cosv V′′ ′′= , 1 1 1sinu V′′ ′′= , 

2 2 2sinu V′′ ′′= . The loss of kinetic energy becomes 

[ ]0 2 2 2
1 2 1 2 1 2

1( ) (1 ) 2 cos( )
2

T k m v v v v′ ′ ′ ′Δ = − + − − , 
 

(17.2.14'') 

vanishing in the elastic case ( 1k = ), as in the classical model. 
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One can show that the components of the velocities normal to the line of centres 
remain constant, as in the classical case, if 1 2u u′ ′= , that is if the velocities of the two 
spheres have the same inclination on the above mentioned line. 

17.2.1.5 Collision of a Sphere with a Rigid Solid in Rotation About a Fixed Axis 

Let be a rigid solid S, which is in rotation about a fixed axis, having a moment of 
inertia I with respect to it; we suppose that this solid is hit by a sphere S  of mass m, in 

a plane perpendicular to the axis (which contains the pole O of the axis and the centre 

O  of the sphere), along the common normal at the point P (Fig. 17.18). We denote by 
′v  and ′′v  the velocities of the point P before and after collision, respectively, with 

respect to a fixed frame of reference with the pole at O; the magnitudes of these 

velocities, which make the angle  with the normal at the point P, will be v r′ ′= , 
v r′′ ′′= , with r OP= , where ′ω  and ′′ω  are the angular velocity vectors, before 
and after collision, respectively. 

 
Fig. 17.18  Collision of a sphere with a rigid solid in rotation about a fixed axis 

In case of the mechanical system formed by  S  and S  appear only the external 
constraint percussions at the points of the rotation axis; the moment of the percussions 
with respect to this axis vanishes, so that we can write a conservative theorem of the 
moment of momentum in the form 

I mv l I mv l′ ′ ′′ ′′+ = + , (17.2.15) 

where l is the distance from the point O to the common normal at the point P. We 
notice that 

cos cosv r l′ ′ ′= = ,   cos cosv r l′′ ′′ ′′= =   

are the components of the velocities ′v  and ′′v , respectively, along this normal. Taking 
into account the study made in Sect. 17.2.1.2, we introduce the coefficient of restitution 
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(to fix the ideas, we assume that cosv v′ ′> ; otherwise, both the signs of the 
denominator and of the numerator change) 

cos
cos

v v l vk
v v v l
′′ ′′ ′′ ′′− −= =′ ′ ′ ′− −

. 
 

(17.2.16) 

The relations (17.2.15), (17.2.16) lead to 

( ) ( )21 Iv v k v l
I ml

′′ ′ ′ ′= − + −
+

,   ( ) ( )21 mlk v l
I ml

′′ ′ ′ ′= + + −
+

. 

 (17.2.17) 

As well, the loss of the kinetic energy will be given by 

( ) ( ) ( )20 2
2

1 1
2

ImT k v l
I ml

′ ′= − −
+

. 
 

(17.2.18) 

The elastic collision ( 1k = ) takes place without loss of kinetic energy; in exchange, 
the natural collision ( 0 1k< < ) takes place with loss of kinetic energy, which is 
maximal in case of a plastic collision ( 0k = ), being given by 

( )
( ) ( )20

22
ImT v l

I ml
′ ′= −

+
. 

 

(17.2.18') 

17.2.1.6 Collision of Two Arbitrary Rigid Solids 

Let us consider now two rigid solids 1S  and 2S  of masses 1M  and 2M  and mass 
centres 1C  and 2C , respectively, which are in collision at the moment 0t , the point of 

impact being P (Fig. 17.19). We denote by 
1C′v  and 

2C′v  and 
1C′′v  and 

2C′′v , the 
velocities of the mass centres before and after collision, respectively, with respect to a 
given fixed frame of reference ′R ; in this case, the theorem of motion of the mass 
centre (the formula (13.1.24'')), applied to each rigid solid, gives 

 
Fig. 17.19  Collision of two arbitrary rigid solids 

( )1 11 C CM ′′ ′− = −v v P ,   ( )2 22 C CM ′′ ′− =v v P , 
 

(17.2.19) 
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where P is the percussion, applied at the point P, by which the rigid solid 1S  acts upon 
the rigid solid 2S . As well, if 

1C′K , 
2C′K  and 

1C′′K , 
2C′′K , are the angular momenta of 

the two solids with respect to the corresponding mass centres, in the movable frames 
 1R  and 

 2R , rigidly linked to the respective solids, with the poles at these centres, 
before and after collision, respectively, then we can write the theorem of moment of 
momentum (the formula (13.1.25)) with respect to each centre of mass, in the 
mentioned frames, in the form 

1 1 1C C′′ ′− = − ×K K r P ,   
2 2 2C C′′ ′− = ×K K r P , 

 

(17.2.19') 

where 1 1C P=r , 2 2C P=r ; we obtain thus four vector equations (17.1.25), (17.1.25') 
(12 scalar equations) for the five vector unknowns 1′′v , 2′′v , 

1C′′K , 
2C′′K  and P (15 

scalar unknowns). 
We assume that at the contact point P do not appear constraint percussions, the 

solids 1S  and 2S  being perfectly smooth, and we can write 

P=P n ,   0P > , (17.2.20) 

where n is the unit vector of the common normal at the point P, with the sense from the 
solid 1S  to the solid 2S ; thus, the number of the scalar unknowns is reduced to 13. 
Otherwise, it is necessary to introduce supplementary hypotheses concerning the 
phenomenon of friction (we can introduce, e.g., a Coulombian sliding friction). 

The velocities of the points 1P  and 2P  of the solids 1S  and 2S , respectively, which 

coincide with the point P at the theoretic moment of impact, are expressed, with respect 
to the fixed frame of reference ′R , in the form 

1 1 1 1P C= + ×v v rω ,   
2 2 2 2P C= + ×v v rω , 

 

(17.2.21) 

where 1ω  and 2ω  are the angular velocities of the frames 
 1R  and 

 2R , respectively, 
with respect to the frame ′R . The relative velocity of the point 1P  with respect to the 
point 2P  will, obviously, be ( )− ⋅v v n

1 2P P , hence a velocity of compression, 
corresponding to the respective phase (the interval of time [ )0,t t′ ); the respective 
velocity vanishes at the end of the phase and we may write ( )1 2

0 0 0P P− ⋅ =v v n , so 
that the common velocity at the theoretic moment 0t  will be 

1 2
0 0 0

P P= ⋅ = ⋅v v n v n . 
 

(17.2.22) 

As well, the equations (17.2.19), (17.2.19') read 

( )1 1
0

1 cC CM P′− = −v v n ,   ( )2 2
0

2 cC CM P′− =v v n , 
 

(17.2.23) 
( )

1 1
0

1 cC C P′− = − ×K K r n ,   ( )
2 2

0
2 cC C P′− = ×K K r n . 

 

(17.2.23') 
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These four vector equations, together with the scalar equation (17.2.22), where we take 
into account (17.2.21), allow to determine the velocities 

1
0
Cv , 

2
0
Cv  and the angular 

momenta 
1

0
CK , 

2
0
CK , at the end of the phase of compression; in these relations, we take 

into account that the angular momenta 
1C′K , and 

2C′K  are expressed as functions of the 
rotation angular velocity vectors 1′ω  and 2′ω , respectively, so that the number of the 
unknown vectors is not great. 

The velocity 0v  of the point P at the end of the compression phase (the moment 0t ) 
is given by (13.2.22), the corresponding percussion being 

( ) ( )1 1 2 2
0 0

1 2c C C C CP M M′ ′= − ⋅ = − ⋅v v n v v n . 
 

(17.2.24) 

By introducing the coefficient of restitution k, the percussion corresponding to the 
restitution phase will be given by r ck=P P , so that ( )1c r ck= + = +P P P P  or 

( )1 k P= + cP n , (17.2.25) 

the percussion P being entirely determined. Replacing in (17.2.19), (17.2.19'), the 
problem can be completely solved. 

One can show that, in case of an elastic collision ( 1k = ), the kinetic energy is 
conserved ( 0( ) 0TΔ = ). 

17.2.1.7 Theorems of Extremum 

Let be a discrete system S  of particles iP , of masses im , driven by the velocities i′v  
and i′′v  before and after collision, respectively, and acted upon by the given and 
constraint percussions iP  and RiP , 1,2,...,i p= , respectively. These particles can be 
rigid solids too, modelled as particles, for which we assume that the rotation angular 
velocities have not jumps in the interval of percussion. We can write the theorem of 
momentum in the form 

( )i i i i Rim ′′ ′− = +v v P P ,   1,2,...,i p= , 
 

(17.2.26) 

for each particle; effecting a scalar product of these equations by the arbitrary vectors 
iw , 1,2,...,i p= , and summing, we get 

( ) ( )
1 1

p p

i i i i i iRi
i i

m
= =

′′ ′− ⋅ = + ⋅v v w P P w . 
 

(17.2.26') 

We notice that this relation is of the form of the principle of virtual velocities (the 
formula (13.1.57')). 

The mechanical system S  can be subjected to constraints which are maintained 
during the application of the percussions, can appear suddenly or can disappear in this 
interval of time (as it has been shown in Sect. 17.2.1.1). If iw  are velocities which 
satisfy the constraint relations, then the relation 
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1
0

p

iRi
i =

⋅ =P w  
 

(17.2.27) 

corresponding to the relation which defines the ideal constraints, takes place. 
If we take into account (17.2.27) and assume that 

1
0

p

i i
i =

′′⋅ =P v  
 

(17.2.28) 

for i i′′=w v , then it results 

( )
1

0
p

i i i i
i

m
=

′′ ′ ′′− ⋅ =v v v . 
 

We can write 

( ) ( ) ( )22 2

1 1 1

1 1
2 2

p p p

i i i i i i i i i i
i i i

T T m v v m m
= = =

′ ′′ ′ ′′ ′′ ′ ′′ ′ ′′− = − = − − − ⋅v v v v v . 
 

Introducing the kinetic energy of the lost velocities, we get 

( )0 0 0T T= >  
 

(17.2.28') 

and we can state 
Theorem 17.2.1 (Carnot, I) If upon a discrete mechanical system S  does not act any 
given percussive force, then the sudden apparition of a constraint leads to a loss of 
kinetic energy. 

This theorem can be put in connection with the Theorem 13.1.5. 
If we assume that i i′=w v  and that 

1
0

p

i i
i =

′⋅ =P v , 
 

(17.2.29) 

then it results 

( )
1

0
p

i i i i
i

m
=

′′ ′ ′− ⋅ =v v v , 
 

where we took into account (17.2.27). We can write 

( ) ( ) ( )22 2

1 1 1

1 1
2 2

p p p

i i i i i i i i i i
i i i

T T m v v m m
= = =

′′ ′ ′′ ′ ′′ ′ ′′ ′ ′− = − = − + − ⋅v v v v v , 
 

so that 
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( ) 00 0T T= > , (17.2.29') 

and we may state 
Theorem 17.2.2 (Carnot, II) An internal “explosion” in a non-deformable discrete 
mechanical system S  leads to a “tearing” of its rigidity, with an increase of the kinetic 
energy. 

As a matter of fact, by “explosion” we intend the action of an internal percussive 
force, which leads to an increase of the distance between the particles, the mechanical 
system becoming deformable (the distances between two arbitrary particles do no more 
remain constant in time). This result can be put in connection with the Theorem 13.1.6. 

Let be a discrete mechanical system S  at rest with an inertial frame of reference; we 
assume that one applies percussive forces upon some of the particles iP , so that these 
particles have prescribed velocities i′′v . Let us consider, as well, a possible motion, 
which satisfies the constraints of the system, the considered particles having the 
velocities iv . Let us denote i i i′′= −w v v  and let us suppose that i i′′=v v ; in this 
case 

1
0

p

i i
i =

⋅ =P w , 
 

(17.2.30) 

because i =w 0  for the particles mentioned above, while i =P 0  for the other 
particles. Observing that the relation (17.2.27) takes, as well, place and assuming that 

i′ =v 0 , the relation (17.2.26') reads 

( )
1

0
p

i i i i
i

m
=

′′ ′′⋅ − =v v v  
 

and we have 

( ) ( ) ( )22 2

1 1 1

1 1
2 2

p p p

i i i i i i i i i i
i i i

T T m v v m m
= = =

′′ ′′ ′′ ′′ ′′ ′− = − = − − ⋅ −v v v v v , 
 

so that 

( )0 0 0T TΔ = > ,   ( )0T T T ′′Δ = − ,   ( )20
1

1
2

p

i i i
i

T m
=

′′= −v v ; 
 

(17.2.30') 

we can thus state 
Theorem 17.2.3 (Kelvin)  If a discrete mechanical system S, at rest with respect to an 
inertial frame of reference, at the initial moment, is put in motion by percussive forces 
which act upon some of its particles, so that to these particles are impressed prescribed 
velocities, then the corresponding kinetic energy is smaller than the kinetic energy of 
any possible motion which satisfies the constraints of the system, the considered 
particles having the same prescribed velocities. 
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Let i′v  an i′′v  be the velocities of the particles of a mechanical system S , with the 
general significance previously given (the velocities before and after the application of 
the percussive forces, respectively, assuming that the system is subjected to certain 
constraints); in case of the existence of supplementary constraints, consistent with the 
motion of the system S  before the collision, the application of the same percussive 
forces leads to the velocities iv  after the percussion interval. For i i=w v  takes place 
a relation of the form (17.2.27) in both situations; indeed, in the second case intervene 
only supplementary constraint forces. The relation (17.2.26') leads to 

( )
1 1

p p

i i i i i i
i i

m
= =

′′ ′− ⋅ = ⋅v v v P v ,   ( )
1 1

p p

i i i i i i
i i

m
= =

′− ⋅ = ⋅v v v P v ; 
 

subtracting the two relations one from the other, we obtain 

( )
1

0
p

i i i i
i

m
=

′′ − ⋅ =v v v . 
 

(17.2.31) 

We can write 

( ) ( ) ( )22 2

1 1 1

1 1
2 2

p p p

i i i i i i i i i i
i i i

T T m v v m m
= = =

′′ ′′ ′′ ′′− = − = − + − ⋅v v v v v , 
 

so that 

( ) 00 0T TΔ = > ,   ( ) ( )00T TΔ = − Δ , 
 

(17.2.31') 

with the notations in (17.2.30'); we state 
Theorem 17.2.4 (Bertrand )  The kinetic energy corresponding to the application of 
some percussive forces upon a discrete mechanical system S, in motion with respect to 
an inertial frame of reference, is greater than the kinetic energy corresponding to the 
application of the same percussive forces upon the same initial motion, assuming that 
supplementary constraints, consistent with the mentioned motion, have been 
introduced. 

17.2.2 Motion of a Rigid Solid Subjected to the Action of a Percussive 
Force 

In what follows we consider the motion of a free or constraint rigid solid (with a fixed 
axis or with a fixed point) subjected to the action of a percussive force or suddenly 
fixed; the results thus obtained will be applied to the ballistic pendulum. 

17.2.2.1 Motion of a Rigid Solid with a Fixed Axis Subjected to the Action 
of a Percussive Force. Centre of Percussion 

Let us consider a rigid solid S  with a fixed axis  (specified by the fixed points O ′  

and 1O , situated at a distance l one of the other). We choose a fixed frame of reference 
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′R  with the 3O x′ ′ -axis along 1O O′  and a movable frame R  with the pole O on the 

fixed axis (in general, O distinct from O ′ ) and with the 3Ox -axis along 1OO  too (Fig. 
17.20). We obtain thus the jump relations (17.2.5), (17.2.5'), corresponding to the 
theorems of momentum and moment of momentum. We find thus the jump of the 
angular velocity 

 
Fig. 17.20  Motion of a rigid solid with a fixed axis subjected  

to the action of a percussive force 

3
0

33
( ) OM

I
Δ = , 

 

(17.2.32) 

as well as the components of the constraint percussions 

23
11 2 3

33

1
O O

I
R M M

l I
= − − ,   23 3

1 1 22 3
33 33

1 O
O O

MI
R R M M M

l I I
′ = − + − − , 

31
12 1 3

33

1
O O

I
R M M

l I
= − ,   31 3

2 2 11 3
33 33

1 O
O O

MI
R R M M M

l I I
′ = − − − + . 

 (17.2.32') 

The other two components remain non-determinate, because one can know only their 
sum ( 3 13 3R R R′ + = ); the rigid solid is statically indeterminate from this point of 
view. 

Let be the case in which upon the rigid solid S  acts only one percussive force, 
which leads to the percussion P ( i iR P= , 1,2,3i = ). The problem is put to find the 

conditions in which the constraint percussions at O and 1O  vanish (jerks do not appear 
in the axis of rotation); we must have 1 0iiR R ′= = , 1,2,3i = . In the first case, it 
results 3 0P = , so that the percussion must be normal to the axis of rotation. We 
choose the 1Ox -axis parallel to P, so that to have 2 0P = , hence 1P P= . To simplify 
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the calculation, we assume that the percussion P is applied  at  the  point  Q  on  the  

2Ox -axis; it results 1 2 0O OM M= =  too. From (17.2.32') we find the conditions 

31 23 0I I= = , 1 0= . Hence, the percussion P must be normal to the 2 3Ox x -plane, 

which contains the mass centre C. As well, the axis of rotation must be a principal axis 

of inertia at the point O at which the plane which contains the percussion and is normal 
to the axis is pierced by it. 

We notice that 

0
2

( ) P
M

Δ = − , 
 

(17.2.33) 

corresponding a loss or an increase of angular velocity, as 1P  and 2  have the same 
sign or are of opposite signs. Because 3OM P= −  (in the hypothesis 1 0P > ), where 

OQ= , Q being on the half-straight line 2Ox  (Fig. 17.20), the relations (17.2.32), 
(17.2.33) lead to ( 3i  is the gyration radius corresponding to the axis of rotation) 

2
33 3

2 2

I i
M

= = , 
 

(17.2.34) 

the position of the point Q, called centre of percussion, being thus specified. Using the 
Huygens-Steiner theorem, the formula (3.1.113') allows to write 2 2 2

3 2Ci i= + , where 

Ci  is the gyration radius corresponding to an axis which passes through the centre of 

mass C and is parallel to the rotation axis; in this case, 

2 2l= + > ,   
2

2

Cil = , 
 

(17.2.34') 

the centre of percussion being farther from the axis of rotation than the centre of mass. 
In fact,  is the length of the mathematical pendulum synchronous with the physical 
pendulum, formed by the rigid solid which is in rotation about the fixed axis 3Ox ′ . All 
the results obtained in Sect. 14.2.1.2 for the physical pendulum can be adapted to the 
problem considered above. For instance, to a fixed axis 3Qx  (parallel to the 3Ox -axis), 
which is the principal axis of inertia for the rigid solid S, corresponds the percussion 
centre O. We can thus state 

Theorem 17.2.5 If the fixed axis  of a rigid solid S, which is in rotation, is a 

principal axis of inertia for a point O of it, then any percussion normal to the meridian 

plane P  of the mass centre C (plane determined by the axis  and the centre C) at a 

point of it, situated on a normal at O to the axis , at the distance  of it and on the 

same part with the centre C, does not give constraint percussions on the axis . 
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Hence, to any straight line , principal axis of inertia at a point O of a rigid solid, 

corresponds a centre of percussion Q, so that on the axis , as axis of rotation, do not 
arise any constraint percussion. In particular, in case of a plate, to any straight line in 
the plane of the plate corresponds a centre of percussion. 

One can put also the inverse problem: The centre of percussion Q being given, it is 

asked to determine the position of the axis  (of rotation) which is not acted on by the 
phenomenon of collision. For instance, a blacksmith which strikes the anvil with the 
hammer (at the point Q) knows, instinctively, how to take the hammer so that not to 

feel at the palm (at the point Q) a too great shock (the point O is the point at which the 

axis  pierces the plane in which the hammer is rotating). 

17.2.2.2 The Ballistic Pendulum 

The ballistic pendulum is a device intended to measure the velocity of the projectiles, 
formed by a metallic cylinder (e.g., of pig iron) filled up with a soft and viscous 
material (e.g., earth); it is fixed at a point O ′  and oscillates about a horizontal axis 

3O x′ ′ , its position being specified by an angle  made with the descendent vertical 

1O x′ ′ . The 1 2O x x′ ′ ′ -plane is a plane of symmetry of the mechanical system S, passing 

through the mass centre C, situated at the distance 1′  from the pole O ′ . At the initial 
moment, the mechanical system S  is at rest with respect to the frame of reference ′R . 
A projectile of mass m, launched horizontally, at the distance 1 l′= +  from the 
fixed point O ′ , in the plane of symmetry, with the velocity v, strikes the pendulum and 
remains fixed at the point Q ′  (specified by the angle    made  by  O Q′ ′   with  the  

1O x′ ′ -axis and by O Q l′ ′ ′= ), on the horizontal of the point Q of the 1O x′ ′ -axis (Fig. 
17.21). The problem is put to determine the velocity v if the angle 0

max= , 
corresponding to the oscillations of the physical pendulum, is known. 

The percussions between the projectile and the pendulum are internal and the 
moment at O ′  of the percussions of the 3O x′ ′ -axis vanishes, so that we can apply a 
conservation theorem of moment of momentum of the mechanical system S  formed by 
the pendulum and the projectile. The moment of momentum before the interval of 
collision is mv , after collision being equal to ( )2

0I ml ′+ , where I is the moment of 
inertia with respect to the 3O x′ ′ -axis, while 0  is the angular velocity of the 
mechanical system S ; equating these angular momenta, we get 

0 2
mv

I ml
=

′+
. 

 

(17.2.35) 

To the mechanical system S  one can apply the theorem of moment of momentum 
with respect to the 3O x′ ′ -axis in the form 
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( )[ ]2
1

d sin sin( )
d

I ml Mg mgl
t

′ ′ ′+ = − − + ,  

M being the mass of the pendulum; multiplying by =  and integrating, there results 
the relation 

( ) ( ) [ ]{ }2 2 2
0 12 (1 cos ) cos cos( ) 0I ml g M ml′ ′ ′+ − + − + − + = , 

 (17.2.36) 

corresponding to the theorem of kinetic energy, where, at the initial moment of this 
motion (which coincides to the end of the interval of percussion), we imposed the 
conditions 0=  and 0= . 

 
Fig. 17.21  The ballistic pendulum 

Making 0=  and 0= , we obtain 

0 0 0
2
0 12

4 sin sin sin
2 2 2

g M ml
I ml

′ ′= + +
′+

, 
 

(17.2.37) 

wherefrom 

( )2 0 0 0
2

12 2

4
sin sin sin

2 2 2
g I ml

v M ml
m

′+
′ ′= + + . 

 
(17.2.38) 

We notice that cosl ′ = . 
If the projectile stops at the point Q on the 1O x′ ′ -axis, then we have 0= , so that 

0
1

0 22 sin
2

M m
I m

′ +
=

+
, 

 
(17.2.37') 
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the velocity of the projectile being 

( )
0

2
1

2 ( ) sin
2

v g M m I m
m

′= + + . 
 

(17.2.38') 

The angle 0  is measured experimentally on an indicator dial. 
We observe that, in the given conditions, the 3O x′ ′ -axis is a principal axis of inertia. 

The pendulum is not acted upon by percussions on its axis of suspension (to have an as 
small as possible wear of the device in running) if the projectile remains fixed at the 
centre of percussion, hence at the point Q, so that 2

1 /i I M′ = = . We find thus 

( )
0

1
2 sin

2
gv M m

m
′= + . 

 
(17.2.39) 

17.2.2.3 Motion of a Rigid Solid with a Fixed Point Subjected to the Action 
of a Percussive Force 

Let be a rigid solid with a fixed point O O ′≡ , subjected to the action of a percussive 
force, which leads to the percussion P applied at the point Q; at the fixed point appears 
a constraint percussion RP . We denote by ′ω  and ′′ω  the rotation angular velocities 
before and after the interval of collision, respectively. The theorem of moment of 
momentum with respect to the frame of reference R  reads 

0( )O OΔ =I ω M ,   0( ) ′′ ′Δ = −ω ω ω , 
 

(17.2.40) 

the moment of the percussion RP  vanishing, while OM  is the moment of the percussion 
P (eventually, the resultant moment of a certain number of given external percussions). 
Projecting on the principal axes of inertia corresponding to the point O, it results 

( ) 1
1 0

1

OM
I

Δ = ,   ( ) 2
2 0

2

OM
I

Δ = ,   3
3 0

3
( ) OM

I
Δ = , 

 

(17.2.40') 

obtaining thus the jumps of the angular velocity. The equation of motion of the mass 
centre (17.2.4) allows to express the components of the constraint percussion in the 
form 

2 3
1 3 21

2 3

O O
R

M M
P P M

I I
= − + − , 

3 1
2 1 32

3 1

O O
R

M M
P P M

I I
= − + − , 

1 2
3 2 13

1 2

O O
R

M M
P P M

I I
= − + − . 

 
 
 
 

(17.2.41) 
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Introducing the ellipsoid of inertia E, given by the equation (15.1.63), we can 
consider the plane which passes through the fixed point O and the moment OM , of 
equation 

1 2 31 2 3 0O O OM x M x M x+ + = ,  

which can be written in the form 

( ) ( )1 1 1 2 2 2 3 3 0 30 0 ( ) 0I x I x I xΔ + Δ + Δ =  
 

(17.2.42) 

too. The diameter conjugate to this plane, with respect to the ellipsoid E, will be of 
equations 

( ) ( ) ( )
1 2 3

1 2 30 0 0

x x x
= =

Δ Δ Δ
, 

 

(17.2.42') 

representing just the support of the vector 0( )Δωω . 
Hence, if we draw a plane tangent to the ellipsoid of inertia E, normal to the 

direction of the resultant moment OM  of the given percussions (taken with respect to 
the fixed point O), the jump of the angular velocity vector 0( )Δωω  will be situated along 
the position vector of the tangent point (conjugate diameter of the considered plane). If, 
before the interval of collision, the rigid solid S  is at rest ( ′ = 0ω ), then, after the 
action of the percussive forces, this solid begins to rotate about the support of the 
position vector of that point of the ellipsoid E  at which the tangent plane is normal to 
the resultant moment of the percussions, with respect to the fixed point O. The 
connection between the considered mechanical phenomenon and the geometric aspect 
given by Poinsot to the Eulerian case of motion of a rigid solid with a fixed point is thus 
put in evidence. 

17.2.2.4 Motion of a Free Rigid Solid Subjected to the Action of a Percussive Force 

Let us consider a free rigid solid S, subjected to the action of a percussive force, which 
leads to the percussion P applied at the point Q. We denote by C′v , C′′v  and ′ω , ′′ω  

the velocities of the mass centre C and the rotation angular velocities of the rigid solid 
about this point, with respect to an inertial frame of reference ′R , before and after the 
interval of percussion, respectively. The equations (17.2.1), (17.2.3) read 

( )0CM Δ =v R , 
 

(17.2.43) 

0( )C CΔ =I ω M ; 
 

(17.2.43') 

we can thus calculate easily the jumps ( )0C C C′′ ′Δ = −v v v  and 0( ) ′′ ′Δ = −ω ω ω . We 
get 

( )0
1

C M
Δ =v R , 

 

(17.2.44) 
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as well as (we use the central principal axes of inertia of the rigid solid S ) 

1
1 0

1
( ) CM

I
Δ = ,   2

2 0
2

( ) CM
I

Δ = ,   3
3 0

3
( ) CM

I
Δ = . 

 

(17.2.44') 

Obviously, these results can be applied in case of an arbitrary number of external 
percussions too. 

17.2.2.5 Motion of a Rigid Solid Subjected Suddenly to a Fixation 

One can study an inverse problem too: a rigid solid S  has an arbitrary motion; if, at a 
given moment, one of its points is suddenly fixed, then the velocities of all points will 
have jumps, intervening also the effect of unknown constraint forces. In this case too, 
one must determine the velocities after fixing. 

For instance, let us consider a rigid solid with a fixed point O ′  and let us assume 
that, at a given moment 0t , a second point 1O  is fixed, so that the rigid solid S  moves 

now as a solid with a fixed axis. If 1versO O′=u , then we can write 
( )0 0O ′Δ ⋅ =K u , ( )0O O O′ ′ ′′′ ′Δ = −K K K  (putting in evidence the moment of 
momentum after and before the collision, respectively), because the moment of the 
constraint percussion which arises at 1O  vanishes in projection on the fixed axis 1O O′ . 

After the fixation of the point 1O , we will have O I′′′ ′′⋅ =K u , where I is the moment 
of inertia with respect to the new axis of rotation, while ′′  is the corresponding 
angular velocity. We can write OO ′′ ′=K I ω , where ′ω  is the angular velocity before 
fixation, with respect to an inertial frame of reference ′R  with the pole at O O ′≡ . 

Thus, takes place the relation 

( )O I′ ′′⋅ =I uω , 
 

(17.2.45) 

which determines the angular velocity ′′ω  (the initial velocity for the motion after 
fixation); in a developed form, after the principal axes of inertia at O, we have 

1 1 1 2 2 2 3 3 3I u I u I u I′ ′ ′ ′′+ + = . 
 

(17.2.45') 

The motion is studied further using the results obtained in case of the rigid solid with a 
fixed axis. 

17.3 Applications in Dynamics of Engines 

After some general results with a theoretical character concerning the dynamics of 
engines, we deal with some applications concerning their running; we mention, 
especially, the equilibration of the movable masses and the regulation of the working of 
engines. 
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17.3.1 General Results 

We call engine (machine) a set of mechanisms (a mechanical system S, formed by n 
rigid solids, eventually deformable, jS , 1,2,...,j n= ), which perform prescribed 
motions, with the goal to realize a useful work or to transform a mechanical energy. A 
machine is formed, in general, by three parts: the driving mechanism, the transmission 
gear and the mechanism of execution. 

In the following, we present firstly some elements of kineto-statics, putting in 
evidence the forces of inertia which act upon the engines. As well, we introduce some 
mechanical quantities (reduced mechanical quantities), which can characterize the 
motion of a machine in its totality (mass, moment of inertia, force, power). 

17.3.1.1 Forces of Inertia which Act Upon the Machines. Elements  
of Kineto-Statics 

Upon a machine act: (i) given forces (which are external and known), as driving forces, 
forces of technological resistance, forces of weight, forces of inertia, resistance of the 
medium etc. and (ii) unknown forces, e.g., constraint forces in kinematic couples, forces 
of friction, forces of balancing etc. They can depend on position, velocity and time or 
only on some of these factors. 

At the small devices, with reduced velocities, the forces of inertia can be – in general– 
neglected, unlike the big devices (with great velocities), to which they can have 
values of the same order of magnitude as that of the external forces. Let be 

{ } { },O O′ ′τ =F R M  and { } { }i i i,O O′ ′τ =F R M  the torsors of the given and inertia 
forces, respectively, with respect to a fixed pole O ′ , for an element of the device (of 
the mechanical system S ). Corresponding to d’Alembert’s theorem 11.1.26, we can 
write 

{ } { }i
O O′ ′τ + τ =F F 0 ,   i + =R R 0 ,   i

O O′ ′+ =M M 0 . 
 

(17.3.1) 

Taking into account the universal theorems of mechanics, it results 

i d
dt

′
= − HR ,   i d

d
O

O t
′

′
′

= −
K

M , 
 

(17.3.2) 

the differentiation taking place with respect to the inertial frame of reference ′R . 
Choosing a non-inertial frame R  having the pole at the mass centre C, the torsor of the 
forces of inertia at this point is given by (corresponding to the equations (14.1.47), 
(14.1.48)) 

i d
d

CM
t
′

= −
v

R , 
 

(17.3.3) 

i ( )C C C= − − ×M I Iω ω ω , 
 

(17.3.4) 
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where M is the mass of the considered element, C′v  is the velocity of the centre of 
mass, ω is the rotation angular velocity vector, while CI  is the central tensor of inertia. 
Denoting by ′ρ  the position vector of the mass centre, we can write 

2
i

2

d
d

j
jR M

t

′
= − ,   1,2,3j = . 

 
(17.3.3') 

Analogously, we can write 

( )[ ]i
1 1 3 2 2 31CM I I I= − + − , 

( )[ ]i
2 2 1 3 3 12CM I I I= − + − , 

( )[ ]i
3 3 2 1 1 23CM I I I= − + − , 

 
 

(17.3.4') 

where we used the central principal axes of inertia, 1 2 3I I I≥ ≥  being the 
corresponding principal moments of inertia. 

In case of a motion of translation ( = 0ω ), it results 

i d
d

CM
t
′

= −
v

R ,   i
C =M 0 , 

 

(17.3.5) 

the system of inertia forces of the element being thus reduced to a unique force of 
inertia applied at the centre of mass and equal to the product, with a changed sign, of 
the mass of the element by the acceleration of its centre of mass. We notice thus that, by 
the starting of the motor, when the element has an accelerated motion, the force of 
inertia is a resistant force; instead, at the stopping of the motor, the force of inertia 
becomes a driving force. In particular, if d /dC C t′ ′=a v , then the element has a 
rectilinear and uniform motion and is no more acted upon by a force of inertia. 

In the hypothesis of a motion of rotation about a central principal axis of inertia (let 
be 1 2 0= = , 3 = ), we get 

i =R 0 ,   i
3 3 3C I I= − = −M i ω . 

 

(17.3.6) 

Hence, in case of the rotation of an element of the engine about one of these axes, the 
system of forces of inertia is reduced to a couple, the moment of which is situated along 
the axis of rotation, having its sense opposite to that of the angular velocity vector. As 
above, there appear the notion of resistant couple and the notion of driving couple (due 
to which the great and heavy runners ( 3I  is greater) are rotating for a long time after 
the ceasing of the action of the couple which produced the motion). If, in particular, 

const= , then the element has a motion of uniform rotation, non-being acted by any 
force of inertia. 

Let be now the case of rotation of the considered element about a principal axis of 
inertia (the 3O x′ ′ -axis), parallel to a central one (the 3Cx -axis); hence, 1 2 0= = , 

3 =  and we have 
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i
CM ′= −R a ,   i

3C I= −M ω . 
 

(17.3.7) 

Observing that 3C O x′ ′ ′⊥a  (the centre C has a motion of rotation in a plane normal to 

3O x′ ′ ), hence C′ ⊥a ω , it results that the scalar of the torsor of the forces of inertia 
vanishes ( i i 0C⋅ =R M , so that this system of forces is reduced to a resultant applied 
at the point 1O , on the straight line O C′  (obviously, we choose the point 1O  
conventionally, the force iR , applied at 1O , sliding along its support) (Fig. 17.22). We 
choose the 2Cx -axis along O C′  and the 1Cx -axis so that the frames ′R  and R  be 
right-handed ones. Projecting on the axes of the frame R, we obtain (we take into 
account the intrinsic components of the acceleration C′a , that is 1Ca ′ ′= − , 

2
2Ca ′ ′= − ) 

i
1R M ′= ,   i 2

2R M ′= − ,   i
3 0R = ,   i i

1 2 0C CM M= = ,   i
33CM I= − . 

 (17.3.7') 

The position of the point 1O  will be specified by i i
1 1 33 / /Cl CO M R I M ′= = − = , 

so that ( 1l O O′ ′= ) 

l l′ ′= + ,   
2
Cil = ′ , 

 
(17.3.8) 

where Ci  is the central radius of gyration with respect to the 3Cx -axis. We notice that 
the point O ′  is a centre of suspension, while the point 1O  is a centre of oscillation of 
the element, considered as  a physical pendulum, l ′  being the length of the 
mathematical pendulum synchronous with this one. 

 
Fig. 17.22  Rotation of an element of the engine about a principal axis of inertia 

In case of a plane-parallel motion we have 1 2 0= = , 3 =  (we choose the 

1 2Cx x -plane as fixed plane), hence the torsor of the forces of inertia will be of the form 
(17.3.7) too. The scalar of the torsor will be also equal to zero, so that the system of the 
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forces of inertia is reduced to a resultant along the central axis, contained in the fixed 
plane of equation (see the equation (2.2.31'')) 

i i i
2 1 1 23 0CM x R x R+ − = ; 

 

(17.3.9) 

we associate the relations 

i
1 1CR Ma ′= − ,   i

2 2CR Ma ′= − ,   i
33CM I= − . 

 

(17.3.9') 

The distribution of the accelerations is, in general, unknown; it can be obtained starting 
from the accelerations of two points of the element and using the polygon of 
accelerations and the method of the pole of accelerations (see Chap. 5, Sect.. 2.3.4 too). 

The problem becomes complicated in case of elements of arbitrary shape, having a 
complex motion; in this case, one can use the method of concentration of masses, 
replacing the mass M of the considered element by a system of masses iM , 
concentrated at the concentration points iP , 1,2,...,i n= , chosen so that the action of 
the new system of masses upon the other elements of the system be equivalent with the 
action of the mass of this element. In this case, the sum of the torsors of the forces of 
inertia corresponding to the concentrated masses, with respect to the mass centre, must 
be equal to the torsor of the forces of inertia of the studied element, with respect to the 
same centre. It is necessary that: (i) the sum of the concentrated masses be equal to the 
mass of the element; (ii) the mass centre of the system of concentrated masses does 
coincide with the mass centre of the element, their accelerations being equal. This 
corresponds to a static repartition of the mass of the element. To obtain a dynamic 
repartition of this mass, it is also necessary that: (iii) the sum of the kinetic energies of 
the concentrated masses be equal to the kinetic energy of the element (hence, the sum of 
the moments of inertia of the concentrated masses with respect to the mass centre be 
equal to the moment of inertia of the element with respect to the same centre). It is 
convenient that the points iP  be on the axes of the articulations, being possible that one 
of them does coincide with the centre of mass C  of the element. Practically, the mass 
of an element is replaced by two or three concentrated masses. 

Once the forces of inertia determined, the constraint forces of the kinematic couples 
can be calculated by usual methods from the static study of the mechanical system 
(analytical methods, grapho-analytical methods and graphic methods). 

17.3.1.2 Kinetic Energy of an Engine 

The kinetic energy of an engine can be calculated starting from the kinetic energy of 
each element iS ; the quantities which intervene will be calculated with respect to a 

fixed frame of reference ′R . In case of an element individualized by the index j, in 
motion of translation, we have 

21
2 jj j CT M v′ ′= , 

 

(17.3.10) 
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where jM  is the mass of the element, while 
jC′v  is the velocity of its centre of mass 

jC , the same for all the points of the element. If the element is in motion of finite 
rotation about an axis which passes through its mass centre, we can write 

21
2 jj jCT I′ = , 

 

(17.3.11) 

where 
jCI  is the moment of inertia of the element with respect to the central axis of 

rotation, jω  being the corresponding rotation angular velocity. In case of a general 
motion of the element, the formulae (14.1.29'), (14.1.35) allow to write 

( )21 1
2 2j jj j j jC CT M v′ ′= + ⋅ Iω ω , 

 

(17.3.12) 

where 
jCI  is the corresponding central tensor of inertia. If the motion is a plane-parallel 

one, as – in general – in case of an engine, it results 

2 21 1
2 2j jj j jC CT M v I′ ′= + , 

 

(17.3.12') 

where 
jCI  is the moment of inertia with respect to the axis of rotation (axis normal to 

the fixed plane and fixed with respect to the considered element) which passes through 
the mass centre jC . Finally, we can assume that the kinetic energy of the engine (of the 
mechanical system S ) with respect to the frame ′R  is given by 

2 2

1 1

1 1
2 2j j

n n

j jC C
j j

T M v I
= =

′ ′= + . 
 

(17.3.13) 

The linear and angular velocities of the elements vary during a cycle of running of 
the engine; hence, the kinetic energy of the motion has a cyclic variation during its 
running too. Corresponding to the Theorem 11.1.10'', the variation of the kinetic energy 
in a finite interval of time is equal to the work of the given external forces which act 
upon the engine, in that interval of time. If, in an interval of time, the work of the 
external forces is positive (negative), then the kinetic energy increases (decreases); if 
this work vanishes, then the kinetic energy is conserved. In the latter case, the increases 
of kinetic energy of some elements take place on account of the decreases of kinetic 
energy of other elements, because the kinetic energy of each element has a cyclic 
variation. 

17.3.1.3 Reduced Mechanical Quantities 

Because an engine has only one degree of mobility (degree of freedom), it is sufficient 
to know the law of motion of a single element of it (which is, usually, the initial element 
of the engine); one arrives thus to the idea of replacing the study of the engine as a 
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mechanical system by the study of a fictitious element, having some of the properties of 
the engine, necessary to the search one wishes to make. 

Thus, we can replace the mass of the engine by a conventional one redM  (reduced 
mass), situated at a part of the engine called reduction centre; as well, we can introduce 
a reduction element (even an element of the engine), having a reduced moment of 
inertia redI . The reduction of the masses of the engine to a reduction centre or to a 
reduction element is made so that their kinetic energy be, at any moment, equal to the 
kinetic energy of the engine; obviously, the law of motion of this conventional 
mechanical system S  (of translation velocity ′v  or rotation angular velocity about its 
mass centre ω ) is the same to that corresponding to the situation in which the 
respective system is a part of the considered engine. Equating the kinetic energies, we 
obtain 

( )
2 2

red
1 1

j

j

n nC j
j C

j j

v
M M I

v v= =

′
= +′ ′ , 

 
(17.3.14) 

the reduced mass of the engine being thus a non-negative quantity (it vanishes if the 
engine is not in motion), which has a periodical variation, function of the linear and 
angular velocities of its elements. Analogously, it results 

( )
2 2

red
1 1

j

j

n nC j
j C

j j

v
I M I

= =

′
= + ; 

 
(17.3.15) 

this quantity has the same properties as redM . We notice that a relation of the form 

2
red redI M l=  

 

(17.3.16) 

takes place, where /l v ′=  is the length of the reduction element. If we denote by  
the rotation angle of the reduction element, then it results red red ( )I I= ; as well, 

red( )T T I′ ′= , wherefrom ( )T T′ ′= , so that we can draw both diagrams. 
Analogously, we can reduce the given external forces and their moments with 

respect to a pole. For this, we calculate the power produced by the forces and the 
moments which act upon the element of engine in the form 

1 1
j j

n n

j jC C
j j

P F v M
= =

′= + , 
 

(17.3.17) 

where jF  and 
jCM  represent the resultant and the moment resultant, respectively, 

which act upon the element of index j at its mass centre, 
jC′v  and jω  being the 

corresponding linear and angular velocities, respectively (along the directions of the 
corresponding forces and moments, respectively). Equating to the power 

red red redCP F v M′= = , we get 
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red
1 1

j

j

n nC j
j C

j j

v
F F M

v v= =

′
= +′ ′ , 

 
(17.3.18) 

as well as 

red
1 1

j

j

n nC j
j CC

j j

v
M F M

= =

′
= + . 

 
(17.3.19) 

The obvious relation 

redredCM F l=  
 

(17.3.20) 

takes place. The reduced force and the reduced moment are variable quantities. In case 
of an element of reduction red red ( )=F F  and red red ( )C C=M M , we can draw the 
corresponding diagrams. 

If cF  and cM  are the counter-balance force and moment, respectively, components 
of the counter-balance torsor, applied on the same reduction element, then we can write 

redc = −F F ,   redc C= −M M . 
 

(17.3.21) 

17.3.2 Applications 

In what follows, we present some interesting applications of the theoretical results 
obtained above. We consider thus the problem of the equilibration of the mobile masses 
and the problem of work of engines (including their settlement). 

17.3.2.1 Equilibration of the Mobile Masses 

In case of engines which have some elements deficiently assembled (e.g., a runner 
deficiently centred), which are not perfectly homogeneous or which are performed with 
some tolerance, appear non-equilibrated forces of inertia, as well as their non-
equilibrated moments, yielding supplementary dynamic efforts in the kinematic 
couples. We say that these elements are out-of-balance; the elimination of the 
corresponding injuries is obtained by the balance of the inertia forces, hence by the 
balance of the mobile masses. 

Let be an element of mass M, which is uniformly rotating with an angular velocity ω 

about an axis , which does not pass through the centre of mass C. Thus arises a radial 

(centrifugal) non-equilibrated force of inertia iF , applied at C and normal to the axis 

, as well as a non-balanced moment of this force iM , normal to the same axis and 
applied at a point of it (if the motion would be varied, then there would appear also a 
tangential force of inertia, contained in the plane of rotation of the centre C too). We 

choose the axis  as 3O x′ ′ -axis, the 1 2O x x′ ′ ′ -plane passing through ( )1 2, , 0C ′ ′  
(O C′ ′= ). The centrifugal force is given by (the formulae (14.2.1)) 
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i 2
1 1F M= ,   i 2

2 2F M= ,   i
3 0F = , 

 

(17.3.22) 

the moment of the forces of inertia being specified by (the formulae (14.2.1')) 

i 2
1 23M I= ,   i 2

2 31M I= − ,   i
3 0M = . 

 

(17.3.22') 

To equilibrate this element, we must have i =F 0  (hence, 1 2 0= = , the mass 

centre C being thus on the rotation axis ) and i =M 0  (hence, 23 31 0I I= = , the 

rotation axis  being a principal axis of inertia for the point of application of the 
moment iM ). Hence, for its equilibration, the element must rotate about a principal 
axis of its central ellipsoid of inertia. 

If i ≠F 0 , i =M 0 , then the torsor of the forces of inertia is reduced to a centrifugal 
unbalanced force, the support of which passes through the mass centre C, eccentrically 

situated with respect to the rotation axis ; there results a static out-of-balance (which 
is put in evidence even at rest), which can be eliminated by an operation of static 
balance. If i =F 0 , i ≠M 0 , then the mass centre C is on the axis of rotation , the 
element being balanced at rest; during the motion of rotation appears a moment of 
deviation of the axis of rotation (unbalanced moment of the forces of inertia), leading to 
a dynamic out-of-balance, which can be eliminated by a dynamic balance. In general, if 

i ≠F 0 , i ≠M 0 , then takes place a general (complete) out-of-balance, which can be 
eliminated by an operation of general (complete) balance. These operations are realized 
by eliminating some masses (from those parts of the element which are heavier) or by 
adding some supplementary masses (to those parts of the element which are lighter), 
placed conveniently, so that the quantities iF  and iM  do vanish. 

In case of masses in rotation, the forces of inertia are decomposed in components 
contained in two parallel planes (equilibration planes); the resultants of these forces in 
the two planes can be annulled by the application of a supplementary mass in each of 
them, along the direction of the corresponding force. Obviously, this balance can be 
realized in various modes, because the equilibration planes can be chosen arbitrarily, as 
well as the position and magnitude of the supplementary masses. 

In case of a mechanism, the relations (17.3.2) lead to the components of the torsor of 
inertia forces of the form 

i
j jR mx ′= − ,   i

jkl k lO jM mx x′ ′ ′= − ∈ ,   1,2, 3j = , 
 

(17.3.23) 

where the sum (which can be an integral too) is referring to an arbitrary point of the 
mechanism. If the mechanism is plane (a plane-parallel motion), then the equations 
(17.3.23) read 

i
1 1R mx ′= − ,   i

2 2R mx ′= − ,   i
3 0R = , 

i
3 21OM mx x′ ′ ′= , i

3 12OM mx x′ ′ ′= − , ( )i
1 2 2 13OM m x x x x′ ′ ′ ′ ′= − − . 

 
(17.3.24) 
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Because ( )x x′ ′= , 1,2= , where ( )t=  is the angle of rotation of the 
leading element, it results 

2
2

2
d d

dd
x xx

′ ′′ = + ,   1,2= , 
 

so that 

2
i 2

2
d d

dd
x xR m m

′ ′
= − + ,   1,2= , 

 

 

(17.3.25) 

2
2 2i 2

3 31 2
d d

ddO
x x

M mx mx′
′ ′

′ ′= + , 

2
1 1i 2

3 32 2
d d

ddO
x x

M mx mx′
′ ′

′ ′= − + , 

 
 

(17.3.25') 

2 2
1 2 1 2i 2

2 1 2 13 2 2
d d d d

d dd dO
x x x x

M mx mx mx mx′
′ ′ ′ ′

′ ′ ′ ′= − + − . 

 
 

(17.3.25'') 

We notice that the moment i
3OM ′  is contained in the moment of the given and 

constraint forces, so that only the relations (17.3.25), (17.3.25') remain to be 
considered. To balance the forces of inertia, the quantities iR  and i

OM ′ , 1,2= , 
must also vanish for any  and ; to do this, the relations 

d 0
d
xm

′
= ,   3

d 0
d
xmx

′′ = ,   1,2= , 
 

(17.3.26) 

are sufficient. Indeed, in this case we have 

2

2
d 0
d

xm
′

= ,   
2

3 2
d 0
d

xmx
′′ = ,   1,2=  

 

too. Taking into account mx M′ ′= , 1,2= , where M is the mass of the 
mechanism, the first relations (17.3.26) lead to const′ = , 1,2= . As well, 
observing that 3 3I mx x′ ′= − , the last relations (17.3.26) allow to state that 

3 constI = , 1,2= . Hence, to equilibrate the resultant force iR , the masses of the 
mechanism must be distributed so that their mass centre be fixed during the motion. To 
balance the resultant moment i

O ′M , it is necessary that the 3O x′ ′ -axis be a principal 
axis of inertia at the point O ′ . 
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case of an articulated quadrangle, the centre of mass will have a fixed position on the 
straight line joining the two fixed articulations if two masses of balance are introduced. 

17.3.2.2 Work of Engines 

In the work of an engine, we mark out – in general – three phases: the phase of starting 
(of duration st ), the phase of regime (of duration r ct kt= , assuming the existence of k 
cycles of motion, of duration ct ) and the phase of stopping (of duration stt ); the total 
duration of motion of the engine will be, obviously, s r stT t t t= + + . The diagram 

( )t=  of variation of the angular velocity of the leading element (the tachogram of 
the machine) will be represented in Fig. 17.23. In the phase of regime, the mean angular 
velocity ( )max min /2m = +  is put in evidence. 

The kinetic energy of the engine is given by the relation (17.3.13) or, using the 
reduced mass or the reduced moment of inertia, by one of the relations 

2 2
red red

1 1
2 2

T M v I′ ′= = . 
 

(17.3.27) 

The work effected by all the external forces which act upon the elements of the 
engine in the whole duration of running of it is of the form m rW W W′ ′ ′= − , where 

mW ′  is the motive work, while rW ′  is the resistant work. Applying the theorem of 
kinetic energy, we may write 

d d dm rT W W′ ′ ′= − . (17.3.28) 

Hence, the kinetic energy of the engine increases or decreases as d dm rW W′ ′>  or 
d dm rW W′ ′< ; if d dm rW W′ ′= , then the kinetic energy passes through an extremum. 
The theorem of kinetic energy in finite form leads to (between the limits 0t  and t for 
the time) 

( ) ( )2 2 2 2
0 0 0red red

1 1
2 2 m rT T I M v v W W′ ′ ′ ′ ′ ′− = − = − = − . 

 

(17.3.28') 

The expressions at the left represent the work iW  of the forces of inertia, which is 
positive if the angular velocity increases ( 0> ) and negative otherwise ( 0< ); 
as well, the difference m rW W′ ′−  is the work of the reduced moment (at the reduction 
element) or of the reduced force (at the reduction centre). 

17 Dynamics of Systems of Rigid Solids 

Often, the moment of the inertia forces is neglected, this one being sufficiently small, 
remaining to be fulfilled the condition concerning the centre of mass. For instance, in 
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Fig. 17.23  Diagram of variation of the angular velocity of the leading element  

(the tachogram of the machine) 

The phase of starting is characterized by 0 0=  and r= , where r  is the 
angular velocity of regime (of mean value m ); it results m rW W′ ′> . To diminish the 
starting time st , the no-load start of the engine, by uncoupling the useful load, is 
recommended. In the phase of regime, the angular velocity has a cyclic variation 
( 0

0= ) and we have m rW W′ ′=  (the motive work during a cycle is consumed by 
the respective resistant work). In the stopping phase, the angular velocity decreases 
from r  to zero; we have m rW W′ ′< . Practically, the motive source is uncoupled 
( 0mW ′ = ), and, to reduce the time of stopping stt , the work rW ′  is increased, by 
braking. 

The resistant work can be expressed, in general, in the form 

r u p gW W W W′ ′ ′ ′= + ± , 
 

(17.3.29) 

where uW ′  is the useful work consumed by the engine to overcome the technological 
resistances, pW ′  is the passive (lost) work (by friction, resistance of the medium etc.), 
while gW ′  is the work of the gravity forces (one takes the sign + or the sign − as the 
gravity centre of the elements in motion moves downwards or upwards). Taking into 
account (17.3.28'), we get 

i
m u p gW W W W W′ ′ ′ ′ ′= + ± ± , 

 

(17.3.30) 

putting thus in evidence the equilibrium of the motive work and of the other works 
consumed or produced during its running ( iW ′  is the inertial work). Hence, it results 

id d d d dm u p gW W W W W′ ′ ′ ′ ′= + ± ± ; dividing by dt, we obtain 

i
m u p gP P P P P′ ′ ′ ′ ′= + ± ± , 

 

(17.3.30') 

where mP ′  is the power due to the motive forces, uP ′  is the useful power, pP ′  is the 
positive (lost) power, gP ′  is the gravitational power (the power necessary to balance the 
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forces of weight if the centre of gravity of the elements moves up or the power 
produced by these forces if the centre of gravity moves down), while iP ′  is the inertial 
power (the power necessary to increase the kinetic energy of the engine or the power 
obtained by decreasing the kinetic energy). The equation (17.3.30') represents the 
equation of energetic balance of the engine, specifying the power necessary to the 
engine and allowing an estimation of it from an economical point of view. 

Taking into account Chap. 6, Sect. 1.1.3, we will use the notion of the mechanical 
efficiency 0 1≤ < , given by (6.1.17), as well as that of coefficient of loss 

/p mW W′ ′= ; it results 1= − . As the coefficient of loss is smaller, so the 
mechanical efficiency is greater (the work is better used by the engine); if the engine is 
in no-load moving ( p mW W′ ′= ), then we have 0= . In case of self-braking of the 
engine ( p mW W′ ′> ), the mechanical efficiency would become negative (the engine 
cannot work in regime). 

Let be n mechanisms or engines jM , 1,2,...,j n= , grouped together in series. We 
assume that mW ′  is the work of the setting by means of the mechanism 

 1M  and that 
uW ′  is the useful work of it by means of the mechanism  nM . We may write 

1 1 / mW W′ ′= , 2 2 1/W W′ ′= ,…, 1/n u nW W −′ ′= ; we obtain thus 

1, 1 2 ... nn = , 
 

(17.3.31) 

with 1, /u mn W W′ ′= . Hence, the mechanical efficiency of a setting composed by 
mechanisms (or engines) coupled in series is equal to the product of the mechanical 
efficiencies of the mechanisms (or engines) which compose this setting. The mechanical 
efficiency of the setting is smaller than each of the component mechanical efficiencies; 
this mechanical efficiency is as smaller as the setting is more complex. As well, the 
formula (17.3.31) puts in evidence the impossibility of existence of a perpetuum mobile 
(which works without loss of energy, having the mechanical efficiency 1, 1n = ). 

17.3.2.3 Adjustment of the Work of Engines 

The angular velocity ω of the leading element of the engine varies periodically or non-
periodically during the motion of rotation. As it is seen in Fig. 17.23, the periodic 
variations take place between min  and max ; from the equation red redCI M=  it 
results that for the extreme values we have red 0CM = . The non-periodic variations, 
which can appear because of various causes (coupling or non-coupling of 
supplementary charges, accidental charges, random deficiencies etc.), must be limited 
too. The problem of adjustment of the work of engines is thus put (maintaining the 
angular velocity  between some limits or even constant). From the relation 

redredd d /CM t I=  one observes that the variations of the angular velocity are as 
smaller as redCM  and their duration are smaller or as redI  is greater. 

The increasing of the reduced moment of inertia redI  can be obtained with the aid of 
a fly wheel (a great and heavy wheel) fixed on the element in motion of rotation; hence, 
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red redm fI I I= + , where redmI  is the reduced moment of inertia without fly wheel, 
while fI  is the moment of inertia of the fly wheel. As a matter of fact, the fly wheel is 
an accumulator of kinetic energy. Indeed, during an energetic cycle of an engine, the fly 
wheel accumulates kinetic energy in excess, when the angular velocity is increasing, 
handing it back when the angular velocity decreases; thus, the angular velocity ω is 
close to the mean velocity (of regime). But the fly wheel cannot impede an engine to 
pass from a state of regime to another one; it makes only easier the passing (which takes 
thus place less sudden) and is not efficacious in case of non-periodical variations of the 
velocity. 

To maintain the mean angular velocity m  one uses particular mechanisms, called 
regulators (which act, especially, on the admission of the motive energy). Hence, the 
regulator establishes and maintains the value of the mean velocity of the engine, while 
the fly wheel diminishes the periodic variations of the velocity around this value. 

The regulator is a mechanism which controls automatically the work of the motive 
force, decreasing it when the angular velocity is increasing and increasing it when the 
angular velocity decreases, so that the equilibrium between the motive couple and the 
resistant one is re-established. The regulators can be centrifugal (influenced by the 
centrifugal force), of inertia (influenced by the tangential inertia forces) etc. We 
mention also the power controllers (e.g., for lifting pumps). Between the centrifugal 
regulators, one can mention: the Watt regulator (which has the advantage to be stable) 
and the Rankine regulator (which is isochronous, but has the disadvantage to be labile) 
etc. 
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Criterion, 84 
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 Helmholtz-Zorawski, 84 
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Dynamics of engines, 517–532 
 adjustment of the work, 531, 532 
 equilibrium of mobile masses, 526–529 
 forces of inertia, 520–523 
 kinetic energy, 523 
 reduced mechanical quantities, 524–526 
 work of engines, 529–532 
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 potential, 2–4, 31, 157 
Euler-Poinsot case, motion of a rigid solid with a 

fixed point 
 geometric representations, 314, 315 
  after MacCullagh, 301 
  after Poinsot, 314, 315, 338, 339 
  herpolhode, 318, 321–326 
  polhode, 317–321 
 
Force, 41 
 dynamic moment, 46 
 dynamic resultant, 45, 46 
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 kinetic resultant, 45 
 lost of d’Alembert, 41 
Frame of reference, 1–10 
 inertial, 1–10 
 Koenig, 50–58 
 non-inertial, 1 
Fundamental problem 4, 5 
 first, 5 
 mixed, 5 
 second, 5 
 
Group properties, 47–50 
Gyroscope, 396–436 
 axes of rotation, 415–417 
 azimuth gyroscope, 434 
 Cardanic suspension, 420–422 
 Charron’s experiment, 407 
 Euler-Poinsot case, 396–398 
 gyroscopic compass, 425, 434 
 gyroscopic effect, 396, 407–417, 431, 434, 435 
 gyroscopic moment, 396, 411–415, 420–422, 

425, 426, 430–435 
 influence of friction forces, 420, 422–424 
 influence of the rotation of the Earth, 424–427 
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 motion of a projectile, 434, 435 
 motion of a railway car, 431 
 motion of rotation, 398–404 
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 Prandtl’s wheel, 415–420 
 progressive precession, 404–407 
 regular precession, 404–407, 417–420, 430 
 Schlick’s gyroscope, 432–434 
 sleeping gyroscope, 410, 411 
 stability of the motion, 396–398 
 tendency of parallelism of the axes of rotation, 

415–417 
 
Integral, 8–10 
 first, 8–10 
 general, 8–10 
Invariable plane, 55, 314 
 
Jacobi’s multiplier, 288–296 
 properties of invariance, 293–296 
 theory of the last multiplier, 293–296 
 
Material derivative, 83 
Material variety, 84 
 with discontinuities, 129, 498 
Matrix, 194–197 
 adjoint, 194, 195 
 antiHermitian, 195 
 Hermitian, 195, 203, 204 
 transpose, 194 
Mechanical efficiency, 3, 531 
Mechanical system, 1 
 closed, 1 
 discrete, 1–77 
 of variable mass, 169–192 
  continuous, 189–192 
  Meshcherskiĭ’s generalized equation, 170, 

172, 175, 177, 178 
  particle, 169–172 
 open, 1 
 subjected to constraints, 37–40 
Moment, 1, 12, 22, 58, 172, 208, 444–449 
Moment of momentum, 1, 2, 12–14, 22–27, 58–67, 

172–177 
Motion with discontinuities, 498–519 
 action of a percussive force, 512–519 
  with a fixed point, 517, 518 
  free rigid solid, 518, 519 
 action of percussive forces, 512–515, 517–519 
 ballistic pendulum, 512, 515–517 
 centre of collision of two spheres, 498, 500–502 
 oblique collision, 503–506 
 percussion of two rigid solids, 498–500 
 of a sphere with a rigid solid, 506, 507 
 suddenly fixation, 512, 519 
 of two arbitrary rigid solids, 507–509 
Motion of a discrete mechanical system, 41, 43, 47, 

50, 54, 56, 58, 149, 151, 154 
 with respect to an inertial frame, 1 
 with respect to a Koenig frame, 50–57 
 with respect to a non-inertial frame, 50, 64 

Motion of a free rigid solid, 228, 283 
 distribution of accelerations, 207 
 distribution of velocities, 207 
 dynamic moment, 211 
 dynamic resultant, 211 
 elementary work, 215, 216 
 finite rototranslations, 193–197 
 general equations, 220–229 
 homographic transformation, 209, 210 
 inversion, 196 
 kinematic considerations, 205–208 
 kinetic energy, 212–216 
 moment, 208–211 
 moment of momentum, 209–211 
 power, 216 
 pseudokinetic energy, 212 
 pseudomoment of momentum, 209, 210 
 rigid motion, 196, 197 
 state of rest, 226, 227 
 transportation of a complementary force,  

216, 217 
 transportation of kinetic energy, 215, 216 
Motion of a rigid solid with a fixed point, 279 
 case of a heavy rigid solid, 286–288 
 cases of integrability, 296–300 
  Husson’s theorem, 299 
 Euler-Poinsot case, 279, 299–301 
  determination of the position, 307–314 
  ellipsoid of inertia of rotation, 332–338 
  geometric representations, see Euler-Poinsot 

case, motion of a rigid solid with a fixed 
point, geometric representations 

  permanent rotations, 326–332 
  Poinsot’s cones, 282, 338–342 
  Poinsot type motion, 339–342 
  Sylvester’s theorems, 339–342 
  Volterra’s problem, 339–342 
 kinematics, 279–283, 301–307 
 kinetics, 283, 285 
 Lagrange-Poisson case, 342, 343 
  equations of motion, 343–346 
  geometric representation, 354, 355 
  motion of precession, 346–351 
  regular precession, 352–354 
 Nadolschi’s case, 378–380 
 permanent axes of rotation, 376, 377 
 Sonya Kowalewsky case, 355–359 
  first integrals, 356–359 
  reduction of the problem, 361–364 
 uniformity of the solution, 365–369 
  Bobylev-Steklov case, 373–376 
  Goryachev-Chaplygin case, 372, 373 
  Hess’s case, 370–372 
  Merkalov’s case, 372, 373 
Motion of a rigid solid subjected to constraints, 

229–231 
 about a fixed axis, 239–242 
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 of the airplane, 261–264 
 departure of a powercraft, 275, 276 
 particular cases, 193, 229 
 plane-parallel motion, 193, 239, 253–258 
  of the airplane, 264, 265 
  double circular cone, 257 
  of a rigid straight bar, 255–257 
  of a sphere, 260 
 a point of which has an imposed motion,  

232–234 
 rolling on an inclined plane, 269 
 rolling on a horizontal plane, 271–275 
 stopping of a powercraft, 275–278 
 two points of which have an imposed motion, 

234–238 
Motion of a rigid solid of variable mass, 436 
 Goddard’s approximate method, 436 
 motion about the mass centre, 454–457 
 motion of the aircraft fitted out with jet 

propulsion motion, 444 
 motion in a homogeneous atmosphere, 440 
 motion of the mass centre, 444, 453 
 motion of the rocket, 443, 444 
 motion by simultaneous capture and emission, 

442, 443 
 Oberth’s approximate method, 437–439 
 theorem of moment of momentum, 449 
 theorem of momentum, 449 
 variational methods, 436, 439–441 
Motions of the Earth, 381–396 
 Chandler’s period, 384 
 diurnal rotation, 382–385 
 Euler’s cycle, 381–389 
 free nutation, 390–396 
 Larmor’s precession, 385 
 magnetic-mechanical analogy, 385 
 pseudoregular precession, 390–394 
 regular precession, 381–389 
 of revolution, 381, 382 
 of rotation, 381–383 
 secular variation, 385–389 
Motion of a straight bar, 119 
 equations of motion, 119–121 
 longitudinal vibrations, 121, 122 
 torsional rotations, 121–123 
 transverse vibrations, 123–128 
Motion of threads, 101–119 
 condition of continuity, 103, 105, 107, 108 
 equations of motion, 106 
 forced vibrations, 117, 118 
 fundamental solution, 115, 116 
 longitudinal vibrations, 111 
 transverse vibrations, 111–119 
 
Physical pendulum, 242–247 
 Bessel pendulum, 248 
 Borda pendulum, 248–250 
 determination of moments of inertia, 247 

 Huygens’s theorem, 242–247 
 Kater pendulum, 248–250 
 loxodromic pendulum, 370–372 
 Mach pendulum, 251, 252 
 Voinaroski pendulum, 250, 251 
 Weber-Gauss pendulum, 252, 253 
Power, 3, 70 
 of constraint forces, 4 
 of external forces, 4 
 of internal forces, 4 
Principles, differential, 41–44 
 conservation of mass, 86, 87 
 of d’Alembert, 41 
 of energy variation, 92 
 generalized, of Clapeyron, 93 
 of heat flux, 91 
 of initial conditions, 90–93 
 of internal forces, 87–89 
 of motion of the centre of mass, 96, 97 
 of objectivity, 85 
 of variation of the dynamic torsor, 89, 90 
 of variation of the kinetic torsor, 88 
 of variation of the moment of momentum, 89, 90 
 of variation of the momentum, 88, 89 
 of virtual velocities, 44, 154 
 of virtual work, 44, 45, 148–155 
Problems of motion, 4, 5 
 of an artificial celestial body, 186–188 
 of Cayley, 189, 190 
 of n particles, 32–37, 56–58, 74–77, 182–186 
 of the rocket, 179–182 
 of two particles, 35, 36, 56, 57, 182, 183 
 of the winch, 190–192 
 
Representation of the rotation of a rigid solid, 194 
 Cayley-Klein parameters, 202–205 
 Eulerian parameters, 197–201 
 Euler’s angles, 194, 206, 207 
 Olinde Rodrigues’s formulae, 199–201 
 Pauli spin matrices, 203–205 
 quaternions, 200 
 spinor, 205 
 stereographic projection, 200 
 
Strain, 93 
System, dynamical, 6 
 autonomous, 6 
 non-autonomous, 6 
Systems of rigid solids, 459–532 
 contact of two rigid solids, 471–475 
 double pendulum, 461–466 
 motion of a rigid solid on a fixed plane, 477–479 
  of a heavy circular disc, 493–497 
  of a heavy gyroscope, 482–485 
  of a heavy homogeneous rigid solid, 479–482 
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